Category Archives: Political Ecology

On Scientific Conferences

Should we ban scientific conferences and save the money for better science? What a terrible thought you would say if you were 25 years old, what a great idea you might say if you were 60 years old and have just come back from a conference with 9000 attendees and 30 concurrent sessions. So, there is no simple answer. Let us try to think of some rules of thumb if you are organizing a scientific conference. Since I am an ecologist I will talk largely about ecological meetings. There is already much interesting literature on this broad question (Zierath 2016, Blome et al. 2017, Hicke et al. 2017). For all I know conferences with 9000 registrants are ideal in neurobiology but in my opinion probably not useful in ecology.

Why have a conference? Simple, to transmit information among delegates. But you can do this more efficiently by reading current papers in the literature. So a conference is useful only if you get new insights that are not yet published, the cutting edge of science. Such insights are more likely to come from conferences that are spaced at 3-5 year intervals, a time frame in which some proper ecological research can be done. And insights are more likely to come from meetings that are narrow in scope to one’s immediate area of interest.

A second good reason for a conference is to meet people in your area of research. This is likely to be more successful if the meeting is small, perhaps a maximum of 150 attendees. This is the general approach of the Gordon Conferences. Meeting people is more difficult with larger conferences because, if there are multiple concurrent sessions, much time is spent moving among sessions and fewer people get the same view of scientific advances in an area. As one eminent ecologist pointed out to me, really important people do not go to any of the talks at conferences but rather socialize and conduct their own mini meetings near the coffee bar.

Organizing a conference is an exercise in utter frustration requiring the dictatorial behaviour of an army general. The general rule is the more talks the better, and never have a talk longer than 15 minutes lest someone get bored. In fact, speed talks are now the rage and you can have 3 minutes to tell the audience about what you are doing or have done. Perhaps if we are moving in this direction we should just have the conference via youtube so we could sit at home and see what parts of it we wanted to watch. If we add ‘tweets’ to conferences (Orizaola and Valdes 2015), we would certainly be following some of our world leaders for better or worse.

I have not been able to find anyone who would dare to calculate the financial cost of any conference and to try to construct a cost benefit ratio for a meeting. The argument would be that the costs can be calculated but the benefits are intangible, somewhat reminiscent of the arguments of our military leaders who demand more financial resources to achieve vague benefits. These concerns disappear if we consider a conference as a scientific tea party rather than an intellectual event. Perhaps we need a social science survey at the end of each conference with the attendees required to list the 5 major advances they obtained from the conference.

All these concerns convince me that we should restrict scientific conferences to small meetings on particular topics at relatively long intervals. Large conferences, should they seem desirable, should consist largely of longer plenary talks that synthesize the status of a specific area of ecology and provide a critique of current knowledge and suggestions of what to do next. These kinds of plenary talks are equivalent to synthesis papers in scientific journals, the kinds of papers that are all too rare in current journals.

One important consequence of scientific meetings can be to reach out to the public with evening lectures on topics of global concern (Hicke et al. 2017). Where it is feasible this recommendation can be an important way of extending information to the public on topics of concern like climate change or conservation management.

Whatever is decided by ecological societies about the structure of scientific conferences, some general rules about presentations ought to be written in large letters. If you are talking at a conservation ecology meeting, you should not spend half of your talk trying to convince the audience that there is a biodiversity crisis, or that climate change is happening. And for the details of a successful conference, read my earlier Blog (https://www.zoology.ubc.ca/~krebs/ecological_rants/how-to-run-a-successful-scientific-conference/) or Blome et al. (2017). This is not rocket science.

Blome, C., Sondermann, H., and Augustin, M. 2017. Accepted standards on how to give a Medical Research Presentation: a systematic review of expert opinion papers. GMS Journal for Medical Education 34(1): Doc11. doi: 10.3205/zma001088.

Hicke, J.A., Abatzoglou, J.T., Daley-Laursen, S., Esler, J., and Parker, L.E. 2017. Using scientific conferences to engage the public on climate change. Bulletin of the American Meteorological Society 98(2): 225-230. doi: 10.1175/BAMS-D-15-00304.1.

Orizaola, G., and Valdes, A.E. 2015. Free the tweet at scientific conferences. Science 350(6257): 170-171. doi: 10.1126/science.350.6257.170-c.

Zierath, J.R. 2016. Building bridges through scientific conferences. Cell 167(5): 1155-1158. doi: 10.1016/j.cell.2016.11.006.

What Can Ecologists Do?

