Category Archives: Climate Emergency

Biodiversity Science

Protecting biodiversity is a goal of most people who value the environment. My question is what are the goals of biodiversity science and how do we achieve them? Some history is in order here. The term ‘biodiversity’ was coined in the 1980s as the complete biosphere including all species and ecosystems on Earth. The idea of cataloguing all the species on Earth was present many decades before this time, since the origin of the biological sciences. By the 1990s ‘biodiversity conservation’ became a popular subject and has grown greatly since then as a companion to CO2 emissions and the climate change problem. The twin broad goals of biodiversity science and biodiversity conservation are (1) to name and describe all the species on Earth, and (2), to protect all species from extinction, preventing a loss of biodiversity. How can we achieve these two goals?

The first goal of describing species faces challenges from disagreements over what a species is or is not. The old description of a species was to describe what group it was part of, and then how different this particular species was from other members of the group. In the good old days this was primarily based on reproductive incompatibility between species, if no successful reproduction, must be a new species. This simple common-sense view was subject to many attacks since some organisms that we see as different can in fact interbreed. Lions and tigers breed together and are an example, but if their interbred offspring are sterile, clearly, they are two different species. But many arguments arose because there was no data available for 99% of species to know if they could interbreed or not. The fallback position has been to describe the anatomy of a potential species and its relatives and judge from anatomy how different they were. Endless arguments followed, egged on by naturalists who pointed out that if the elephants in India were separated by a continent from elephants in Africa, clearly, they must be different species defined by geography. Many academic wars were fought over these issues.

Then in 1953 the structure of DNA was unravelled, and a new era dawned because with advances in technology of decoding genes we could describe species in a completely new way by determining how much DNA they had in common. But what is the magic percentage of common DNA? Humans and chimpanzees have 98.6% of their DNA in common, but despite this high similarity no one argues that they are the same species.

Despite this uncertainty the answer now seems much simpler: sequence the DNA of everything and you will have the true tree of life for defining separate species. While this was a dream 20 years ago, it is now a technical reality with rapid sequencing methods to help us get criminals and define species. Problem (1) solved?

Enter the lonely ecologist into this fray. Ecologists do not just want names, they wish to understand the function of each of the ‘species’ within communities and ecosystems, how does all this biodiversity interact to produce what we see in the landscape? For the moment we have approximately 10 million species on Earth, but somewhere around 80% of these ‘species’ are still undescribed. So now we have a clash of biodiversity visions, we cannot describe all the species on Earth even on the time scale of centuries, so we cannot achieve goal (1) of biodiversity science in any reasonable time. We have measured the DNA sequence of thousands of organisms that we can capture but we cannot describe them formally as species in the older sense. Perhaps it is akin to having all the phone numbers in the New York City phone book but not knowing to whom the numbers belong.

But the more immediate problem comes with objective (2) to prevent extinctions. Enter the conservation ecologist. The first problem is discussed above, we ecologists have no way of knowing how many species are in danger of extinction. We must look for rare or declining species, but we have complete inventory for few places on Earth. We must concentrate on large mammals and birds, and hope that they act as umbrella species and represent all of biodiversity. When we do have information on threatened species, for the most part there is no money to do the ecological studies needed to reverse declines in abundance. If there is money to list species and give a recovery plan on paper, then we find there is no money to implement the recovery plan. The Species-At-Risk act in Canada was passed in 2002 and has generated many recovery plans mostly for vertebrate species that have come to their attention. Almost none of these recovery plans have been completed, so in general we are all in favour of preventing extinctions but only it if costs us nothing. By and large the politics of preventing extinctions is very strongly supported, but the economic value of extinctions is nearly zero.

None of this is very cheery to conservation biologists. Two approaches have been suggested. The first is Big Science, use satellites and drones to scan the Earth every year to describe changes in landscapes and from these images infer biodiversity ‘health’. Simple and very expensive with AI to the rescue. But while we can see largescale landscape changes, the crux is to do something about them, and it is here that we fail because of the wall of climate change that we have no control over at present. Big Science may well assist us in seeing patterns of change, but it produces no path to understanding food webs or mediating changes in threatened populations. The second is small-scale biodiversity studies that focus on what species are present, how their numbers are changing, and what are the causes of change. Difficult, possible, but very expensive because you must put biologists in the field, on the ground to do the relevant measurements over a long-time frame. The techniques are there to use, thanks to much work on ecological methods in the past. What is missing again is the money. There are a few good examples of this small-scale approach but without good organization and good funding many of these attempts stop after too few years of data.

We are left with a dilemma of a particular science, Biodiversity Science, that has no way of achieving either of its two main objectives to name and to protect species on a global level. On a local level we can adopt partial methods of success by designating and protecting national parks and marine protected areas, and by studying only a few important species, the keystone species of food webs. But then we need extensive research to determine how to protect these areas and species from the inexorable march of climate change, which has singlehandedly complicated achieving biodiversity science’s two goals. Alas at the present time we may have another science to join the description of economics as a “dismal science” And we have not even started to discuss bacteria, viruses, and fungi.

Coffey, B. & Wescott, G. (2010) New directions in biodiversity policy and governance? A critique of Victoria’s Land and Biodiversity White Paper. Australasian Journal of Environmental Management 17: 204-214. doi: 10.1080/14486563.2010.9725268.

Donfrancesco, V., Allen, B.L., Appleby, R., et al. (2023) Understanding conflict among experts working on controversial species: A case study on the Australian dingo. Conservation Science and Practice 5: e12900. doi: 10.1111/csp2.12900.

Ritchie, J., Skerrett, M. & Glasgow, A. (2023) Young people’s climate leadership in Aotearoa. Journal of Peace Education, 12-2023: 1-23. doi: 10.1080/17400201.2023.2289649.

Sengupta, A., Bhan, M., Bhatia, S., Joshi, A., Kuriakose, S. & Seshadri, K.S. (2024) Realizing “30 × 30” in India: The potential, the challenges, and the way forward. Conservation Letters 2024, e13004. doi: 10.1111/conl.13004.

