Category Archives: General Ecology

On Caribou and Hypothesis Testing

Mountain caribou populations in western Canada have been declining for the past 10-20 years and concern has mounted to the point where extinction of many populations could be imminent, and the Canadian federal government is asking why this has occurred. This conservation issue has supported a host of field studies to determine what the threatening processes are and what we can do about them. A recent excellent summary of experimental studies in British Columbia (Serrouya et al. 2017) has stimulated me to examine this caribou crisis as an illustration of the art of hypothesis testing in field ecology. We teach all our students to specify hypotheses and alternative hypotheses as the first step to solving problems in population ecology, so here is a good example to start with.

From the abstract of this paper, here is a statement of the problem and the major hypothesis:

“The expansion of moose into southern British Columbia caused the decline and extirpation of woodland caribou due to their shared predators, a process commonly referred to as apparent competition. Using an adaptive management experiment, we tested the hypothesis that reducing moose to historic levels would reduce apparent competition and therefore recover caribou populations. “

So the first observation we might make is that much is left out of this approach to the problem. Populations can decline because of habitat loss, food shortage, excessive hunting, predation, parasitism, disease, severe weather, or inbreeding depression. In this case much background research has narrowed the field to focus on predation as a major limitation, so we can begin our search by focusing on the predation factor (review in Boutin and Merrill 2016). In particular Serrouya et al. (2017) focused their studies on the nexus of moose, wolves, and caribou and the supposition that wolves feed preferentially on moose and only secondarily on caribou, so that if moose numbers are lower, wolf numbers will be lower and incidental kills of caribou will be reduced. So they proposed two very specific hypotheses – that wolves are limited by moose abundance, and that caribou are limited by wolf predation. The experiment proposed and carried out was relatively simple in concept: kill moose by allowing more hunting in certain areas and measure the changes in wolf numbers and caribou numbers.

The experimental area contained 3 small herds of caribou (50 to 150) and the unmanipulated area contained 2 herds (20 and 120 animals) when the study began in 2003. The extended hunting worked well, and moose in the experimental area were reduced from about 1600 animals down to about 500 over the period from 2003 to 2014. Wolf numbers in the experimental area declined by about half over the experimental period because of dispersal out of the area and some starvation within the area. So the two necessary conditions of the experiment were satisfied – moose numbers declined by about two-thirds from additional hunting and wolf numbers declined by about half on the experimental area. But the caribou population on the experimental area showed mixed results with one population showing a slight increase in numbers but the other two showing a slight loss. On the unmanipulated area both caribou populations showed a continuing slow decline. On the positive side the survival rate of adult caribou was higher on the experimental area, suggesting that the treatment hypothesis was correct.

From the viewpoint of caribou conservation, the experiment failed to change the caribou population from continuous slow declines to the rapid increase needed to recover these populations to their former greater abundance. At best it could be argued that this particular experiment slowed the rate of caribou decline. Why might this be? We can make a list of possibilities:

  1. Moose numbers on the experimental area were not reduced enough (to 300 instead of to 500 achieved). Lower moose would have meant much lower wolf numbers.
  2. Small caribou populations are nearly impossible to recover because of chance events that affect small numbers. A few wolves or bears or cougars could be making all the difference to populations numbering 10-20 individuals.
  3. The experimental area and the unmanipulated area were not assigned treatments at random. This would mean to a pure statistician that you cannot make statistical comparisons between these two areas.
  4. The general hypothesis being tested is wrong, and predation by wolves is not the major limiting factor to mountain caribou populations. Many factors are involved in caribou declines and we cannot determine what they are because they change for area to area, year to year.
  5. It is impossible to do these landscape experiments because for large landscapes it is impossible to find 2 or more areas that can be considered replicates.
  6. The experimental manipulation was not carried out long enough. Ten years of manipulation is not long for caribou who have a generation time of 15-25 years.

Let us evaluate these 6 points.

#1 is fair enough, hard to achieve a population of moose this low but possible in a second experiment.

#2 is a worry because it is difficult to deal experimentally with small populations, but we have to take the populations as a given at the time we do a manipulation.

#3 is true if you are a purist but is silly in the real world where treatments can never be assigned at random in landscape experiments.

#4 is a concern and it would be nice to include bears and other predators in the studies but there is a limit to people and money. Almost all previous studies in mountain caribou declines have pointed the finger at wolves so it is only reasonable to start with this idea. The multiple factor idea is hopeless to investigate or indeed even to study without infinite time and resources.

#5 is like #3 and it is an impossible constraint on field studies. It is a common statistical fallacy to assume that replicates must be identical in every conceivable way. If this were true, no one could do any science, lab or field.

#6 is correct but was impossible in this case because the management agencies forced this study to end in 2014 so that they could conduct another different experiment. There is always a problem deciding how long a study is sufficient, and the universal problem is that the scientists or (more likely) the money and the landscape managers run out of energy if the time exceeds about 10 years or more. The result is that one must qualify the conclusions to state that this is what happened in the 10 years available for study.

This study involved a heroic amount of field work over 10 years, and is a landmark in showing what needs to be done and the scale involved. It is a far cry from sitting at a computer designing the perfect field experiment on a theoretical landscape to actually carrying out the field work to get the data summarized in this paper. The next step is to continue to monitor some of these small caribou populations, the wolves and moose to determine how this food chain continues to adjust to changes in prey levels. The next experiment needed is not yet clear, and the eternal problem is to find the high levels of funding needed to study both predators and prey in any ecosystem in the detail needed to understand why prey numbers change. Perhaps a study of all the major predators – wolves, bears, cougars – in this system should be next. We now have the radio telemetry advances that allow satellite locations, activity levels, timing of mortality, proximity sensors when predators are near their prey, and even video and sound recording so that more details of predation events can be recorded. But all this costs money that is not yet here because governments and people have other priorities and value the natural world rather less than we ecologists would prefer. There is not yet a Nobel Prize for ecological field research, and yet here is a study on an iconic Canadian species that would be high up in the running.