For about 40 years many ecologists as well as other scientists have reported on the consequences of climate change. In recent years there has been more and more public awareness of the problems associated with changing climate. But there it all seems to stop. Jobs and dollars trump everything in the western world. I sit today listening to the Federal Government in Canada approving a very large export agreement for liquefied natural gas (LNG) on the central west coast of British Columbia. The gas will be largely obtained by fracking and in spite of the fact that the shipping point is near the mouth of one of the largest salmon rivers on the west coast, and requires a long pipeline to deliver the gas with all its problems, the report of the government states that this development will have no harmful effects on the environment. The perception that burning natural gas is somehow good for the environment boggles my mind. You have heard all of this kind of discussion many times before I am sure.

Yet as far as we can tell these are not evil people who are approving these developments but their decisions are so far away from scientific reality that one can only wonder what drives this current economic system. There are several competing hypotheses. (1) Climate change is not a problem and is not caused by human actions releasing greenhouse gases. This is not believable if scientific evidence is given any credibility. So we need a better excuse for our current myopia. (2) The problems of climate change are so uncertain and far into the distant future so that it is not our job to be concerned about action now. (3) We should take action now but if we do it will disrupt the global economy too much to contemplate. Taxes will have to increase. (4) Much money can be made by these enterprises and this will allow western countries to develop technologies that will remove carbon from the atmosphere, so all will be well in the future. (5) A price can be set on carbon so that business as usual under a carbon price will take care of the problem. The market will take care of us.

Take your pick on these last 4 excuses, but as an ecologist I cannot buy any of them. Clearly I am not a social scientist or an economist, and consequently have little understanding of how all of this proceeds and how the continued nonsense of business as usual is reported on much of the media as though this is the only way forward. The disconnect between what the educated public believes and what the government and business economists push has never been more serious. Perhaps the dominant view of many people is that we have always managed to muddle through in the past, and so this is a minor issue that we will overcome as usual by some kind of technological fix. And it is a long term problem, and I will not be here in the long term.

What can we ecologists do? Teach, report, communicate to the wider public via social media or traditional media, and hope that progress in understanding will finally take hold. Set an example, and hope that we can turn this juggernaut around. David Suzuki and Bill McKibben and many others are doing this. As an army dedicated to peace we can move forward and hope for wisdom to prevail.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences 280(1754): 20122845. doi: 10.1098/rspb.2012.2845.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Future collapse: how optimistic should we be? Proceedings of the Royal Society B: Biological Sciences 280(1767): 20131373. doi: 10.1098/rspb.2013.1373.

Kelly, M.J. 2013. Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich. Proceedings of the Royal Society B: Biological Sciences 280(1767). doi: 10.1098/rspb.2013.1193.

McKibben, B. 2013. Oil and Honey: The Education of an Unlikely Activist. Henry Holt and Company, New York. 257 pp.  ISBN: 978-08050-9284-4

Does Forestry Make Money – Part 2

About 2 years ago I wrote a blog asking the simple question of whether the forest industry in British Columbia makes money or whether it is operational only because of subsidies and the failure to recognize that biodiversity and ecosystem services could be valuable. A recent report from the research group in the Fenner School of the Australian National University has put the spotlight on the mountain ash forests of the Central Highlands of Victoria to answer this question for one region of southern Australia. I summarize their findings from their report (Keith et al. 2016) that you can access from the web address given below.

The ANU research group chose the Central Highlands study area because it included areas with controversial land use activities. The study area of 7370 sq km contains a range of landscapes including human settlements, agricultural land, forests, and waterways, and is used for a variety of activities including timber production, agriculture, water supply and recreation. It is also home to a range of species, including the endemic and critically endangered Leadbeater’s Possum. These activities and their use of ecosystems can be either complementary or conflicting. Managing the various activities within the region is therefore complex and requires evaluation of the trade-offs between different land uses and users, an issue common to forestry areas around the world.

The accounting structure (System of Environmental-Economic Accounting) which is used by the United Nations is described in more detail in the report. Both economic and ecological data are needed to produce ecosystem accounts and these sources of data must be integrated to gain an overall picture of the system. This integration of ecosystem services with traditional cash crops is the key to evaluating an area for all of its values to humans. In this particular area the provisioning of water to cities is a key economic benefit provided by this particular area. The following table from their report puts all these accounts together for the Central Highlands of Victoria:

Table 5. Economic information for industries within the study region in 2013-14
Agriculture Native Forestry Water supply Tourism
Area of land used (ha) 96,041a 324,380b 115,149c 737,072d
Sale of products ($m) 474 49 911 485
Industry valued added ($m) 257 9 233 260
Ecosystem services ($m) 121 15 101 42
Sale of products ($ ha-1) 4918 151 7911 659
Industry value added ($ ha-1) 2667 29 2023 353
Ecosystem services ($ ha-1) 1255 46 877 57

a area of agricultural land use
b area of native forest timber production
c area of water catchments
d total area of study region