Wang, Q., Li, X.C. & Zhou, X.H. (2023) New shortcut for conservation: The combination management strategy of “keystone species” plus “umbrella species” based on food web structure. Biological Conservation 286: 110265.doi. 10.1016/j.biocon.2023.110265.

On Ecology and Medicine

As I grow older and interact more with doctors, it occurred to me that the two sciences of medicine and ecology have very much in common. That is probably not a very new idea, but it may be worth spending time on looking at the similarities and differences of these two areas of science that impinge on our lives. The key question for both is how do we sort out problems? Ecologists worry about population, community and ecosystem problems that have two distinguishing features. First, the problems are complex and the major finding of this generation of ecologists is to begin to understand and appreciate how complex they are. Second, the major problems that need solving to improve conservation and wildlife management are difficult to study with the classical tools of experimental, manipulative scientific methods. We do what we can to achieve scientific paradigms but there are many loose ends we can only wave our hands about. As an example, take any community or ecosystem under threat of global warming. If we heat up the oceans, many corals will die along with the many animals that depend on them. But not all corals will die, nor will all the fish and invertebrate species, and the ecologists is asked to predict what will happen to this ecosystem under global warming. We may well understand from rigorous laboratory research about temperature tolerances of corals, but to apply this to the real world of corals in oceans undergoing many chemical and physical changes we can only make some approximate guesses. We can argue adaptation, but we do not know the limits or the many possible directions of what we predict will happen.

Now consider the poor physician who must deal with only one species, Homo sapiens, and the many interacting organs in the body, the large number of possible diseases that can affect our well-being, the stresses and strains that we ourselves cause, and the physician must make a judgement of what to do to solve your particular problem. If you have a broken arm, it is simple thankfully. If you have severe headaches or dizziness, many different causes come into play. There is no need to go into details that we all appreciate, but the key point is that physicians must solve problems of health with judgements but typically with no ability to do the kinds of experimental work we can do with mice or rabbits in the laboratory. And the result is that the physician’s judgements may be wrong in some cases, leading possibly to lawyers arguing for damages, and one appreciates that once we leave the world of medical science and enter the world of lawyers, all hope for solutions is near impossible.

There is now some hope that artificial intelligence will solve many of these problems both in ecological science and in medicine, but this belief is based on the premise that we know everything, and the only problem is to find the solutions in some forgotten textbook or scientific paper that has escaped our memory as humans. To ask that artificial intelligence will solve these basic problems is problematic because AI depends on past knowledge and science solves problems by future research.

Everyone is in favour of personal good health, but alas not everyone favours good environmental science because money is involved. We live in a world where major problems with climate change have had solutions presented for more than 50 years, but little more than words are presented as the solutions rather than action. This highlights one of the main differences between medicine and ecology. Medical issues are immediate since we have active lives and a limited time span of life. Ecological issues are long-term and rarely present an immediate short-term solution. Setting aside protected areas is in the best cases a long-term solution to conservation issues, but money for field research is never long term and ecologists do not live forever. Success stories for endangered species often require 10-20 years or more before success can be achieved; research grants are typically presented as 3- or 5-year proposals. The time scale we face as ecologists is like that of climate scientists. In a world of immediate daily concerns in medicine as in ecology, long-term problems are easily lost to view.

There has been an explosion of papers in the last few years on artificial intelligence as a potentially key process to use for answering both ecological and medical questions (e.g. Buchelt et al. 2024, Christin, Hervet, and Lecomte, 2019, Desjardins-Proulx, Poisot, & Gravel, 2019). It remains to be seen exactly how AI will help us to answer complex questions in ecology and medicine. AI is very good in looking back, but will it be useful to solve our current and future problems? Perhaps we still need to continue training good experimental scientists in ecology and in medicine.  

Buchelt, A., Buchelt, A., Adrowitzer, A. & Holzinger, A. (2024) Exploring artificial intelligence for applications of drones in forest ecology and management. Forest Ecology and Management, 551, 121530. doi: 10.1016/j.foreco.2023.121530.

Christin, S., Hervet, É. & Lecomte, N. (2019) Applications for deep learning in ecology. Methods in Ecology and Evolution, 10, 1632-1644. doi: 10.1111/2041-210X.13256.

Desjardins-Proulx, P., Poisot, T. & Gravel, D. (2019) Artificial Intelligence for ecological and evolutionary synthesis. Frontiers in Ecology and Evolution, 7. doi: 10.3389/fevo.2019.00402.

The Problem of Time in Ecology

There is a problem in doing ecological studies that is too little discussed – what is the time frame of a good study? The normal response would be that the time frame varies with each study so that no guidelines can be provided. There is increasing recognition that more long-term studies are needed in ecology (e.g. Hughes et al. 2017) but the guidelines remain unclear.

The first issue is usually to specify a time frame, e.g. 5 years, 10 years. But this puts the cart before the horse, as the first step ought to be to define the hypothesis being investigated. In practice hypotheses in many ecological papers are poorly presented and there should not be one hypothesis but a series of alternative hypotheses. Given that, the question of time can be given with more insight. How many replicated time periods do you need to measure the ecological variables in the study? If your time scale unit is one year, 2 or 3 years is not enough to come to any except very tentative conclusions. We have instantly fallen into a central dilemma of ecology – studies are typically planned and financed on a 3–5-year time scale, the scale of university degrees.

Now we come up against the fact of climate change and the dilemma of trying to understand a changing system when almost all field work assumes an unchanging environment. Taken to some extreme we might argue that what happens in this decade tells us little about what will happen in the next decade. The way around this problem is to design experiments to test the variables that are changing ahead of time, e.g., what a 5⁰C temperature increase will do to the survival of your corals. To follow this approach, which is the classic experimental approach of science, we must assume we know the major variables affecting our population or community changes. At present we do not know the answer to this question, and we rely on correlations of a few variables as predictors of how large a change to expect.