What would I add to this paper? My curiosity would be satisfied by the number of person-years and the budget needed to collect and analyze these results. These statistics should be on every scientific paper. And perhaps a discussion of what to do next. In much of ecology these kinds of discussions are done informally over coffee and students who want to know how science works would benefit from listening to how these informal discussions evolve. Ecology is far from simple. Physics and chemistry are simple, genetics is simple, and ecology is really a difficult science.

Boutin, S. and Merrill, E. 2016. A review of population-based management of Southern Mountain caribou in BC. {Unpublished review available at: http://cmiae.org/wp-content/uploads/Mountain-Caribou-review-final.pdf

Serrouya, R., McLellan, B.N., van Oort, H., Mowat, G., and Boutin, S. 2017. Experimental moose reduction lowers wolf density and stops decline of endangered caribou. PeerJ  5: e3736. doi: 10.7717/peerj.3736.

 

On Immigration – An Ecological Perspective

There is a great deal of discussion in the news about immigration into developed countries like Canada, USA, and Europe. The perspective on this important issue in the media is virtually entirely economic and social, occasionally moral, but in my experience almost never ecological. There are two main aspects of immigration that are particularly ecological – defining sustainable populations and protecting ecosystems from biodiversity loss. These ecological concerns ought to be part of the discussion.

Sustainability is one of the sciences current buzz words. As I write this, in the Web of Science Core Collection I can find 9218 scientific papers published already in 2017 that appear under the topic of ‘sustainability’. No one could read all these, and the general problem with buzz words like ‘sustainability’ is that they tend to be used so loosely that they verge on the meaningless. Sustainability is critical in this century, but as scientists we must specify the details of how this or that public policy really does increase some metric of sustainability.

There have been several attempts to define what a sustainable human population might be for any country or the whole Earth (e.g. Ehrlich 1996, Rees and Wackernagel 2013) and many papers on specific aspects of sustainability (e.g. Hilborn et al. 2015, Delonge et al. 2016). The controversy arises in specifying the metric of sustainability. The result is that there is no agreement particularly among economists and politicians about what to target. For the most part we can all agree that exponential population growth cannot continue indefinitely. But when do we quit? In developed countries the birth rate is about at equilibrium, and population growth is achieved in large part by immigration. Long term goals of achieving a defined sustainable population will always be trumped in the short term by changes in the goal posts – long term thinking seems almost impossible in our current political systems. One elephant in the room is that what we might define now as sustainable agriculture or sustainable fisheries will likely not be sustainable as climates change. Optimists predict that technological advances will greatly relieve the current limiting factors so all will be well as populations increase. It would seem to be conservative to slow our population growth, and thus wait to see if this optimism is justified (Ehrlich and Ehrlich 2013).

Few developed countries seem to have set a sustainable population limit. It is nearly impossible to even suggest doing this, so this ecological topic disappears in the media. One possible way around this is to divert the discussion to protecting ecosystems from biodiversity loss. This approach to the overall problem might be an easier topic to sell to the public and to politicians because it avoids the direct message about population growth. But too often we run into a brick wall of economics even when we try this approach to sustainability because we need jobs for a growing population and the holy grail of continued economic growth is a firm government policy almost everywhere (Cafaro 2014, Martin et al. 2016). At present this biodiversity approach seems to be the best chance of convincing the general public and politicians that action is needed on conservation issues in the broad sense. And by doing this we can hopefully obtain action on the population issue that is blocked so often by political and religious groups.

A more purely scientific issue is the question why the concept of a sustainable population is thought to be off limits for a symposium at a scientific meeting? In recent years attempts to organize symposia on sustainable population concepts at scientific conferences have been denied by the organizers because the topic is not considered a scientific issue. Many ecologists would deny this because without a sustainable population, however that is defined, we may well face social collapse (Ehrlich and Ehrlich 2013).

What can we do as ecologists? I think shying away from these population issues is impossible because we need to have a good grounding in population arithmetic to understand the consequences of short-term policies. It is not the ecologist’s job to determine public policy but it is our job to question much of the pseudo-scientific nonsense that gets repeated in the media every day. At least we should get the arithmetic right.

Cafaro, P. (2014) How Many Is Too Many? The Progressive Argument for Reducing Immigration into the United States. University of Chicago Press, Chicago. ISBN: 9780226190655

DeLonge, M.S., Miles, A. & Carlisle, L. (2016) Investing in the transition to sustainable agriculture. Environmental Science & Policy, 55, 266-273. doi: 10.1016/j.envsci.2015.09.013

Ehrlich, A.H. (1996) Towards a sustainable global population. Building Sustainable Societies (ed. D.C. Pirages), pp. 151-165. M. E. Sharpe, London. ISBN: 1-56324-738-0, 978-1-56324-738-5

Ehrlich, P.R. & Ehrlich, A.H. (2013) Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences, 280, 20122845. doi: 10.1098/rspb.2012.2845

Hilborn, R., Fulton, E.A., Green, B.S., Hartmann, K. & Tracey, S.R. (2015) When is a fishery sustainable? Canadian Journal of Fisheries and Aquatic Sciences, 72, 1433-1441. doi: 10.1139/cjfas-2015-0062

Hurlbert, S.H. (2013) Critical need for modification of U.S. population policy. Conservation Biology, 27, 887-889. doi: 10.1111/cobi.12091

Martin, J.-L., Maris, V. & Simberloff, D.S. (2016) The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences, 113, 6105-6112. doi: 10.1073/pnas.1525003113

Rees W.E. &, Wackernagel, M. (2013). The shoe fits, but the footprint is larger than Earth. PLOS Biology 11, e1001701. doi: 10.1371/journal.pbio.1001701

On Defining a Statistical Population

The more I do “field ecology” the more I wonder about our standard statistical advice to young ecologists to “random sample your statistical population”. Go to the literature and look for papers on “random environmental fluctuations”, or “non-random processes”, or “random mating” and you will be overwhelmed with references and biology’s preoccupation with randomness. Perhaps we should start with the opposite paradigm, that nothing in the biological world is random in space or time, and then the corollary that if your data show a random pattern or random mating or whatever random, it means you have not done enough research and your inferences are weak.