The key point in this table is that the value-added per ha of forestry is $29 per ha per year. The equivalent value for water is $2033 per ha per year – or 70 times more, and the value added for agriculture is about 90 time more than that of forestry. The value-added value for tourism is $350 per ha per year, about 12 times more than that of forestry. None of this takes into account any potential government subsidies to these industries, and none involves directly the endangered species in the landscape. Three main points emerge from this analysis:

  1. In 2013-14, the most valuable industries in the region were tourism ($260 million), agriculture ($257 million), water supply ($233 million) and forestry ($9 million). This is as measured by the estimated industry value added (the contribution to GDP).
  2. In 2013-14, the most valuable ecosystem services in the region were food provisioning ($121 million), water provisioning ($101 million), cultural and recreation services ($42 million).
  3. At a carbon price of $12.25 per ton (the average price paid by the Commonwealth in 2015), the potential ecosystem service of carbon sequestration ($20 million) was more valuable than the service of timber provisioning ($15 million).

The main implications from the report for this large geographical area are three:

  • The benefits from tourism, agriculture, and water supply are large, while those from forestry are comparatively small. There is a potential for income from carbon sequestration.
  • The activities of tourism, agricultural and water supply industries are complimentary and may be combined with biodiversity conservation and carbon sequestration.
  • Timber harvesting in native forests needs to better account for the occurrence of fires and can be incompatible with species requirements for conservation.

The recent global interest in both climate change and species conservation has pushed this type of analysis to uncover the complementary and conflicting activities of all major global industries. Replacing the conventional GDP of a country or a region with a measure that takes into account the changes in the natural capital including gains and losses is a necessary step for sustainability (Dasgupta 2015, Guerry et al. 2015). This report from Australia shows how this goal of replacing the current GDP calculation with a green GDP can be done in specific areas. Much of biodiversity conservation hinges on these developments.

Dasgupta, P. 2015. Disregarded capitals: what national accounting ignores. Accounting and Business Research 45(4): 447-464. doi: 10.1080/00014788.2015.1033851.

Guerry, A.D., et al. 2015. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences 112(24): 7348-7355. doi: 10.1073/pnas.1503751112.

Keith, H., Vardon, M., Stein, J., Stein, J., and Lindenmayer, D. 2016. Exzperimental Ecosystem Accounts for the Central Highlands of Victoria. Australian National University, Fenner School of Environment and Society. 22 pp. Available from:
http://fennerschool-associated.anu.edu.au/documents/CLE/VCH_Accounts_Summary_FINAL_for_pdf_distribution.pdf

On Gravity Waves and the 1%

The news this week has been all about the discovery of gravity waves and the great triumphs of modern physics to understand the origin of the universe. There is rather less news on the critical ecological problems of the Earth – of agricultural sustainability, biodiversity collapse, pollution, climate change – not to mention the long recognized economic problems of poverty and inequality, globally and within our own countries. All of these issues converge to the questions of resource allocations by our governments that have failed to assess priorities on many fronts. Many see this but have little power to change the system that is continually moving to save and improve the fortunes of the 1% to the detriment of most people.

In scientific funding there has always been a large bias in favor of the physical sciences, as I have commented on previously, and the question is how this might be publicized to produce  a better world. I suggest a few rules for scientific funding decisions both by governments and by private investors.

Rule 1: For maximizing scientific utility for the biosphere including humans, we require a mix of basic and applied science in every field. Whether this mix should be 50:50, 30:70, or 70:30 should be an item for extended discussion with the implicit assumption that it could differ in different areas of science.

Rule 2: Each major area of science should articulate its most important issues that must be addressed in the short term and the long term (>50 years). For biodiversity, as an example, the most important short term problem is to minimize extinctions while the most important long term problem might be to maintain genetic variability in populations.

Rule 3: The next step is most critical and perhaps most controversial: What are the consequences for the Earth and its human population if the most important issue in any particular science is not solved or achieved? If the required experiments or observations can be delayed for 30 (or 50) years, what will it matter?

If we could begin to lay out this agenda for science, we could start a process of ranking the importance of each of the sciences for funding in the present and in the long term. At the present time this ranking process is partly historical and partly based on extreme promises of future scenarios or products that are of dubious validity. There is no need to assume that all will agree, and I am sure that several steps would have to be designated to involve not only young and older scientists but also members of the business community and the public at large.

If this agenda works, I doubt that we would spend quite so much money on nuclear physics and astronomy and we might spend more money on ocean science, carbon budgets, and sustainable agricultural research. This agenda would mean that powerful people could not push their point of view in science funding quite so freely without being asked for justification. And perhaps when budgets are tight for governments and businesses, the first people on the firing line for redundancy will not be environmental scientists trying their best to maintain the health of the Earth for future generations.