There is no way out of this empirical box, which defines clearly how physics and chemistry differ from ecology and medicine. There are already many large-scale illustrations of this problem. Forest companies cut down old-growth timber on the assumption that they can get the forest back by replanting seedlings in the harvested area. But what species of tree seedlings should we replant if we are concerned that reforestation often operates on a 100–500-year time scale? And in most cases, there is no consideration of the total disruption of the ecosystem, and we ignore all the non-harvestable biodiversity. Much research is now available on reforestation and the ecological problems it produces. Hole-nesting birds can be threatened if old trees with holes are removed for forestry or agricultural clearing (Saunders et al. 2023). Replanting trees after fire in British Columbia did not increase carbon storage over 55 years of recovery when compared with unplanted sites (Clason et al. 2022). Consequently, in some forest ecosystems tree planting may not be useful if carbon storage is the desired goal.

At the least we should have more long-term monitoring of the survival of replanted forest tree seedlings so that the economics of planting could be evaluated. Short-term Australian studies in replanted agricultural fields showed over 4 years differences in survival of different plant species (Jellinek et al. 2020). For an on-the-ground point of view story about tree planting in British Columbia see: But we need longer-term studies on control and replanted sites to be more certain of effective restoration management. Gibson et al. (2022) highlighted the fact that citizen science over a 20-year study could make a major contribution to measuring the effectiveness of replanting. Money is always in short supply in field ecology and citizen science is one way of achieving goals without too much cost. 

Forest restoration is only one example of applied ecology in which long-term studies are too infrequent. The scale of restoration of temperate and boreal ecosystems is around 100 years, and this points to one of the main failures of long-term studies, that they are difficult to carry on after the retirement of the principal investigators who designed the studies.

The Park Grass Experiment begun in 1856 on 2.8 ha of grassland in England is the oldest ecological experiment in existence (Silvertown et al. 2006). As such it is worth a careful evaluation for the questions it asked and did not ask, for the scale of the experiment, and for the experimental design. It raises the question of generality for all long-term studies and cautions us about the utility and viability of many of the large-scale, long-term studies now in progress or planned for the future.

The message of this discussion is that we should plan for long-term studies for most of our critical ecological problems with clear hypotheses of how to conserve biodiversity and manage our agricultural landscapes and forests. We should move away from 2–3-year thesis projects on isolated issues and concentrate on team efforts that address critical long-term issues with specific hypotheses. Which says in a nutshell that we must develop a vision that goes beyond our past practices in scatter-shot, short-term ecology and at the same time avoid poorly designed long-term studies of the future.

Clason, A.J., Farnell, I. & Lilles, E.B. (2022) Carbon 5–60 Years After Fire: Planting Trees Does Not Compensate for Losses in Dead Wood Stores. Frontiers in Forests and Global Change, 5, 868024. doi: 10.3389/ffgc.2022.868024.

Gibson, M., Maron, M., Taws, N., Simmonds, J.S. & Walsh, J.C. (2022) Use of citizen science datasets to test effects of grazing exclusion and replanting on Australian woodland birds. Restoration Ecology, 30, e13610. doi: 10.1111/rec.13610.

Hughes, B.B.,et al. (2017) Long-term studies contribute disproportionately to ecology and policy. BioScience, 67, 271-281. doi.: 10.1093/biosci/biw185.

Jellinek, S., Harrison, P.A., Tuck, J. & Te, T. (2020) Replanting agricultural landscapes: how well do plants survive after habitat restoration? Restoration Ecology, 28, 1454-1463. doi: 10.1111/rec.13242.

Saunders, D.A., Dawson, R. & Mawson, P.R. (2023) Artificial nesting hollows for the conservation of Carnaby’s cockatoo Calyptorhynchus latirostris: definitely not a case of erect and forget. Pacific Conservation Biology, 29, 119-129. doi: 10.1071/PC21061.

Silvertown, J., Silvertown, J., Poulton, P. & Biss, P.M. (2006) The Park Grass Experiment 1856–2006: its contribution to ecology. Journal of Ecology, 94, 801-814. doi: 10.1111/j.1365-2745.2006.01145.x.

The Ecological Outlook

There is an extensive literature on ecological traps going back two decades (e.g. Schlaepfer et al. 2002, Kristan 2003, Battin 2004) discussing the consequences of particular species selecting a habitat for breeding that is now unsuitable. A good example is discussed in Lamb et al. (2017) for grizzly bears in southeastern British Columbia in areas of high human contact. The ecological trap hypothesis has for the most part been discussed in relation to species threatened by human developments with some examples of whole ecosystems and human disturbances (e.g. Lindenmayer and Taylor 2020). The concept of an ecological trap can be applied to the Whole Earth Ecosystem, as has been detailed in the IPCC 2022 reports and it is this global ecological trap that I wish to discuss.

The key question for ecologists concerned about global biodiversity is how much biodiversity will be left after the next century of human disturbances. The ecological outlook is grim as you can hear every day on the media. The global community of ecologists can ameliorate biodiversity loss but cannot stop it except on a very local scale. The ecological problem operates on a century time scale, just the same as the political and social change required to escape the global ecological trap. E.O. Wilson (2016) wrote passionately about our need to set aside half of the Earth for biodiversity. Alas, this was not to be. Dinerstein et al. (2019) reduced the target to 30% in the “30 by 30” initiative, subsequently endorsed by 100 countries by 2022. Although a noble political target, there is no scientific evidence that 30 by 30 will protect the world’s biodiversity. Saunders et al. (2023) determined that for North America only a small percentage of refugia (5– 14% in Mexico, 4–10% in Canada, and 2–6% in the USA) are currently protected under four possible warming scenarios ranging from +1.5⁰C to +4⁰C. And beyond +2⁰C refugia will be valuable only if they are at high latitudes and high elevations.