Since virtually all modern statistical inference rests on a foundation of random sampling, every statistician will be outraged by any concerns that random sampling is possible only in situations that are scientifically uninteresting. It is nearly impossible to find an ecological paper about anything in the real world that even mentions what their statistical “population” is, what they are trying to draw inferences about. And there is a very good reason for this – it is quite impossible to define any statistical population except for those of trivial interest. Suppose we wish to measure the heights of the male 12-year-olds that go to school in Minneapolis in 2017. You can certainly do this, and select a random sample, as all statisticians would recommend. And if you continued to do this for 50 years, you would have a lot of data but no understanding of any growth changes in 12-year-old male humans because the children of 2067 in Minneapolis would be different in many ways from those of today. And so, it is like the daily report of the stock market, lots of numbers with no understanding of processes.

Despite all these ‘philosophical’ issues, ecologists carry on and try to get around this by sampling a small area that is considered homogeneous (to the human eye at least) and then arm waving that their conclusions will apply across the world for similar small areas of some ill-defined habitat (Krebs 2010). Climate change may of course disrupt our conclusions, but perhaps this is all we can do.

Alternatively, we can retreat to the minimalist position and argue that we are drawing no general conclusions but only describing the state of this small piece of real estate in 2017. But alas this is not what science is supposed to be about. We are supposed to reach general conclusions and even general laws with some predictive power. Should biologists just give up pretending they are scientists? That would not be good for our image, but on the other hand to say that the laws of ecology have changed because the climate is changing is not comforting to our political masters. Imagine the outcry if the laws of physics changed over time, so that for example in 25years it might be that CO2 is not a greenhouse gas. Impossible.

These considerations should make ecologists and other biologists very humble, but in fact this cannot be because the media would not approve and money for research would never flow into biology. Humility is a lost virtue in many western cultures, and particularly in ecology we leap from bandwagon to bandwagon to avoid the judgement that our research is limited in application to undefined statistical populations.

One solution to the dilemma of the impossibility of random sampling is just to ignore this requirement, and this approach seems to be the most common solution implicit in ecology papers. Rabe et al. (2002) surveyed the methods used by management agencies to survey population of large mammals and found that even when it was possible to use randomized counts on survey areas, most states used non-random sampling which leads to possible bias in estimates even in aerial surveys. They pointed out that ground surveys of big game were even more likely to provide data based on non-random sampling simply because most of the survey area is very difficult to access on foot. The general problem is that inference is limited in all these wildlife surveys and we do not know the ‘population’ to which the numbers derived are applicable.

In an interesting paper that could apply directly to ecology papers, Williamson (2003) analyzed research papers in a nursing journal to ask if random sampling was utilized in contrast to convenience sampling. He found that only 32% of the 89 studies he reviewed used random sampling. I suspect that this kind of result would apply to much of medical research now, and it might be useful to repeat his kind of analysis with a current ecology journal. He did not consider the even more difficult issue of exactly what statistical population is specified in particular medical studies.

I would recommend that you should put a red flag up when you read “random” in an ecology paper and try to determine how exactly the term is used. But carry on with your research because:

Errors using inadequate data are much less than those using no data at all.

Charles Babbage (1792–1871

Krebs CJ (2010). Case studies and ecological understanding. Chapter 13 in: Billick I, Price MV, eds. The Ecology of Place: Contributions of Place-Based Research to Ecological Understanding. University of Chicago Press, Chicago, pp. 283-302. ISBN: 9780226050430

Rabe, M. J., Rosenstock, S. S. & deVos, J. C. (2002) Review of big-game survey methods used by wildlife agencies of the western United States. Wildlife Society Bulletin, 30, 46-52.

Williamson, G. R. (2003) Misrepresenting random sampling? A systematic review of research papers in the Journal of Advanced Nursing. Journal of Advanced Nursing, 44, 278-288. doi: 10.1046/j.1365-2648.2003.02803.x

 

On Ecology and Economics

Economics has always been a mystery to me, so if you are an economist you may not like this blog. Many ecologists and some economists have written elegantly about the need for a new economics that includes the biosphere and indeed the whole world rather than just Wall Street and brings together ecology and the social sciences (e.g. Daily et al. 1991, Haly and Farley 2011, Brown et al. 2014, Martin et al. 2016). Several scientists have proposed measures that indicate how our current usage of natural resources is unsustainable (Wackernagel and Rees 1996, Rees and Wackernagel 2013). But few influential people and politicians appear to be listening, or if they are listening they are proceeding at a glacial pace at the same time as the problems that have been pointed out are racing at breakneck speed. The operating paradigm seems to be ‘let the next generation figure it out’ or more cynically ‘we are too busy buying more guns to worry about the environment’.