So I end with 2 simple questions: Could gravity waves have waited another 100 years for discovery? What is there that cannot wait?

(Finally, an apology. I failed to notice that on a number of recent blogs the LEAVE A REPLY option was not available to the reader. This was inadvertent and somehow got deleted with a new version of the software. I should have noticed it and it is now corrected on all blogs.)

On Improving Canada’s Scientific Footprint – Breakthroughs versus insights

In Maclean’s Magazine on November 25, 2015 Professor Lee Smolin of the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo, and a member of the Royal Society of Canada, wrote an article “Ten Steps to Make Canada a Leader in Science” (http://www.macleans.ca/politics/ottawa/ten-steps-to-make-canada-a-leader-in-science/ ). Some of the general points in this article are very good but some seem to support the view of science as big business and that leaves ecology and environmental science in the dust. We comment here on a few points of disagreement with Professor Smolin. The quotations are from the Maclean’s article.

  1. Choose carefully.

“Mainly invest in areas of pure science where there is a path to world leadership. This year’s Nobel prize shows that when we do this, we succeed big.” We suggest that the Nobel Prizes are possibly the worst example of scientific achievement that is currently available because of their disregard for the environment. This recommendation is at complete variance to how environmental sciences advance.

  1. Aim for breakthroughs.

“No “me-too” or catch-up science. Don’t hire the student of famous Prof. X at an elite American university just because of the proximity to greatness. Find our own path to great science by recruiting scientists who are forging their own paths to breakthroughs.” But the essence of science has always been replication. Long-term monitoring is a critical part of good ecology, as Henson (2014) points out for oceanographic research. But indeed we agree to the need to recruit excellent young scientists in all areas.

  1. Embrace risk.

“Learn from business that it takes high risk to get high payoff. Don’t waste money doing low-risk, low-payoff science. Treat science like venture capital.” That advice would remove most of the ecologists who obtain NSERC funding. It is one more economic view of science. Besides, most successful businesses are based on hard work, sound financial practices, and insights into the needs of their customers.

  1. Recruit and invest in young leaders-to-be.

“Be savvy and proactive about choosing them…. Resist supporting legacies and entitlements. Don’t waste money on people whose best work is behind them.” We agree. Spending money to fund a limited number of middle aged, white males in the Canadian Excellence in Research Chairs was the antithesis of this recommendation. See the “Folly of Big Science” by Vinay Prasad (2015). Predicting in advance who will be leaders will surely depend on diverse insights and is best evaluated by giving opportunities for success to many from which leaders will arise.

  1. Recruit internationally.

“Use graduate fellowships and postdoctoral positions as recruitment tools to bring the most ambitious and best-educated young scientists to Canada to begin their research here, and then target the most promising of these by creating mechanisms to ensure that their best opportunities to build their careers going forward are here.” This seems attractive but means Canadian scientists have little hope of obtaining jobs here, since we are < 0.1% of the world’s scientists. A better idea – how about Canada producing the “best-educated” young scientists?

  1. Resist incrementalism.

If you spread new money around widely, little new science gets done. Instead, double-down on strategic fields of research where the progress is clear and Canada can have an impact.“ Fortin and Currie (2013) show that spreading the money around is exactly the way to go since less gets wasted and no one can predict where the “breakthroughs” will happen.  This point also rests on one’s view of the world of the future and what “breakthroughs” will contribute to the sustainability of the earth.

  1. Empower ambitious, risk-taking young scientists.

Give them independence and the resources they need to develop their own ideas and directions. Postdocs are young leaders with their own ideas and research programs”. This is an excellent recommendation, but it does conflict with the recommendation of many universities around the world of bringing in old scientists to establish institutes and giving incentives for established senior scientists.

  1. Embrace diversity.

Target women and visible minorities. Let us build a Canadian scientific community that looks like Canada.” All agreed on this one.

  1. Speak the truth.

“Allow no proxies for success, no partial credit for “progress” that leaves unsolved problems unsolved. Don’t count publications or citations, count discoveries that have increased our knowledge about nature. We do research because we don’t know the answer; don’t force us to write grant proposals in which we have to pretend we do.” This confounds the scientists’ code of ethics with the requirements of bureaucracies like NSERC for accounting for the taxpayers’ dollars. Surely publications record the increased knowledge about nature recommended by Professor Smolin.

  1. Consider the way funding agencies do business.

“We scientists know that panels can discourage risk-taking, encourage me-too and catch-up science, and reinforce longstanding entitlements and legacies. Such a system may incentivize low-risk, incremental work and limit the kind of out-of-the-box ideas that….leads to real breakthroughs. So create ambitious programs, empower the program officers to pick out and incubate the brightest and most ambitious risk-takers, and reward them when the scientists they invest in make real discoveries.” What is the evidence that program officers in NSERC or NSF have the vision to pick winners? This is difficult advice for ecologists who are asked for opinions on support for research projects in fields that require long-term studies to produce increases in ecological understanding or better management of biodiversity. It does seem like a recipe for scientific charlatans.