The problem as many people have stated is that we are marching into an ecological trap of the greatest dimension. A combination of global climate change and continually increasing human populations and impacts are the main driving factors, neither of which are under the control of the ecological community. What ecologists and conservationists can do is work on the social-political front to protect more areas and keep analysing the dynamics of declining species in local areas. We confront major political and social obstacles in conservation ecology, but we can increase our efforts to describe how organisms interact in natural ecosystems and how we can reduce undesirable declines in populations. All this requires much more monitoring of how ecosystems are changing on a local level and depends on how successful we can be as scientists to diagnose and solve the ecological components of ecosystem collapse.

As with all serious problems we advance by looking clearly into what we can do in the future based on what we have learned in the past. And we must recognize that these problems are multi-generational and will not be solved in any one person’s lifetime. So, as we continue to march into the ultimate ecological trap, we must rally to recognize the trap and use strong policies to reverse its adverse effects on biodiversity and ultimately to humans themselves. None of us can opt out of this challenge.

There is much need in this dilemma for good science, for good ecology, and for good education on what will reverse the continuing degradation of our planet Earth. Every bit counts. Every Greta Thunberg counts.

Battin, J. (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conservation Biology, 18, 1482-1491.

Dinerstein, E., Vynne, C., Sala, E., et al. (2019) A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 5, eaaw2869.doi: 10.1126/sciadv.aaw2869..

IPCC, 2022b. In: Skea, J., Shukla, P.R., et al. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge University Press. doi:

Kristan III, W.B. (2003) The role of habitat selection behavior in population dynamics: source–sink systems and ecological traps. Oikos, 103, 457-468.

Lamb, C.T., Mowat, G., McLellan, B.N., Nielsen, S.E. & Boutin, S. (2017) Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. Journal of Animal Ecology, 86, 55-65. doi. 10.1111/1365-2656.12589.

Lindenmayer, D.B. and Taylor, C. (2020) New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proceedings of the National Academy of Sciences 117, 12481-124485. doi. 10.1073/pnas.2002269117.

Saunders, S.P., Grand, J., Bateman, B.L., Meek, M., Wilsey, C.B., Forstenhaeusler, N., Graham, E., Warren, R. & Price, J. (2023) Integrating climate-change refugia into 30 by 30 conservation planning in North America. Frontiers in Ecology and the Environment, 21, 77-84. doi. 10.1002/fee.2592.

Schlaepfer, M.A., Runge, M.C. & Sherman, P.W. (2002) Ecological and evolutionary traps. Trends in Ecology & Evolution, 17, 474-480.

Wilson, E.O. (2016) Half-Earth: Our Planet’s Fight for Life. Liveright, New York. ISBN: 978-1-63149-252-5.

The Meaningless of Random Sampling

Statisticians tell us that random sampling is necessary for making general inferences from the particular to the general. If field ecologists accept this dictum, we can only conclude that it is very difficult to nearly impossible to reach generality. We can reach conclusions about specific local areas, and that is valuable, but much of our current ecological wisdom on populations and communities relies on the faulty model of non-random sampling. We rarely try to define the statistical ‘population’ which we are studying and attempting to make inferences about with our data. Some examples might be useful to illustrate this problem.

Marine ecologists ae mostly agreed that sea surface temperature rise is destroying coral reef ecosystems. This is certainly true, but it camouflages the fact that very few square kilometres of coral reefs like the Great Barrier Reef have been comprehensively studied with a proper sampling design (e.g. Green 1979, Lewis 2004). When we analyse the details of coral reef declines, we find that many species are affected by rising sea temperatures, but some are not, and it is possible that some species will adapt by natural selection to the higher temperatures. So we quite rightly raise the alarm about the future of coral reefs. But in doing so we neglect in many cases to specify the statistical ‘population’ to which our conclusions apply.

Most people would agree that such an approach to generalizing ecological findings is tantamount to saying the problem is “how many angels can dance on the head of a pin”, and in practice we can ignore the problem and generalize from the studied reefs to all reefs. And scientists would point out that physics and chemistry seek generality and ignore this problem because one can do chemistry in Zurich or in Toronto and use the same laws that do not change with time or place. But the ecosystems of today are not going to be the ecosystems of tomorrow, so generality in time cannot be guaranteed, as paleoecologists have long ago pointed out.

It is the spatial problem of field studies that collides most strongly with the statistical rule to random sample. Consider a hypothetical example of a large national park that has recently been burned by this year’s fires in the Northern Hemisphere. If we wish to measure the recovery process of the vegetation, we need to set out plots to resample. We have two choices: (1) lay out as many plots as possible, and sample these for several years to plot recovery. Or (2) lay out plots at random each year, never repeating the same exact areas to satisfy the specifications of statisticians to “random sample” the recovery in the park. We typically would do (1) for two reasons. Setting up new plots each year as per (2) would greatly increase the initial field work of defining the random plots and would probably mean that travel time between the plots would be greatly increased. Using approach (1) we would probably set out plots with relatively easy access from roads or trails to minimize costs of sampling. We ignore the advice of statisticians because of our real-world constraints of time and money. And we hope to answer the initial questions about recovery with this simpler design.

I could find few papers in the ecological literature that discuss this general problem of inference from the particular to the general (Ives 2018, Hauss 2018) and only one that deals with a real-world situation (Ducatez 2019). I would be glad to be sent more references on this problem by readers.

The bottom line is that if your supervisor or research coordinator criticizes your field work because your study areas are not randomly placed or your replicate sites were not chosen at random, tell him or her politely that virtually no ecological research in the field is done by truly random sampling. Does this make our research less useful for achieving ecological understanding – probably not. And we might note that medical science works in exactly the same way field ecologists work, do what you can with the money and time you have. The law that scientific knowledge requires random sampling is often a pseudo-problem in my opinion.  

Ducatez, S. (2019) Which sharks attract research? Analyses of the distribution of research effort in sharks reveal significant non-random knowledge biases. Reviews in Fish Biology and Fisheries, 29, 355-367. doi. 10.1007/s11160-019-09556-0

Green, R.H. (1979) Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York. 257 pp.