Let me discuss Canada as a model system from the point of view of an ecologist who thinks sustainability is something for the here and now. Start with a general law. No country can base its economy on non-renewable resources. Canada subsists by mining coal, oil, natural gas, and metals that are non-renewable. It also makes ends meet by logging and agricultural production. And we have done well for the last 200 years doing just that. Continue on, and to hell with the grandkids seems to be the prevailing view of the moment. Of course this is ecological nonsense, and, as many have pointed out, not the path to a sustainable society. Even Canada’s sustainable industries are unsustainable. Forestry in Canada is a mining operation in many places with the continuing need to log old growth forest to be a viable industry. Agriculture is not sustainable if soil fertility is continually falling so that there is an ever-increasing need for more fertilizer, and if more agricultural land is being destroyed by erosion and shopping malls. All these industries persist because of a variety of skillful proponents who dismiss long-term problems of sustainability. The oil sands of Alberta are a textbook case of a non-renewable resource industry that makes a lot of money while destroying both the Earth itself and the climate. Again, this makes sense short-term, but not for the grandkids.

So, we see a variety of decisions that are great in the short term but a disaster in the long term. Politicians will not move now unless the people lead them and there is little courage shown and only slight discussion of the long-term issues. The net result is that it is most difficult now to be an ecologist and be optimistic of the future even for relatively rich countries. Global problems deserve global solutions yet we must start with local actions and hope that they become global. We push ahead but in every case we run into the roadblocks of exponential growth. We need jobs, we need food and water and a clean atmosphere, but how do we get from A to B when the captains of industry and the public at large have a focus on short-term results? As scientists we must push on toward a sustainable future and continue to remind those who will listen that the present lack of action is not a wise choice for our grandchildren.

Brown, J.H. et al. 2014. Macroecology meets macroeconomics: Resource scarcity and global sustainability. Ecological Engineering 65(1): 24-32. doi: 10.1016/j.ecoleng.2013.07.071.

Daily, G.C., Ehrlich, P.R., Mooney, H.A., and Erhlich, A.H. 1991. Greenhouse economics: learn before you leap. Ecological Economics 4: 1-10.

Daly, H.E., and Farley, J. 2011. Ecological Economics: Principles and Applications. 2nd ed. Island Press, Washington, D.C.

Martin, J.-L., Maris, V., and Simberloff, D.S. 2016. The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences 113(22): 6105-6112. doi: 10.1073/pnas.1525003113.

Rees, W. E., and M. Wackernagel. 2013. The shoe fits, but the footprint is larger than Earth. PLoS Biology 11:e1001701. doi: 10.1371/journal.pbio.1001701

Wackernagel, M., and W. E. Rees. 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, Gabriola Island, B.C. 160 p.

On Scientific Conferences

Should we ban scientific conferences and save the money for better science? What a terrible thought you would say if you were 25 years old, what a great idea you might say if you were 60 years old and have just come back from a conference with 9000 attendees and 30 concurrent sessions. So, there is no simple answer. Let us try to think of some rules of thumb if you are organizing a scientific conference. Since I am an ecologist I will talk largely about ecological meetings. There is already much interesting literature on this broad question (Zierath 2016, Blome et al. 2017, Hicke et al. 2017). For all I know conferences with 9000 registrants are ideal in neurobiology but in my opinion probably not useful in ecology.

Why have a conference? Simple, to transmit information among delegates. But you can do this more efficiently by reading current papers in the literature. So a conference is useful only if you get new insights that are not yet published, the cutting edge of science. Such insights are more likely to come from conferences that are spaced at 3-5 year intervals, a time frame in which some proper ecological research can be done. And insights are more likely to come from meetings that are narrow in scope to one’s immediate area of interest.

A second good reason for a conference is to meet people in your area of research. This is likely to be more successful if the meeting is small, perhaps a maximum of 150 attendees. This is the general approach of the Gordon Conferences. Meeting people is more difficult with larger conferences because, if there are multiple concurrent sessions, much time is spent moving among sessions and fewer people get the same view of scientific advances in an area. As one eminent ecologist pointed out to me, really important people do not go to any of the talks at conferences but rather socialize and conduct their own mini meetings near the coffee bar.

Organizing a conference is an exercise in utter frustration requiring the dictatorial behaviour of an army general. The general rule is the more talks the better, and never have a talk longer than 15 minutes lest someone get bored. In fact, speed talks are now the rage and you can have 3 minutes to tell the audience about what you are doing or have done. Perhaps if we are moving in this direction we should just have the conference via youtube so we could sit at home and see what parts of it we wanted to watch. If we add ‘tweets’ to conferences (Orizaola and Valdes 2015), we would certainly be following some of our world leaders for better or worse.

I have not been able to find anyone who would dare to calculate the financial cost of any conference and to try to construct a cost benefit ratio for a meeting. The argument would be that the costs can be calculated but the benefits are intangible, somewhat reminiscent of the arguments of our military leaders who demand more financial resources to achieve vague benefits. These concerns disappear if we consider a conference as a scientific tea party rather than an intellectual event. Perhaps we need a social science survey at the end of each conference with the attendees required to list the 5 major advances they obtained from the conference.

All these concerns convince me that we should restrict scientific conferences to small meetings on particular topics at relatively long intervals. Large conferences, should they seem desirable, should consist largely of longer plenary talks that synthesize the status of a specific area of ecology and provide a critique of current knowledge and suggestions of what to do next. These kinds of plenary talks are equivalent to synthesis papers in scientific journals, the kinds of papers that are all too rare in current journals.

One important consequence of scientific meetings can be to reach out to the public with evening lectures on topics of global concern (Hicke et al. 2017). Where it is feasible this recommendation can be an important way of extending information to the public on topics of concern like climate change or conservation management.