The bottom line: We think that the good ideas in this article are overwhelmed by poor suggestions with regards to ecological research. We come from an ecological world faced with three critical problems that will determine the fate of the Earth – food security, biodiversity loss, and overpopulation. While we all like ‘breakthroughs’ that give us an IPhone 6S or an electric car, few of the discoveries that have increased our knowledge about nature would be considered a breakthrough. So do we say goodbye to taxonomic research, biodiversity monitoring, investigating climate change impacts on Canadian ecosystems, or investing in biological control of pests? Perhaps we can add the provocative word “breakthrough” to our ecological papers and media reports more frequently but our real goal is to acquire greater insights into achieving a sustainable world.

As a footnote to this discussion, Dev (2015) raises the issue of the unsolved major problems in biology. None of them involve environmental or ecological issues.

Dev, S.B. (2015) Unsolved problems in biology—The state of current thinking. Progress in Biophysics and Molecular Biology, 117, 232-239.

Fortin, J.-M. & Currie, D.J. (2013) Big science vs. little science: How scientific impact scales with funding. PLoS ONE, 8, e65263.

Prasad, V. (2015) The folly of big science. New York Times. October 2, 2015 (http://www.nytimes.com/2015/10/03/opinion/the-folly-of-big-science-awards.html?_r=0 )

Henson, S.A. (2014) Slow science: the value of long ocean biogeochemistry records. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2025). doi: 10.1098/rsta.2013.0334.

 

Ecosystem Science to the Rescue

What can ecologists do to become useful in the mess that is currently the 21st Century? In Australia we have a set of guidelines now available as “Foundations for the Future: A Long Term Plan for Australian Ecosystem Science” (http://www.ecosystemscienceplan.org.au ) It is a useful overall plan in many respects and the only question I wish to discuss here is how we ecologists come to such plans and whether or not they are realistic.

We should begin by treating this plan as an excellent example of political ecology – a well presented, glossy brochure, with punch lines carved out and highlighted so that newspaper reporters and sympathetic politicians can present sound bites on air or in Parliament. One example: “Healthy ecosystems are the cornerstone of our social and economic wellbeing”. No arguments there.

Six key directions are indicated:

  1. Delivering maximum impact for Australia: Enhancing relationships between scientists and end-users
  2. Supporting long-term research
  3. Enabling ecosystem surveillance
  4. Making the most of data resources
  5. Inspiring a generation: Empowering the public with knowledge and opportunities
  6. Facilitating coordination, collaboration and leadership

Most ecologists would agree with all 6 key directions, but perhaps only 2 and 3 are scientific goals that are key to research planning. Everyone supports 2, but how do we achieve this without adequate funding? Similarly 3 is an admirable direction but how is it to be accomplished? Could we argue that most ecologists have been trying to achieve these 6 goals for 75 years, and particularly goals 2 and 3 for at least 35 years?

As a snapshot of the importance of ecosystem science, the example of the Great Barrier Reef is presented, and in particular understanding reef condition and its changes over time.

“Australia’s Great Barrier Reef is one of the seven wonders of the natural world, an Australian icon that makes an economic contribution of over $5 billion annually. Ongoing monitoring of the reef and its condition by ecosystem scientists plays a vital role in understanding pressures and informing the development of management strategies. Annual surveys to measure coral cover across the Great Barrier Reef since 1985 have built the world’s most extensive time series data on reef condition across 214 reefs. Researchers have used this long-term data to assess patterns of change and to determine the causes of change.”

The paper they cite (De’ath et al. 2012) shows a coral cover decline on the Great Barrier Reef of 50% over 27 years, with three main causes: cyclones (48% of total), crown-of-thorns starfish (43%) and coral bleaching (10%). From a management perspective, controlling the starfish would help recovery but only on the assumption that the climate is held stable lest cyclones and bleaching increase in future. It is not clear at all to me how ecosystem science can assist reef recovery, and we have in this case another good example of excellent ecological understanding with near-zero ability to rectify the main causes of reef degradation – climate change and water pollution.

The long-term plan presented in this report suggests many useful activities by which ecosystem studies could be more integrated. Exactly which ecosystem studies should be considered high priority are left for future considerations, as is the critical question of who will do these studies. Given that many of the originators of this ecosystem plan are from universities, one worries whether universities have the resources or the time frame or the mandate to accomplish all these goals which are essentially government services. With many governments backing out of serious ecosystem research because of budget cuts, the immediate future does not look good. Nearly 10 years ago Sutherland et al. (2006) gathered together a list of 100 ecological questions of high policy relevance for the United Kingdom. We should now go back to see if these became a blueprint for success or not.