Hauss, K. (2018) Statistical Inference from Non-Random Samples. Problems in Application and Possible Solutions in Evaluation Research. Zeitschrift fur Evaluation, 17, 219-240. doi.

Ives, A.R. (2018) Informative Irreproducibility and the Use of Experiments in Ecology. BioScience, 68, 746-747. doi. 10.1093/biosci/biy090

Lewis, J. (2004) Has random sampling been neglected in coral reef faunal surveys? Coral Reefs, 23, 192-194. doi: 10.1007/s00338-004-0377-y.

On Ignoring Evidence

If you listen to the media in any form, you will find that you are bombarded with facts provided with no evidence. Unfortunately, this tendency has been moving into science in a way that is potentially dangerous. At worst such a move could call scientific information into disrepute. The current worst case is all the information we have been given on Covid vaccines, and the dispute whether we need any vaccines now for anything. Most scientists would classify these disputes as lunacy, but we are too polite to say this openly. Climate change is another current problem that has subdivided the public into four camps – (1) the climate has always changed back and forth in the past so we should not worry about it. (2) Human caused climate change is happening but there is nothing we as a small city or nation can do anything about, so carry on. (3) It is an emergency but fear not, science will find a technical solution like carbon capture that will take care of the problem. So again, we do not have to do anything. (4) It is a critical threat and demands immediate action to reduce greenhouse gas emissions.

Compounding the failure to recognize evidence, we mix the climate emergency issue with economics and GDP growth so that we can take no serious actions on the problem because economic growth will be affected. There is a hint of evidence coming in economics now that some economists recognize that the ‘evidence’ put out by economic models for future change and policies are largely from failed models of how the economic system works (Chatziantoniou et al. 2019).

These kinds of observations should alert us to the models we use to understand population changes and to predict the success of a particular manipulation that will solve conservation and management problems. Hone and Krebs (2023) have just published a paper on cause and effect, what does it mean, and if we posit that a particular cause or set of causes is producing an effect, what is the strength of evidence for this particular hypothesis? I suspect that if we took a poll of conservation, wildlife, and fisheries ecologists, our recent paper would be low on the reading list. Yet the question of cause and effect is central to all of science and deserves scrutiny. There are a series of criteria that can help ecologists determine a measure of strength of evidence so that we can avoid the twin problems of current management – “I have a model that predicts XYZ so that is the way to go”, or alternatively “I know what is going on in the ecosystem so we must do ABC” (Dennis et al. 2019). Opinion vs evidence. No one likes to be told that a particular statement they announce is just an opinion. If you think this is not a central issue of today, read the news and the controversies that continue about how to avoid getting Covid, or how to slow climate change, or how much land and water do we need to protect in parks and reserves. If we have no evidence about what changes to make to solve a particular problem in conservation ecology or management, we must act but we should do so in a way that provides data via adaptive management (Taper et al. 2021, Johnson et al 2015, Westgate et al. 2013).  

Perhaps one of the critical communication problems of our time involves evidence of the rapid loss of global biodiversity which is based on incomplete studies. Anyone who is involved in a serious local study of biodiversity change will attest to the problems explored by Cardinale et al. (2018) on the need for high quality datasets that are long-term and provide the evidence for conservation programs that inform global change (Watson et al. 2022). Evidence and more evidence is badly needed.

Cardinale, B.J., Gonzalez, A., Allington, G.R.H. & Loreau, M. (2018) Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biological Conservation, 219, 175-183.doi: 10.1016/j.biocon.2017.12.021.

Chatziantoniou, I., Degiannakis, S., Filis, G. & Lloyd, T. (2021) Oil price volatility is effective in predicting food price volatility. Or is it? The Energy Journal 42, 25-48. doi: 10.5547/01956574.42.6.icha

Dennis, B., Ponciano, J.M., Taper, M.L. & Lele, S.R. (2019) Errors in statistical inference under model misspecification: Evidence, hypothesis testing, and AIC. Frontiers in Ecology and Evolution, 7, 372. doi: 10.3389/fevo.2019.00372.

Hone, J. & Krebs, C.J. (2023) Causality and wildlife management. Journal of Wildlife Management, 2023, e22412. doi: 10.1002/jwmg.22412.

Johnson, F.A., Boomer, G.S., Williams, B.K., Nichols, J.D. & Case, D.J. (2015) Multilevel Learning in the Adaptive Management of Waterfowl Harvests: 20 Years and Counting. Wildlife Society Bulletin, 39, 9-19.doi: 10.1002/wsb.518.

Serrouya, R., Seip, D.R., Hervieux, D., McLellan, B.N., McNay, R.S., Steenweg, R., Heard, D.C., Hebblewhite, M., Gillingham, M. & Boutin, S. (2019) Saving endangered species using adaptive management. Proceedings of the National Academy of Sciences, 116, 6181-6186.doi: 10.1073/pnas.1816923116.

Taper, M., Lele, S., Ponciano, J., Dennis, B. & Jerde, C. (2021) Assessing the global and local uncertainty of scientific evidence in the presence of model misspecification. Frontiers in Ecology and Evolution, 9, 679155. doi: 10.3389/fevo.2021.679155.

Watson, R., Kundzewicz, Z.W. & Borrell-Damián, L. (2022) Covid-19, and the climate change and biodiversity emergencies. Science of The Total Environment, 844, 157188.doi: 10.1016/j.scitotenv.2022.157188.

Westgate, M.J., Likens, G.E. & Lindenmayer, D.B. (2013) Adaptive management of biological systems: A review. Biological Conservation, 158, 128-139.doi: 10.1016/j.biocon.2012.08.016.

Alas Biodiversity

One would have to be on another planet not to have heard of the current COP 15 meeting in Montreal, the Convention on Biological Diversity. Negotiators have recently finalised an agreement on what the signatory nations will do in the next 5 years or so. I do not wish to challenge the view that these large meetings achieve much discussion and suggestions for action on conservation of biodiversity. I do wish to address, from a scientific viewpoint, issues around the “loss of biodiversity” and in particular some of the claims that are being made about this problem.

