Tag Archives: research funding

On Climate Change Research Funding

I have grown weary of media and news statements that climate change research should be a priority. At the present time military spending, war, and oil and gas companies seem to be the priority spending of many governments. Climate change research seems to be more focused on the physical sciences in attempts to predict what changes in temperature, rainfall, and sea conditions can be expected if we continue at the present global rates of greenhouse gas emissions. This is all very good, and the IPCC reports are excellent. The people are listening and reacting to the bad news even if all the major western governments are close to ignoring the problem. So where does this leave ecological scientists?

Our first response is that we should mimic the climatologists in predicting what the ecological world will be like in 2050 or 2100. But there is a major problem with this centered around the fact that physics has a whole set of fixed laws that will not change in a thousand years, so that the physics of the atmosphere and the oceans is reasonably understood and by the application of the laws of physics, we can arrive at a reasonable prediction that should be constrained by physical laws. Ecological science is nowhere near that paradigm of predictability because it deals with organisms that can evolve and interactions that can change rapidly when an unexpected invasive species arrives on the scene or humans interfere with ecosystem services. Ecological changes are not driven solely by climate change, a fact it is easy to forget. One consequence of this limitation is that we cannot make any kind of reliable predictions about the state of our ecosystems and the state of the Earth’s biodiversity by 2050 or 2100. We can however, in contrast to the physical sciences, do something about ecological changes by finding the limiting factors for the species under concern, protecting these endangered species and setting aside natural areas protected from human depredation. While we can do this to some extent in rich countries, in poor countries, particularly tropical ones, we have a poor record of protecting the exploitation of national parks and reserves. Think Brazil or the Central African Republic.

But given this protection of areas and funding for threatened species, conservation ecologists still have some very difficult problems to face. First and foremost is the conservation of rare, endangered species. It is nearly impossible to study rare species to discover the limiting factors that are pushing them toward extinction. Second, if you have the information on limiting factors, it is difficult to reverse trends that are determined by climate change or by human disrespect for conservation values.

In spite of these problems, the ecological literature is full of papers claiming to solve these issues with various schemes that predict a brighter future sometime. But if we apply the same rigor to these papers as we do to other areas of ecology, we must treat them as a set of hypotheses that make specific predictions, and try to test them. If we have solutions that are feasible but will require 50 years to accomplish, we should be very clear that we are drawing a long bow. Some statement of goals for the next 5 years would be desirable so we can measure progress or lack of progress.

The screams of practitioners go up – we have no time to test hypotheses, we need action! If we have clear-cut a forest site, or bulldozed shrub habitats, we may have a good idea of how to proceed to restoration. But with a long term view, restoration itself in highly contestable. In particular with climate change we have even less ability to predict with knowledge based on the last 50 year or so. So if you are in a predictive mode about conservation issues, have multiple working hypotheses about what to do, rather than one certain view of what will solve the problem.

This is not a cry to give up on conservation, but rather to trim our certainty about future states of ecosystems. Trying to predict what will happen under climate change is important for the Earth but we must always keep in mind the other critical factors affecting biodiversity, from predators to parasites and diseases, and the potential for evolution. Human destruction of habitats is a key issue we do not control well enough, and yet it may be the most important short term threat to conservation.

All of this leads into the fact that to achieve anything we need resources –people and money. The problem at present is where can we get the money? Governments in general place a low value on conservation and the environment in general in the quest for money and economic growth. Rich philanthropists are useful but few, and perhaps too often they have a distorted view of what to invest in. Improving the human condition of the poor is vital; medical research is vital, but if the environment suffers losses as it is at present, we need to balance or reverse our priorities of where to put our money. I do not know how to accomplish this goal. The search for politicians who have even a grade 1 understanding of environmental problems is not going well. Read Boris Johnson and Vladimir Putin. What is being accomplished now is more to the credit of private philanthropy which has clear goals but may pull in diverse directions. I submit that to date we have not been successful in this pursuit of environmental harmony, but it is a goal we must keep pushing for. E.O. Wilson once said that there was more money spent in New York City on a Friday night on beer than was devoted to biodiversity conservation for the entire world for the year.  This should hardly be a good epitaph for our century.