Whatever is decided by ecological societies about the structure of scientific conferences, some general rules about presentations ought to be written in large letters. If you are talking at a conservation ecology meeting, you should not spend half of your talk trying to convince the audience that there is a biodiversity crisis, or that climate change is happening. And for the details of a successful conference, read my earlier Blog (https://www.zoology.ubc.ca/~krebs/ecological_rants/how-to-run-a-successful-scientific-conference/) or Blome et al. (2017). This is not rocket science.

Blome, C., Sondermann, H., and Augustin, M. 2017. Accepted standards on how to give a Medical Research Presentation: a systematic review of expert opinion papers. GMS Journal for Medical Education 34(1): Doc11. doi: 10.3205/zma001088.

Hicke, J.A., Abatzoglou, J.T., Daley-Laursen, S., Esler, J., and Parker, L.E. 2017. Using scientific conferences to engage the public on climate change. Bulletin of the American Meteorological Society 98(2): 225-230. doi: 10.1175/BAMS-D-15-00304.1.

Orizaola, G., and Valdes, A.E. 2015. Free the tweet at scientific conferences. Science 350(6257): 170-171. doi: 10.1126/science.350.6257.170-c.

Zierath, J.R. 2016. Building bridges through scientific conferences. Cell 167(5): 1155-1158. doi: 10.1016/j.cell.2016.11.006.

On Post-hoc Ecology

Back in the Stone Age when science students took philosophy courses, a logic course was a common choice for students majoring in science. Among the many logical fallacies one of the most common was the Post Hoc Fallacy, or in full “Post hoc, ergo propter hoc”, “After this, therefore because of this.” The Post Hoc Fallacy has the following general form:

  1. A occurs before B.
  2. Therefore A is the cause of B.

Many examples of this fallacy are given in the newspapers every day. “I lost my pencil this morning and an earthquake occurred in California this afternoon.” Therefore….. Of course, we are certain that this sort of error could never occur in the 21st century, but I would like to suggest to the contrary that its frequency is probably on the rise in ecology and evolutionary biology, and the culprit (A) is most often climate change.

Hilborn and Stearns (1982) pointed out many years ago that most ecological and evolutionary changes have multiple causes, and thus we must learn to deal with multiple causation in which a variety of factors combine and interact to produce an observed outcome. This point of view places an immediate dichotomy between the two extremes of ecological thinking – single factor experiments to determine causation cleanly versus the “many factors are involved” world view. There are a variety of intermediate views of ecological causality between these two extremes, leading in part to the flow chart syndrome of boxes and arrows aptly described by my CSIRO colleague Kent Williams as “horrendograms”. If you are a natural resource manager you will prefer the simple end of the spectrum to answer the management question of ‘what can I possibly manipulate to change an undesirable outcome for this population or community?’

Many ecological changes are going on today in the world, populations are declining or increasing, species are disappearing, geographical distributions are moving toward the poles or to higher altitudes, and novel diseases are appearing in populations of plants and animals. The simplest explanation of all these changes is that climate change is the major cause because in every part of the Earth some aspect of winter or summer climate is changing. This might be correct, or it might be an example of the Post Hoc Fallacy. How can we determine which explanation is correct?

First, for any ecological change it is important to identify a mechanism of change. Climate, or more properly weather, is itself a complex factor of temperature, humidity, and rainfall, and for climate to be considered a proper cause you must advance some information on physiology or behaviour or genetics that would link some specific climate parameter to the changes observed. Information on possible mechanisms makes the potential explanation more feasible. A second step is to make some specific predictions that can be tested either by experiments or by further observational data. Berteaux et al. (2006) provided a careful list of suggestions on how to proceed in this manner, and Tavecchia et al. (2016) have illustrated how one traditional approach to studying the impact of climate change on population dynamics could lead to forecasting errors.

A second critical focus must be on long-term studies of the population or community of interest. In particular, 3-4 year studies common in Ph.D. theses must make the assumption that the results are a random sample of annual ecological changes. Often this is not the case and this can be recognized when longer term studies are completed or more easily if an experimental manipulation can be carried out on the mechanisms involved.

The retort to these complaints about ecological and evolutionary inference is that all investigated problems are complex and multifactorial, so that after much investigation one can conclude only that “many factors are involved”. The application of AIC analysis attempts to blunt this criticism by taking the approach that, given the data (the evidence), what hypothesis is best supported? Hobbs and Hilborn (2006) provide a guide to the different methods of inference that can improve on the standard statistical approach. The AIC approach has always carried with it the awareness of the possibility that the correct hypothesis is not present in the list being evaluated, or that some combination of relevant factors cannot be tested because the available data does not cover a wide enough range of variation. Burnham et al. (2011) provide an excellent checklist for the use of AIC measures to discriminate among hypotheses. Guthery et al. (2005) and Stephens et al. (2005) carry the discussion in interesting ways. Cade (2015) discusses an interesting case in which inappropriate AIC methods lead to questionable conclusions about habitat distribution preferences and use by sage-grouse in Colorado.

If there is a simple message in all this it is to think very carefully about what the problem is in any investigation, what the possible solutions or hypotheses are that could explain the problem, and then utilize the best statistical methods to answer that question. Older statistical methods are not necessarily bad, and newer statistical methods not automatically better for solving problems. The key lies in good data, relevant to the problem being investigated. And if you are a beginning investigator, read some of these papers.

Berteaux, D., et al. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research 32(2): 151-158. doi: 10.3354/cr032151.

Burnham, K.P., Anderson, D.R., and Huyvaert, K.P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65(1): 23-35. doi: 10.1007/s00265-010-1029-6.

Guthery, F.S., Brennan, L.A., Peterson, M.J., and Lusk, J.J. 2005. Information theory in wildlife science: Critique and viewpoint. Journal of Wildlife Management 69(2): 457-465. doi: 10.1890/04-0645.