The first elephant in the room which must not be ignored is human population growth. At a best guess there are perhaps three times as many people now on earth as the earth can support. So the background for all biodiversity action is human population size and the accompanying resource demands. Too few wish to discuss this elephant.

The second elephant is the vagueness of the concept of biodiversity. If we take its simple meaning to be ‘all life on Earth’, we must face the fact that we are not even close to having a complete catalogue of life on earth. To be sure we know most of the species of birds and mammals, a lot of the fish and the reptiles, so we have made a start. But look at the insects and you will find guesses of several million species that are undescribed. And we have hardly begun to look at the bacteria, fungi, and viruses.

The consequence of this is loose speech. When we say we wish to ‘protect biodiversity’ what exactly do we wish to protect? Only the birds but not all of them, only the ones we like? Or only the large mammals like the polar bears, the African lion, and the panda? Typically, conservation of biodiversity focuses on one charismatic species and hopes for spill over to others, applying the well-known principles of population ecology to the immediate threat. But ecologists talk about ecological communities and ecosystems, so this raises another issue of how to define these entities and how protecting biodiversity can be applied to them.

Now the third elephant comes into play, climate change. To appreciate this, we need to talk to paleoecologists. If you were fortunate to live in central Alaska or the Yukon 30,000 years ago and you formed a society for the conservation of biodiversity, you would face a vegetation community that was destined to disappear or change dramatically, not to mention species like the mammoths and saber-toothed tigers that no longer exist but we love to see in museums. So there is a time scale as well as a spatial scale to biodiversity that is easily forgotten. Small national parks and reserves may not be a solution to the issue.

So whither biodiversity science? If we are serious about biodiversity change, we must lay out more specific questions as a start. Exactly what species are we measuring and for how long and with what precision? We need to concentrate on areas that are protected from human exploitation, one of the main reasons for biodiversity losses, the loss of habitat due to agriculture, mining, forestry, human housing, roads, invasive pests, the list goes on. We need groups of ecologists to concentrate on the key areas we define, on the key threats affecting each area, how we might mitigate these effects, and once these questions are decided we need to direct funding to these groups. Biodiversity funding is all over the map and often wasted on trivial problems. Biodiversity issues are at their core problems in community and ecosystem ecology, and yet we typically treat them as single species problems. We need to study communities and ecosystems. To say that we as ecologists do not know how to study community and ecosystem ecology would be a start. Studying one fish species extensively will not protect the community and ecosystem it requires for survival. If you need a concrete example, consider Pacific salmon on the west coast of North America and the ecosystems they inhabit. This is not a single species problem. In some river systems stocks are doing well, while in other rivers salmon are disappearing. Why? If we know that at least part of the answer to this question lies in ecosystem management and yet no action is undertaken, is this because it costs too much or what? Why can we spend a billion dollars going to the moon and not spend this money on serious ecological problems subject to biodiversity increases or declines? Perhaps part of the problem is that to get to the moon we do not give money to 10 different agencies that do not talk or coordinate with one another. Part of the answer is that governments do not see biodiversity loss or gain as an important problem, and it is easier to talk vaguely about it and do little in the hope that Nature will rectify the problems.

So, we continue in the Era of Biodiversity without knowing what this means and too often without having any plan to see if biodiversity is increasing or declining in any particular habitat or region, and then devising a plan to ameliorate the situation as required. This is not a 5 year or a 10-year plan, so it requires a long-term commitment of public support, scientific expertise, and government agencies to address. For the moment we get an A+ grade for talking and an F- grade for action.

Dupont-Doaré, C. & Alagador, D. (2021) Overlooked effects of temporal resolution choice on climate-proof spatial conservation plans for biodiversity. Biological Conservation, 263, 109330.doi: 10.1016/j.biocon.2021.109330.

Fitzgerald, N., Binny, R.N., Innes, J., Pech, R., James, A., Price, R., Gillies, C. & Byrom, A.E. (2021) Long-Term Biodiversity Benefits from Invasive Mammalian Pest Control in Ecological Restorations. Bulletin of the Ecological Society of America, 102, e01843.doi: 10.1002/bes2.1843.

Moussy, C., Burfield, I.J., Stephenson, P.J., Newton, A.F.E., Butchart, S.H.M., Sutherland, W.J., Gregory, R.D., McRae, L., Bubb, P., Roesler, I., Ursino, C., Wu, Y., Retief, E.F., Udin, J.S., Urazaliyev, R., Sánchez-Clavijo, L.M., Lartey, E. & Donald, P.F. (2022) A quantitative global review of species population monitoring. Conservation Biology, 36, e13721.doi. 10.1111/cobi.13721.

Price, K., Holt, R.F. & Daust, D. (2021) Conflicting portrayals of remaining old growth: the British Columbia case. Canadian Journal of Forest Research, 51, 1-11.doi: 10.1139/cjfr-2020-04530.

Shutt, J.D. & Lees, A.C. (2021) Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biological Conservation, 261, 109295.doi: 10.1016/j.biocon.2021.109295.

In Honour of David Suzuki at his Retirement

David Suzuki is retiring from his media work this year at age 86. If you wish to have a model for a lifetime of work, he should be high on your list – scientist, environmentalist, broadcaster, writer. He has been a colleague of mine at the Department of Zoology, UBC from the time when I first came there in 1970. He was a geneticist doing imaginative and innovative research with his students on the humble fruit fly Drosophila melanogaster. The Department at that time was a beehive of research and teaching, and David was a geneticist breathing fire at the undergraduates taking the genetics course. Many a doctor would probably tell you now that Suzuki’s genetics course was the most challenging in their undergraduate education.