De’ath, G., Fabricius, K.E., Sweatman, H., and Puotinen, M. (2012). The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences 109(44): 17995-17999. doi:10.1073/pnas.1208909109.

Sutherland, W.J., et al. (2006). The identification of 100 ecological questions of high policy relevance in the UK. Journal of Applied Ecology 43(4): 617-627. doi: 10.1111/j.1365-2664.2006.01188.x

 

On Political Ecology

When I give a general lecture now, I typically have to inform the audience that I am talking about scientific ecology not political ecology. What is the difference? Scientific ecology is classical boring science, stating hypotheses, doing experiments or observations to gather the data, testing the idea, and accepting or rejecting it, outlined clearly in many papers (Platt 1963, Wolff and Krebs (2008), and illustrated in this diagram:

Scientific ecology is clearly out-of-date, and no longer ‘cool’ when compared to the new political ecology.

Political ecology is a curious mix of traditional ecology added to the advocacy issue of protecting biodiversity. Political ecology is aimed at convincing society in general and politicians in particular to protect the Earth’s biodiversity. This is a noble cause, and my complaint is only that when we advocate and use scientific ecology in pursuit of a political agenda we should be scientifically rigorous. Yet much of biodiversity science is a mix of belief and evidence, with unsuitable evidence used in support of what is a noble belief. If we believe that the end justifies the means, we would be happy with this. But I am not.

One example will illustrate my frustration with political ecology. Dirzo et al. (2014) in a recent Science paper give an illustration of the effects of removing large animals from an ecosystem. In their Figure 4, page 404, a set of 4 graphs purport to show experimentally what happens when you remove large wildlife species in Kenya, the Kenya Long-term Exclosure Experiment (Young et al. 1997). But this experiment is hopelessly flawed in being carried out on a set of plots of 4 ha, a postage stamp of habitat relative to large mammal movements and ecosystem processes. But the fact that this particular experiment was not properly designed for the questions it is now being used to address is not a problem if this is political ecology rather than scientific ecology. The overall goal of the Dirzo et al. (2014) paper is admirable, but it is achieved by quoting a whole series of questionable extrapolations given in other papers. The counter-argument in conservation biology has always been that we do not have time to do proper research and we must act now. The consequence is the elevation of expert opinion in conservation science to the realm of truth without going through the proper scientific process.

We are left with this prediction from Dirzo et al. (2014):

“Cumulatively, systematic defaunation clearly threatens to fundamentally alter basic ecological functions and is contributing to push us toward global-scale “tipping points” from which we may not be able to return ……. If unchecked, Anthropocene defaunation will become not only a characteristic of the planet’s sixth mass extinction, but also a driver of fundamental global transformations in ecosystem functioning.”

I fear that statements like this are more akin to something like a religion of conservation fundamentalism, while we proclaim to be scientists.

Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B. & Collen, B. (2014) Defaunation in the Anthropocene. Science, 345, 401-406.

Platt, J.R. (1964) Strong inference. Science, 146, 347-353.

Wolff, J.O. & Krebs, C.J. (2008) Hypothesis testing and the scientific method revisited. Acta Zoologica Sinica, 54, 383-386.

Young, T.P., Okello, B.D., Kinyua, D. & Palmer, T.M. (1997) KLEE: A long‐term multi‐species herbivore exclusion experiment in Laikipia, Kenya. African Journal of Range & Forage Science, 14, 94-102.

Citation Analysis Gone Crazy

Perhaps we should stop and look at the evils of citation analysis in science. Citation analysis began some 15 or 20 years ago with a useful thought that it might be nice to know if one’s scientific papers were being read and used by others working in the same area. But now it has morphed into a Godzilla that has the potential to run our lives. I think the current situation rests on three principles:

  1. Your scientific ability can be measured by the number of citations you receive. This is patent nonsense.
  2. The importance of your research is determined by which journals accept your papers. More nonsense.
  3. Your long-term contribution to ecological science can be measured precisely by your h–score or some variant.

These principles appeal greatly to the administrators of science and to many people who dish out the money for scientific research. You can justify your decisions with numbers. Excellent job to make the research enterprise quantitative. The contrary view which I might hope is held by many scientists rests on three different principles:

  1. Your scientific ability is difficult to measure and can only be approximately evaluated by another scientist working in your field. Science is a human enterprise not unlike music.
  2. The importance of your research is impossible to determine in the short term of a few years, and in a subject like ecology probably will not be recognized for decades after it is published.
  3. Your long-term contribution to ecological science will have little to do with how many citations you accumulate.