Hilborn, R., and Stearns, S.C. 1982. On inference in ecology and evolutionary biology: the problem of multiple causes. Acta Biotheoretica 31: 145-164. doi: 10.1007/BF01857238

Hobbs, N.T., and Hilborn, R. 2006. Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecological Applications 16(1): 5-19. doi: 10.1890/04-0645

Stephens, P.A., Buskirk, S.W., Hayward, G.D., and Del Rio, C.M. 2005. Information theory and hypothesis testing: a call for pluralism. Journal of Applied Ecology 42(1): 4-12. doi: 10.1111/j.1365-2664.2005.01002.x

Tavecchia, G., et al. 2016. Climate-driven vital rates do not always mean climate-driven population. Global Change Biology 22(12): 3960-3966. doi: 10.1111/gcb.13330.

On Wildlife Management

There are two global views about wildlife management that are echoed in conservation biology. The first view is that we manage wildlife for the sake of wildlife so that future generations have the ability to see what we see when we go out into the woods and fields. The second view is that we manage wildlife and indeed all of nature for humans to exploit. The second view was elegantly summarized many years ago by White (1967):

Our science and technology have grown out of Christian attitudes toward man’s relation to nature which are almost universally held not only by Christians and neo-Christians but also by those who fondly regard themselves as post-Christians. Despite Copernicus, all the cosmos rotates around our little globe. Despite Darwin, we are not, in our hearts, part of the natural process. We are superior to nature, contemptuous of it, willing to use it for our slightest whim. The newly elected Governor of California, like myself a churchman but less troubled than I, spoke for the Christian tradition when he said (as is alleged), “when you’ve seen one redwood tree, you’ve seen them all.” (p.1206)

The first view of wildlife is now for ecologists the dominant conservation ethic of our time, the recognition that wildlife and nature in general has intrinsic value (Vucetich et al. 2015). Yet when there are conflicts in environmental management, the second view that humans trump all comes to the fore. Think of examples in your region. When caribou and moose are declining, the shout goes up to shoot the wolves. The golden example of this is perhaps Norway where wolves are nearly all gone and moose are superabundant and fed in winter so that there are plenty for hunters to shoot in the following year. Where domestic and feral cats threaten bird populations, the view typically expressed is that cats are our pets and quite cute, and certainly cannot be regulated or controlled as feral pests.

One of the main defenses of biodiversity conservation during the last 20 years has been the role of ecosystem services. The utilitarian view that ecosystems do things for humans that you can then calculate in dollars has been used to carry conservation forward for those who subscribe to the second global view of nature as something that exists only for our exploitation. Two recent reviews are critical of this approach. Silvertown (2015) argues that the ecosystem services paradigm has been oversold and suggests alternatives. An important critical overview of the conundrum of biodiversity research is presented very clearly in Vellend (2017) and is essential reading for all those interested in environmental management issues and the collision of science and human values expressed in our two global views of biodiversity conservation.

Wildlife managers must operate with the first view in mind to manage wildlife for wildlife but at the same time must act in ways determined by their political masters to adopt the second view of human values over wildlife. Ecologists walk a thin line in this dilemma. A good example is the book by Woinarski et al. (2007) which details the disastrous state of environmental management in northern Australia. There are courageous attempts to resolve these management problems and to bridge the two global views by bringing ecological knowledge into policy development and environmental management (e.g. Morton et al. 2009, Lindenmayer et al. 2015). Many others beginning with Aldo Leopold in North America and many others in Europe have made elegant pleas for the first global view of wildlife conservation. The attempts now to bridge this gap between exploitation and preservation are to bring social sciences into environmental research programs, and these efforts can be increasingly effective. But there is a large contingent of the public that support the second view that humans are the most important species on earth. The increasing collision of rising human populations, resource shortages, and climate change produce a perfect storm of events that place wildlife management and environmental sustainability in a difficult position. Everyone who is able must speak up for the first global view in order to achieve a sustainable society on earth and for wildlife and biodiversity in general to be protected for future generations.

Lindenmayer, D.B.,et al. 2015. Contemplating the future: Acting now on long-term monitoring to answer 2050’s questions. Austral Ecology 40(3): 213-224. doi: 10.1111/aec.12207.

Morton, S.R., et al. 2009. The big ecological questions inhibiting effective environmental management in Australia. Austral Ecology 34(1): 1-9. doi: 10.1111/j.1442-9993.2008.01938.x.

Silvertown, J. 2015. Have Ecosystem Services been oversold? Trends in Ecology & Evolution 30(11): 641-648. doi: 10.1016/j.tree.2015.08.007.

Vellend, M. 2017. The biodiversity conservation paradox. American Scientist 105(2): 94-101.

Vucetich, J.A., Bruskotter, J.T., and Nelson, M.P. 2015. Evaluating whether nature’s intrinsic value is an axiom of or anathema to conservation. Conservation Biology 29(2): 321-332. doi: 10.1111/cobi.12464.

White, L., Jr. 1967. The historical roots of our ecologic crisis. Science 155(3767): 1203-1207.

Woinarski, J., Mackey, B., Nix, H., and Traill, B. 2007. The Nature of Northern Australia: Natural values, ecological processes and future prospects. Australian National University E Press, Canberra. (available at: http://press.anu.edu.au/publications/nature-northern-australia)

On Biodiversity and Ecosystem Function

I begin with a quote from Seddon et al. (2016):

By 2012, the consensus view based on 20 years of research was that (i) experimental reduction in species richness, at any trophic level, negatively impacts both the magnitude and stability of ecosystem functioning [12,52], and (ii) the impact of biodiversity loss on ecosystem functioning is comparable in magnitude to other major drivers of global change [13,54].”