The hierarchy in the Department of Zoology was very clear in the 1970s. First came the physiologists, top of the pack and excellent scientists who turned the spotlight on the Department nationally and internationally. Second came the geneticists, with the DNA revolution full on. At the bottom of the pile were the ecologists causing nothing but trouble about fisheries and wildlife management problems, pointing out a rising tide of environmental problems including climate change. Contrary to what you might conclude from the media, environmental problems and climate change issues were very alive even in the 1970s. But somehow these problems did not get through to governments, and David has been a key person turning this around. In 1979 he began a natural history and science program on the CBC entitled “The Nature of Things” which he then hosted for 43 years. In doing so he began to fill an empty niche in Canadian news affairs between the environmental scientists who had data on what was going on in the environment and what needed attention. Environmental scientists were severely ignored both by industry and the governments of the day who operated on two premises – first, that the most critical issues for Canada were economics and economic growth, and second that environmental issues could largely be ignored or could be solved by promises but no action. Alas we are still inundated with the news that “growth is good”, and “more growth is better”.   

I had relatively little involvement in David’s increasing interest in environmental issues by 1979, but I had written 3 ecology textbooks by then, pushing some of the environmental issues that are still with us, and I became a friend of David’s in the Department. We ecologists could only admire his ability to speak so clearly on the environmental issues of our day and connect these issues with the many travesties of how First Nations people had been sidelined. He pointed out very forcefully the astonishing failure of governments to address these issues. The public which was much less aware of environmental issues in the 1980s is now highly mobilized thanks in great part to all the work David and his colleagues have done in the last 50 years. He has many friends now but still strong enemies who continue to think of the environment as a large garbage can for economic growth. And he, still in his retirement, having achieved so much from his environmental work, bemoans the slow pace of government actions on environmental problems, as does every ecologist I know. His Foundation continues to press for action on many conservation fronts. So, thank you David for all your work and your wisdom over all these many years. You have engineered a strong environmental movement among old and young and I thank you for all that.

On Ecological Climate Change Research

The media world is awash in climate change articles and warnings. When your town is faced with the fourth one-in-100-year-flood or your favourite highway has been washed away, you should perhaps become aware that something is changing rapidly. Ecologists are aware of the problems that climate change is producing, and the question I want to raise here is what kind of research is needed to outline current and future problems and suggest possible solutions. This fact of current climate change means that each of us has something important to do at the individual level to reduce the impacts of climate change, like taking the bus or bicycling. But that is another whole set of social issues that I cannot cover here.

The first thing most scientific organizations want to do when faced with a big problem is to have endless meetings about the problem. This unfortunately eats up much money and produces little understanding except that the problem is complicated and multidimensional. Ecological research on climate change must begin with the axiom that climate change is happening rapidly, and that we as ecological scientists can do nothing about this at the level of climate physics. Given this, what are we to do? The first approach we could take is to ignore climate change and carry on with normal research agendas. This works very well for short term problems on the time scale of 20-30 years. Since this is the research lifespan of most ecological scientists, it is not an unreasonable approach. But it does not help solve the earth’s future problems, and this is not a desirable path to take in science.

There are three broad problems that accompany climate change for ecological science. First, geographical ranges of species will shift. We have from paleoecology much information on some of these changes since the last Ice Age. Data from palaeontology is less useful to planning, given that we have enough problems trying to forecast the next 100 years of change. So, we have major ecological question #1 – what limits the geographical distributions of species? This relatively simple question is greatly confounded by human activities. If we send oil and other chemical pollution out onto a coastal coral reef, we should not be surprised if the local distribution of sea life is affected. For ecologists this class of problems of distribution changes caused by human activities is a very important focus of research. If you doubt this, read about Covid viruses. But there is also a large area of research needed to estimate the possible changes in geographic distributions of organisms that are not immediately affected by human activities. How fast will tree species colonize up-slope in mountains around the globe, and how will this affect the bird and mammals that depend on trees or the vegetation types the trees displace? These changes are local and complex, and we can begin by describing them, but to understand the limiting factors involved in changes in geographical distributions is not easy.

Population ecology addresses the second central question of ecology: what causes changes in the abundance of particular species? While we need answers to this simple question for our conservation and management issues, population ecology is an even bigger minefield for research on the effects of climate change. There is no doubt that climate in general can affect the abundance and changes in abundance of organisms, but the complications lie in determining the detailed mechanisms of explaining these changes in abundance. Large scale climate indicators like ENSO sometimes correlate positively with animal population increases, sometimes negatively, and sometimes not at all in different populations (Wan et al. 2022). Consequently, a changing climate may not have a universal effect on biodiversity. This means we must dive into details of how climate affects our specific population, is it via maximum temperatures?, minimum temperatures?, dry season rainfall?, wet season rainfall? etc., and each of these aspects of weather have many subcomponents – March temperatures, April temperatures, etc. and the search for an explanation can thus become infinite. The problem is that the number of possible explanatory variables in weather dwarfs the number of years of observations of our study species (c.f. Ginzburg and Jensen 4004, Loken and Gelman 2017). The result is that some of the strongest papers with conclusions about the impact of climatic change on animals can be in error (Daskalova. Phillimore, and Myers-Smith 2021). The statistical pitfalls have been discussed for many years (e.g., Underwood and Chapman 2003) but are still commonly seen in the ecological literature today.

A third central question is that each population is embedded in a community of other species which may interact so that we must analyse the changes occurring community and ecosystem dynamics. Changes in biological communities and ecosystems are subject to complications arising from climate change and more because of species interactions which are not easy to measure. These difficulties do not mean that we should stop trying to explain population and community changes that might be related to climate change. What it does mean is that we should not jump to strong conclusions without considering all the alternate possible agents that are changing the earth’s biomes. The irony is that the human caused shifts are easy to diagnose but difficult to fix because of economics, while the pure climate caused shifts in ecosystems are difficult to diagnose and to validate the exact mechanisms involved. We need both strong involvement in diagnosing the major ecological problems associated with climate change, but this must be coupled with modesty in our suggested conclusions and explanations. There is much to be done.

Daskalova, Gergana N., Phillimore, Albert B., and Myers-Smith, Isla H. (2021). Accounting for year effects and sampling error in temporal analyses of invertebrate population and biodiversity change: a comment on Seibold et al. 2019. Insect Conservation and Diversity 14, 149-154. doi: 10.1111/icad.12468.