It will take a good historian to evaluate these alternative views of our science.

This whole issue would not matter except for the fact that it is eroding science hiring and science funding. The latest I have heard is that Norwegian universities are now given a large amount of money by the government if they publish a paper in SCIENCE or NATURE, and a very small amount of money if they publish the same results in the CANADIAN JOURNAL OF ZOOLOGY or – God forbid – the CANADIAN FIELD NATURALIST (or equivalent ‘lower class’ journals). I am not sure how many other universities will fall under this kind of reward-based publication scores. All of this is done I think because we do not wish to involve the human judgment factor in decision making. I suppose you could argue that this is a grand experiment like climate change (with no controls) – use these scores for 30 years and then see if they worked better than the old system based on human judgment. How does one evaluate such experiments?

NSERC (Natural Sciences and Engineering Research Council) in Canada has been trending in that direction in the last several years. In the eternal good old days scientists read research proposals and made judgments about the problem, the approach, and the likelihood of success of a research program. They took time to discuss at least some of the issues. But we move now into quantitative scores that replace human judgment, which I believe to be a very large mistake.

I view ecological research and practice much like I think medical research and medical practice operate. We do not know how well certain studies and experiment will work, any more than a surgeon knows exactly whether a particular technique or treatment will work or a particular young doctor will be a good surgeon, and we gain by experience in a mostly non-quantitative manner. Meanwhile we should encourage young scientists to try new ideas and studies, to give them opportunities based on judgments rather than on counts of papers or citations. Currently we want to rank everyone and every university like sporting teams and find out the winner. This is a destructive paradigm for science. It works for tennis but not for ecology.

Bornmann, L. & Marx, W. (2014) How to evaluate individual researchers working in the natural and life sciences meaningfully? A proposal of methods based on percentiles of citations. Scientometrics, 98, 487-509.

Leimu, R. & Koricheva, J. (2005) What determines the citation frequency of ecological papers? Trends in Ecology & Evolution, 20, 28-32.

Parker, J., Lortie, C. & Allesina, S. (2010) Characterizing a scientific elite: the social characteristics of the most highly cited scientists in environmental science and ecology. Scientometrics, 85, 129-143.

Todd, P.A., Yeo, D.C.J., Li, D. & Ladle, R.J. (2007) Citing practices in ecology: can we believe our own words? Oikos, 116, 1599-1601.

What is Policy?

One seemingly popular way of muzzling scientists is to declare that they may not comment on issues that impact on government policy. In Canada and in Australia at the present time this kind of general rule seems to be enforced. It raises the serious issue of what is ‘policy’. In practice it appears that some scientific papers that discuss policy can pass the bar because they support the dominant economic paradigm of eternal growth or at least do not challenge it. But the science done by ecologists and environmental scientists often conflicts with current practices and thus confronts the economic paradigm.

There are several dictionary definitions of policy but the one most relevant to this discussion is:

“a high-level overall plan embracing the general goals and acceptable procedures especially of a governmental body”

The problem an ecologist faces is that in many countries this “high overall plan for the country” involves continuous economic growth, no limitations on the human population, the minimization of regulations regarding environmental pollution, and no long-term plan about climate change. But probably the largest area of conflict is over economic growth, and any ecological data that might restrict economic growth should be muzzled or at least severely edited.

This approach of governments is only partially effective because in general the government does not have the power to muzzle university scientists who can speak out on any topic, and this has been a comfort to ecologists and environmental scientists. But there are several indirect ways to muzzle these non-government scientists because the government controls some of the radio and TV media that must obtain funding from the federal budget, and the pressure of budget cuts unless ‘you toe the line’ works well. And the government also has indirect controls over research funding so that research that might uncover critical issues can be deemed less important than research that might increase the GNP. All of this serves the current economic paradigm of most of the developed countries.

Virtually all conservation biology research contains clear messages about policy issues, but these are typically so far removed from the day to day decisions made by governments that they can be safely ignored. A national park here or there seems to satisfy many voters who think these biodiversity problems are under control. But I would argue that all of conservation biology and indeed all of ecology is subversive to the dominant economic paradigm of our day so that everything we do has policy implications. If this is correct, telling scientists they may not comment on policy issues is effectively telling them not to do ecological or environmental science.

So we ecologists get along by keeping a minimal profile, a clear mistake at a time when more emphasis should be given to emerging environmental problems, especially long term issues that do not immediately affect voters. There is no major political party in power in North America or Australia that embraces in a serious way what might be called a green agenda for the future of the Earth.

The solution seems to be to convince the voters at large that the ecological world view is better than the economic world view and there are some signs of a slow move in this direction. The recent complete failure of economics as a reliable guide to government policy should start to move us in the right direction, and the recognition that inequality is destroying the social fabric is helpful. But movement is very slow.