The references are to Cardinale et al. (2012), Naeem et al. (2012), Hooper et al. (2012), and Tilman et al. (2012).

The basic conclusion of the literature cited here is that with very extensive biodiversity loss, ecosystem function such as primary productivity will be reduced. I first of all wonder which set of ecologists would doubt this. Secondly, I would like to see these papers analysed for problems of data analysis and interpretation. A good project for a graduate class in experimental design and analysis. Many of the studies I suspect are so artificial in design as to be useless for telling us what will really happen as natural biodiversity is lost. At best perhaps we can view them as political ecology to try to convince politicians and the public to do something about the true drivers of the mess, climate change and overpopulation.

Too many of the graphs I see in published papers on biodiversity and ecosystem function look like this (from Maestre et al. (2012): data from 224 global dryland plots)

There is a trend in these data but zero predictability. And even if you feel that showing trends are good enough in ecology, the trend is very weak.

Many of these analyses utilize meta-analysis. I am a critic of the philosophy of meta-analysis and not alone in wondering how useful many of these are in guiding ecological research (Vetter et al. 2013, Koricheva, and Gurevitch 2014). Perhaps the strongest division in deciding the utility of these meta-analyses is whether one is interested in general trends across ecosystems or predictability which depends largely on understanding the mechanisms behind particular trends.

Another interesting aspect of many of these analyses lies in the preoccupation with stability as a critical ecosystem function maintained by species richness. In contrast to this belief, Jacquet et al. (2016) have argued that in empirical food webs there is no simple relationship between species richness and stability, contrary to conventional theory.

Finally, another quotation from Naeem et al. (2012) which raises a critical issue on which ecologists need to focus more:

“In much of experimental ecological research, nature is seen as the complex, species-rich reference against which treatment effects are measured. In contrast, biodiversity and ecosystem functioning experiments often simply compare replicate ecosystems that differ in biodiversity, without any replicate serving as a reference to nature. Consequently, it has often been difficult to evaluate the external validity of biodiversity and ecosystem functioning research, or how its findings map onto the “real” worlds of conservation and decision making. Put another way, what light can be shed on the stewardship of nature by microbial microcosms that have no analogs in nature, or by experimental grassland studies in which some plots have, by design, no grass species? “ (page 1403)

And for those of you who are animal ecologists, the vast bulk of these studies were done on plants with none of the vertebrate browsers and grazers present. Perhaps some problems here.

Whatever one’s view of these research paradigms, no questions will be answered if we lose too much biodiversity.

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S. & Naeem, S. (2012) Biodiversity loss and its impact on humanity. Nature, 486, 59-67. doi: 10.1038/nature11148

Hooper, D.U., Adair, E.C., Cardinale, B.J., Byrnes, J.E.K., Hungate, B.A., Matulich, K.L., Gonzalez, A., Duffy, J.E., Gamfeldt, L. & O/’Connor, M.I. (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108. doi: 10.1038/nature11118

Jacquet, C., Moritz, C., Morissette, L., Legagneux, P., Massol, F., Archambault, P. & Gravel, D. (2016) No complexity–stability relationship in empirical ecosystems. Nature Communications, 7, 12573. doi: 10.1038/ncomms12573

Koricheva, J. & Gurevitch, J. (2014) Uses and misuses of meta-analysis in plant ecology. Journal of Ecology, 102, 828-844. doi: 10.1111/1365-2745.12224

Maestre, F.T. et al. (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218. doi: 10.1126/science.1215442

Naeem, S., Duffy, J.E. & Zavaleta, E. (2012) The functions of biological diversity in an Age of Extinction. Science, 336, 1401.

Seddon, N., Mace, G.M., Naeem, S., Tobias, J.A., Pigot, A.L., Cavanagh, R., Mouillot, D., Vause, J. & Walpole, M. (2016) Biodiversity in the Anthropocene: prospects and policy. Proceedings of the Royal Society B: Biological Sciences, 283, 20162094. doi: 10.1098/rspb.2016.2094

Tilman, D., Reich, P.B. & Isbell, F. (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences 109, 10394-10397. doi: 10.1073/pnas.1208240109

Vetter, D., Rücker, G. & Storch, I. (2013) Meta-analysis: A need for well-defined usage in ecology and conservation biology. Ecosphere, 4, art74. doi: 10.1890/ES13-00062.1

On Ecological Predictions

The gold standard of ecological studies is the understanding of a particular ecological issue or system and the ability to predict the operation of that system in the future. A simple example is the masting of trees (Pearse et al. 2016). Mast seeding is synchronous and highly variable seed production among years by a population of perennial plants. One ecological question is what environmental drivers cause these masting years and what factors can be used to predict mast years. Weather cues and plant resource states presumably interact to determine mast years. The question I wish to raise here, given this widely observed natural history event, is how good our predictive models can be on a spatial and temporal scale.

On a spatial scale masting events can be widespread or localized, and this provides some cues to the important weather variables that might be important. Assuming we can derive weather models for prediction, we face two often unknown constraints – space and time. If we can derive a weather model for trees in New Zealand, will it also apply to trees in Australia or California? Or on a more constrained geographical view, if it applied on the South Island of New Zealand will it also apply on the North Island? At the other extreme, must we derive models for every population of particular plants in different areas, so that predictability is spatially limited? We hope not and work on the assumption of more spatial generality than what we can measure on our particular small study areas.