Ginzburg, L. R. and Jensen, C. X. J. (2004). Rules of thumb for judging ecological theories. Trends in Ecology and Evolution 19, 121-126. doi: 10.1016/j.tree.2003.11.004.

Loken, Eric and Gelman, Andrew (2017). Measurement error and the replication crisis. Science 355, 584. doi: 10.1126/science.aal3618.

Underwood, A. J. and Chapman, M. G. (2003). Power, precaution, Type II error and sampling design in assessment of environmental impacts. Journal of Experimental Marine Biology and Ecology 296, 49-70. doi: 10.1016/s0022-0981(03)00304-6.

Wan, Xinru, Holyoak, Marcel, Yan, Chuan, Maho, Yvon Le, Dirzo, Rodolfo, et al. (2022). Broad-scale climate variation drives the dynamics of animal populations: A global multi-taxa analysis. Biological Reviews 97. (in press).

Five Stages of Ecological Research

Ecological research falls into five broad classes or stages. Each stage has its strengths and its limitations, and it is important to recognize these since no one stage is more or less important than any other. I suggest a classification of these five stages as follows:

  1. Natural History
  2. Behavioural Ecology
  3. Applied Ecology
  4. Conservation Ecology
  5. Ecosystem Ecology

The Natural History stage is the most popular with the public and in some sense the simplest type of ecological research while at the same time the critical foundation of all subsequent research. Both Bartholomew (1986) and Dayton (2003) made impassioned pleas for the study of natural history as a basis of understanding all the biological sciences. In some sense this stage of biological science has now come into its own in popularity, partly because of influential TV shows like those of David Attenborough but also because of the ability of talented wildlife photographers to capture amazing moments of animals in the natural world. Many scientists still look upon natural history as “stamp-collecting” unworthy of a serious ecologist, but this stage is the foundational element of all ecological research.

Behavioural ecology became popular as one of the early outcomes of natural history observations within the broad framework of asking questions about how individuals in a population behave, and what the ecological and evolutionary consequences of these behaviours are to adaptation and possible future evolution. One great advantage of studying behavioural ecology has been that it is quick, perfectly suited to asking simple questions, devising experimental tests, and then being able to write a report, or a thesis on these results (Davies et al. 2012). Behavioural ecology is one of the strongest research areas of ecological science and provides entertainment for students of natural history and excellent science to understand individual behaviour and how it fits into population studies. It is perhaps the strongest of the ecological approaches for drawing the public into an interest in biodiversity.

Applied ecology is one of the oldest fields of ecology since it arose more than 100 years ago from local problems of how organisms affected human livelihoods. It has subdivided into three important sub-fields – pest management, wildlife management, and fisheries management. Applied ecology relies heavily on the principles of population ecology, one level above the individual studies of behavioural and natural history research. These fields are concerned with population changes, whether to reduce populations to stop damage to crops, or to understand why some species populations become pests. All applied ecology heavily interreacts with human usage of the environment and the economics of farming, fisheries, and wildlife harvesting. In a general sense applied ecology is a step more difficult than behavioural ecology because answering the applied problems or management has a longer time frame than the typical three-year thesis project. Applied ecology has a broad interface with evolutionary ecology because human actions can disrupt natural selection and pest evolution can complicate every management problem.

Conservation ecology is the new kid on the block. It was part of wildlife and fisheries management until about 1985 when it was clear to all that some populations were endangered by human changes to the ecosystems of fisheries, forestry, and agriculture. The essential problems of conservation ecology were described elegantly by Caughley (1994). Conservation issues are the most visible of all issues in population and community ecology, and they are often the most difficult to resolve when science dictates one conservation solution that interferes with the dominant economic view of human society. If species of interest are rare the problem is further confounded by the difficulty of studying rare species in the field. What will become of the earth’s ecosystems in the future depends in large part as to how these conservation conflicts can be resolved.

Ecosystem ecology and community ecology are the important focus at present but are hampered by a lack of a clear vision of what needs to be done and what can be done. The problem is partly that there is much poor theory, coupled with much poor data. The critical questions in ecosystem ecology are currently too vague to be studied in a realistic time period of less than 50 years. Climate change is impacting all our current ideas about community stability and resilience, and what predictions we can make for whole ecosystems in the light of a poor database. Ironically experimental manipulations are being done by companies with an economic focus such as forestry but there are few funds to make use of these large-scale landscape changes. In the long term, ecosystem ecology is the most significant aspect of ecology for humans, but it is the weakest in terms of understanding ecosystem processes. We can all see the negative effects of human changes on landscapes, but we have little in the way of scientific guidance to predict the long-term consequences of these changes and how they can be successfully ameliorated.

All of this is distressing to practical ecologists who wish to make a difference and be able to counteract undesirable changes in populations and ecosystems. It is important for all of us not to give up on reversing negative trends in conservation and land management and we need to do all we can to influence the public in general and politicians in particular to change negative trends to positive ones in our world. An array of good books points this out very forcefully (e.g., Monbiot 2018, Klein 2021). It is the job of every ecologist to gather the data and present ecological science to the community at large so we can contribute to decision making about the future of the Earth.

Bartholomew, G. A. (1986). The role of natural history in contemporary biology. BioScience 36, 324-329. doi: 10.2307/1310237

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Davies, N.B., Krebs, J.R., and West, S.A. (2012) ‘An Introduction to Behavioural Ecology.‘ 4th edn. (Wiley-Blackwell: Oxford.). 520 pp.

Dayton, P.K. (2003). The importance of the natural sciences to conservation. American Naturalist 162, 1-13. doi: 10.1086/376572

Klein, Naomi (2021) ‘How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other ‘ (Simon and Schuster: New York.) 336 pp. ISBN: 978-1534474529

Monbiot, George. (2018) ‘Out of the Wreckage: A New Politics for an Age of Crisis.’ (Verso.). 224 pp. ISBN: 1786632896