Meanwhile ecologists must continue to question policies that are destroying the Earth. We can begin with fracking for oil and gas, and continue to highlight biodiversity losses driven by the growth of population and economic developments that continue the era of oil and natural gas. And keep asking when will we have a green President or Prime Minister?

Let me boil down my point of view. Everything scientists do has policy implications, so if scientists are muzzled by their government, it is a serious violation of democratic freedom of speech. And if a government pays no attention to the findings of science, it is condemning itself to oblivion in the future.

Davis, C., and Fisk, J.M. 2014. Energy abundance or environmental worries? Analyzing public support for fracking in the United States. Review of Policy Research 31(1): 1-16. doi: 10.1111/ropr.12048.

Mash, R., Minnaar, J., and Mash, B. 2014. Health and fracking: Should the medical profession be concerned? South African Medical Journal 104(5): 332-335. doi: 10.7196/SAMJ.7860.

Piketty, T. 2014. Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006

Stiglitz, J.E. 2012. The Price of Inequality. W.W. Norton and Company, New York.

 

Identifying the Most Critical Problems in Environmental Science

A common perception of government policy makers is that ecologists fritter around doing interesting tidbits that produce nice 7 second sound-bites for radio or TV, but they never address the most serious environmental problems that the government faces in environmental science. So the question we need to address for any developed nation is this – what are the most critical environmental problems that ecologists could help to address? Since most critical environmental problems are long-term, one constraint would be that goals have to be achieved in the short term so that people could see progress. There would be funding constraints but let us assume that if we hit the right buttons, funding would be plentiful (think military).

There is no question that not all countries would have the same detailed list of critical environmental problems. But there ought to be communalities so we ought to cast a wide, general net to define problems. Start with some clear ecological principles: there is only one Earth and we ought to take care of it with a time frame that follows the First Nations principle of ‘seven generations’, about 300 years, as our time horizon. We know the solution to some environmental problems but new ones are continually a challenge. We need in every country the equivalent of an Environmental Army monitoring environmental problems.

1. Food security. All populations need food yet modern agriculture violates many simple ecological rules. Is the system sustainable in the long term? Probably not so the first major problem is how might we move modern agriculture toward sustainability. Subheadings here abound – pest control and alternatives to poisons, biological control of insect pests, cultural pest control, soil fertility decline, quarantine control, the list goes on. Implicit in all this is a regulatory framework that prevents the introduction of new miracle agricultural practices without adequate ecological background checks. The neonicotinoids-and-bees problem immediately comes to mind. We must get away from the attitude of ‘do it now’ and ‘clean up the mess later’ when we find problems.

2. Pollution effects. This is the hard one because it is climate change in the long term which must be emphasized. But in the shorter term detailed measurements of air quality and harmful effects of smoke and diesel fumes among other things on human and animal health could give an immediacy to such a detailed research program. The same principle applies here – do not put something new out in the environment and ask questions later. Fracking for natural gas and oil comes to mind, as well as the whole recycling system. Electricity generation is a key driver and mining for carbon-based energy ought to be eliminated gradually.

3. Conservation. Could our country be the first on Earth to have a complete inventory of species in all the taxonomic groups? It is a scandal that we do not have a list of life on Earth, and we need to get this message across with clever advertising. Taxonomists ought to be more important than bankers and be paid accordingly. Again many subheadings here – endangered species problems, pest management interactions with agriculture, disease ecology (always a hot button), monitoring, monitoring interacting with citizen science where possible.

4. The Oceans. We ought to be responsible for the health of at least our near-shore ecosystems, and monitoring protocols should be established so that we have ecosystem health scores presented as frequently as stock market reports. As global citizens we should be contributing to studying global problems of the high seas, the Antarctic Continent, and acting together with other nations to solve global issues.

The advantage of all these 4 topics with respect to convincing a politician to fund them is that they are interdisciplinary and consequently can be addressed only by carefully selected teams of ecologists, physicians, molecular biologists, geologists, chemists, and social scientists. A call for research proposals in these areas would soon build teams of scientists to address the major issues of our time. Money can help glue together scientific teams.

All of this will cost a lot of money and our current political philosophy seems to be that environmental costs are the lowest priority, and taxes for protecting the environment should be as near zero as possible. This must change soon lest the Earth become a garbage can unfit for human habitation.

Dicks, L. et al. (2013). What do we need to know to enhance the environmental sustainability of agricultural production? A prioritisation of knowledge needs for the UK food system. Sustainability 5, 3095-3115.

Sutherland, W.J.,et al. (2010) The identification of priority policy options for UK nature conservation. Journal of Applied Ecology 47(5): 955-965.