The temporal stability of our explanations is now particularly worrisome because of climate change. If we have a good model of masting for a particular tree species in 2017, will it still be working in 2030, 2050 or 2100? A physicist would never ask such a question since a “scientific law” is independent of time. But biology in general and ecology in particular is not time independent both because of evolution and now in particular because of changing climate. But we have not faced up to whether or not we must check our “ecological laws” over and over again as the environment changes, and if we have to do this what must the time scale of rechecking be? Perhaps this question can be answered by determining the speed of potential evolutionary change in species groups. If virus diseases can evolve quickly in terms of months or years, we must be eternally vigilant to consider if the flu virus of 2017 is going to be the same as that of 2016. We should not stop virus research and say that we have sorted out some universal model that will become an equivalent of the laws of physics.

The consequences of these simple observations are not simple. One consequence is the implication that monitoring is an essential ecological activity. But in most ecological funding agencies monitoring is thought to be unscientific, not leading to progress, and more stamp collecting. So we have to establish that, like the Weather Bureau every country supports, we must have an equivalent ecological monitoring bureau. We do have these bureaus for some ecological systems that make money, like marine fisheries, but most other ecosystems are left in limbo with little or no funding on the generalized assumption that “mother or father nature will take care of itself” or expressed more elegantly by a cabinet minister who must be nameless, “there is no need for more forestry research, as we know everything we need to know already”. The urge by politicians to cut research funding lives too much in environmental research.

But ecologists are not just ‘stamp collectors’ as some might think. We need to develop generality but at a time scale and a spatial scale that is reliable and useful for the resolution of the problem that gave rise to the research. Typically for ecological issues this time scale would be 10-25 years, and a rule of thumb might be for 10 generations of the organisms being studied. For many of our questions an annual scale might be most useful, but for long-lived plants and animals we must be thinking of decades or even centuries. Some practical examples from Pacifici et al. (2013): If you study field voles (Microtus spp.) typically you can complete your studies of 10 generations in 3.5 years (on average). If you study red squirrels (Tamiasciurus hudsonicus), the same 10 generations will cost you 39 years, and if red foxes (Vulpes vulpes) 58 years. If wildebeest (Connochaetes taurinus) in the Serengeti, 10 generations will take you 80 years, and if you prefer red kangaroos (Macropus rufus) it will take about 90 years. All these estimates are very approximate but they give you an idea of what the time scale of a long-term study might be. Except for the rodent example, all these study durations are nearly impossible to achieve, and the question for ecologists is this: Should we be concerned about these time scales, or should we scale everything to the human research time scale?

The spatial scale has expanded greatly for ecologists with the advent of radio transmitters and the possibility of satellite tracking. These technological advances allow many conservation questions regarding bird migration to be investigated (e.g. Oppel et al. 2015). But no matter what the spatial scale of interest in a research or management program, variation among individuals and sites must be analyzed by means of the replication of measurements or manipulations at several sites. The spatial scale is dictated by the question under investigation, and the issue of fragmentation has focused attention on the importance of spatial movements both for ecological and evolutionary questions (Betts et al. 2014).

And the major question remains: can we construct an adequate theory of ecology from a series of short-term, small area or small container studies?

Betts, M.G., Fahrig, L., Hadley, A.S., Halstead, K.E., Bowman, J., Robinson, W.D., Wiens, J.A. & Lindenmayer, D.B. (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography, 37, 517-527. doi: 10.1111/ecog.00740

Oppel, S., Dobrev, V., Arkumarev, V., Saravia, V., Bounas, A., Kret, E., Velevski, M., Stoychev, S. & Nikolov, S.C. (2015) High juvenile mortality during migration in a declining population of a long-distance migratory raptor. Ibis, 157, 545-557. doi: 10.1111/ibi.12258

Pacifici, M., Santini, L., Di Marco, M., Baisero, D., Francucci, L., Grottolo Marasini, G., Visconti, P. & Rondinini, C. (2013) Database on generation length of mammals. Nature Conservation, 5, 87-94. doi: 10.3897/natureconservation.5.5734

Pearse, I.S., Koenig, W.D. & Kelly, D. (2016) Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytologist, 212 (3), 546-562. doi: 10.1111/nph.14114

Ecological Alternative Facts

It has become necessary to revise my recent ecological thinking about the principles of ecology along the lines now required in the New World Order. I list here the thirteen cardinal principles of the new ecology 2017:

  1. Population growth is unlimited and is no longer subject to regulation.
  2. Communities undergo succession to the final equilibrium state of the 1%.
  3. Communities and ecosystems are resilient to any and all disturbances and operate best when challenged most strongly, for example with oil spills.
  4. Resources are never limiting under any conditions for the 1% and heavy exploitation helps them to trickle down readily to assist the other 99%.
  5. Overexploiting populations is good for the global ecosystem because it gets rid of the species that are wimps.
  6. Mixing of faunas and floras have been shown over the last 300 years to contribute to the increasing ecological health of Earth.
  7. Recycling is unnecessary in view of recent advances in mining technology.
  8. Carbon dioxide is a valuable resource for plants and we must increase its contribution to atmospheric chemistry.
  9. Climate change is common and advantageous since it occurs from night to day, and has always been with us for many millions of years.
  10. Evolution maximizes wisdom and foresight, especially in mammals.
  11. Conservation of less fit species is an affront to alternative natural laws that were recognized during the 18th century and are now mathematically defined in the new synthetic theory of economic and ecological fitness.
  12. Scientific experiments are no longer necessary because we have computers and technological superiority.
  13. Truth in science is no longer necessary and must be balanced against equally valid post-truth beliefs.

The old ecology, now superseded, was illustrated in Krebs (2016), and is already out of date. Recommendations for other alternative ecological facts will be welcome. Please use the comments.

Krebs, C.J. (2016) Why Ecology Matters. University of Chicago Press, Chicago. 208 pp.