Tag Archives: Covid pandemic

What does Ecology have to offer for Covid pandemic response planning?

It has already occurred to many ecologists that Covid pandemic management could obtain some useful advice from ecologists in many subdisciplines. Yet there is apparently no clear use of established ecological idioms for Covid planning that I can find in the literature. No doubt there were many informal meetings among ecologists and medical scientists, and epidemiology is an ecological subdiscipline. Some papers have been published about the behavioural ecology of individual interactions that could lead to infection spread (e.g., Shaw et al. 2021) and books and symposia will no doubt appear once the pandemic is over. But I can find no direct evidence that ecologists were consulted in the early days of the pandemic for ideas about disease spread in spite of an abundant literature on the subject (e.g., Jones et al. 2008, Halliday et al. 2017 and many others). Let us try to list some of the ecological principles that might have been useful if they were injected into the Covid pandemic planning and discussions from the start.

I can see six ecological principles that could be useful for any disease planning:
(1) Invasion ecology
(2) Island eradications
(3) Biosecurity considerations
(4) Pest control
(5) Population regulation.
(6) Evolutionary ecology.

Invasion ecology provides many examples of the clear principle that avoiding the introduction of a new species or disease is the simplest way to avoid potential future issues. Once a species is introduced it is typically impossible to get rid of it or alternatively very expensive.

Island eradications have given us several lessons in the difficulties of eradication of a pest once it is established. The best examples come from introduced rats on islands (Russell and Broome 2016, Wheeler et al. 2019) and cat eradication on Macquarie Island (Dowding et al. 2009). Advances are being made in eradication on islands but to achieve this on a continental scale eludes us unless the species is caught very early in its establishment.

Biosecurity considerations flow from the trade in illegal drugs but of late have focused on endangered wildlife. The principle is to prevent the entry or exit of dangerous or threatened organisms. ‘Do not let the organism in’ seems to be a message lost on most countries during the Covid pandemic.

Pest control has been a major issue both in conservation, in agriculture, and in epidemiology. It is the one ecological principle that has occupied 95% of the energy and the funding for Covid problems that have arisen partly from ignoring the previous three principles. Our success in dealing with Covid is about on par with our success in pest control, which is not a compliment.

Population regulation would seem to be an issue far from a pandemic, but it is an essential feature of the spread of the virus in densely populated areas. Much attention has been paid to social interactions and their behavioural consequences (e.g., Xu and Cheng 2021), but the matter has emerged again as ‘hot spots’ of viral infections and the discussions of whether vaccine availability should be prorated to these areas to reduce contagion or given to more susceptible older people or to essential workers however defined. Individual differences are a major area of behavioural ecology and there is an extensive literature that I think has not been mined for ideas of how to respond to a pandemic.  

Evolutionary ecology is another critical area of great interest in disease management because of the speed of mutational changes in disease organisms. Much of the current discussion is about virus variants that are ‘of concern’ and those that are variants ‘of interest’. Distinguishing these is relatively simple but has not been used as much as it should to prevent continued outbreaks from the new mutations by widespread testing. Much modelling has been done but too little empirical work to trace these invasions in detail from one continent to another.

The bottom line of this discussion is a plea for medical specialists to talk to ecologists and other natural scientists. I suspect too few medical people feel that biologists would have any insight to pandemic management decisions, and I am certain that many or most politicians have no idea of the complexities of the ecology of pandemics. So, this is a plea following Haley et al. (2021) and Shaw et al. (2021) for more cooperation and consultation between scientists who have knowledge of details that might help us in keeping ahead of the next wave.

Dowding, J.E., Murphy, E.C., Springer, K., Peacock, A.J., and Krebs, C.J. (2009). Cats, rabbits, Myxoma virus, and vegetation on Macquarie Island: a comment on Bergstrom et al. (2009). Journal of Applied Ecology 46, 1129-1132. doi: 10.1111/j.1365-2664.2009.01690.x

Haley, D., Paucar-Caceres, A., and Schlindwein, S. (2021). A critical inquiry into the value of systems thinking in the time of COVID-19 crisis. Systems 9, 1-14. doi: 10.3390/systems9010013.

Halliday, J.E.B., Hampson, K., Hanley, N., Lembo, T., Sharp, J.P., Haydon, D.T., and Cleaveland, S. (2017) Driving improvements in infectious disease surveillance through locally relevant capacity strengthening. Science 357:146–148. doi:10.1126/science.aam8332.

Jones, K.E., Patel, N.G., Levy, M.A. et al. (2008) Global trends in emerging infectious diseases. Nature 451: 990–993. doi:10.1038/nature06536.

Russell, J.C. and Broome, K.G. (2016). Fifty years of rodent eradications in New Zealand: another decade of advances. New Zealand Journal of Ecology 40, 197-204. doi: 10.20417/nzjecol.40.22.

Shaw, A.K., White, L.A., Michalska-Smith, M., Borer, E.T., Craft, M.E., Seabloom, E.W., et al.  (2021). Lessons from movement ecology for the return to work: Modeling contacts and the spread of COVID-19. PLoS ONE 16, e0242955. doi: 10.1371/journal.pone.0242955.

Wheeler, R., Priddel, D., O’Dwyer, T., Carlile, N., Portelli, D., and Wilkinson, I. (2019). Evaluating the susceptibility of invasive black rats (Rattus rattus) and house mice (Mus musculus) to brodifacoum as a prelude to rodent eradication on Lord Howe Island. Biological Invasions 21, 833-845. doi: 10.1007/s10530-018-1863-4.

Xu, P. and Cheng, J. (2021). Individual differences in social distancing and mask-wearing in the pandemic of COVID-19: The role of need for cognition, self-control and risk attitude. Personality and Individual Differences 175, 110706. doi: 10.1016/j.paid.2021.110706.