Our World View and Conservation

Recent events have large implications for conservation science. Behind these events – Covid, climate change, wars – lies a fundamental dichotomy of views about humanity’s place in the world today. At the most basic level there are those who view humans as the end-all-and-be-all of importance so that the remainder of the environment and all other species are far down the list of importance when it comes to decision making. The other view is that humans are the custodians of the Earth and all its ecosystems, so that humans are an important part of our policy decisions but not the only part or even the most important part. Between these extreme views there is not a normal distribution but a strongly bimodal one. We see this very clearly with respect to the climate emergency. If you explain the greenhouse dilemma to anyone, you can see the first reaction is that this does not apply to me, so I can do whatever I want versus the reaction of others that I should do something to reduce this problem now. It is the me-here-and-now view of our lives in contrast to the concern we should have about future generations.

Our hope lies in the expectation that things are improving, strongly in young people, more slowly in older people, and negligibly in our politicians. We must achieve sustainability professed by the Greta Thunberg’s of the world, and yet recognize that the action needed is promised by our policy makers only for 2050 or 2100. There is hope that the captains of industry will move toward sustainability goals, but this will be achieved only by rising public and economic pressure. We are beset by wars that make achieving any sustainability goals more difficult. In Western countries blessed with superabundant wealth we can be easily blinded by promises of the future like electricity from nuclear fusion at little cost, or carbon-capture to remove greenhouse gases from the atmosphere. If things get impossibly bad, we are told we can all go to Mars. Or at least the selected elite can.

Conservation gets lost in this current world, and pleas to set aside 30% or 40% of the Earth for biosphere conservation are rarely even heard about on the evening news. The requests for funds for conservation projects are continually cut when there are more important goals for economic growth. Even research funding through our first-class universities and government laboratories is falling, and I would wager without the data that less than 20% of funding for basic research goes to investigating environmental problems or conservation priorities. In my province in Canada a large section of this year’s budget labelled “Addressing Climate Change” is to be spent on repairing the highways from last year’s floods and trying to restore the large areas affected by fires in the previous dry summer.  

What is the solution to this rather depressing situation? Two things must happen soon. First, we the public must hold the government to account for sustainability. Funding oil companies, building pipelines, building highways through Class A farmland, and waging wars will not bring us closer to having a sustainable earth for our grandchildren. Second, we must encourage private industries and wealthy philanthropists to invest in sustainability research. Conservation cannot ever be achieved without setting aside large, protected areas. The list of species that are in decline around the Earth is growing, yet for the vast number of these we have no clear idea why they are declining or what can be done about it. We need funding for science and action, both in short supply in the world today. And some wisdom thrown in.   

On How Genomics will not solve Ecological Problems

I am responding to this statement in an article in the Conversation by Anne Murgai on April 19, 2022 (https://phys.org/news/2022-04-african-scientists-genes-species.html#google_vignette) : The opening sentence of her article on genomics encapsulates one of the problems of conservation biology today:

“DNA is the blueprint of life. All the information that an organism needs to survive, reproduce, adapt to environments or survive a disease is in its DNA. That is why genomics is so important.”

If this is literally correct, almost all of ecological science should disappear, and our efforts to analyse changes in geographic distributions, abundance, survival and reproductive rates, competition with other organisms, wildlife diseases, conservation of rare species and all things that we discuss in our ecology journals are epiphenomena, and thus our slow progress in sorting out these ecological issues is solely because we have not yet sequenced all our species to find the answers to everything in their DNA.

This is of course not correct, and the statement quoted above is a great exaggeration. But, if it is believed to be correct, it has some important consequences for scientific funding. I will confine my remarks to the fields of conservation and ecology. The first and most important is that belief in this view of genetic determinism is having large effects on where conservation funding is going. Genomics has been a rising star in biological science for the past 2 decades because of technological advances in sequencing DNA. As such, given a fixed budget, it is taking money away from the more traditional approaches to conservation such as setting up protected areas and understanding the demography of declining populations. Hausdorf (2021) explores these conflicting problems in an excellent review, and he concludes that often more cost-effective methods of conservation should be prioritized over genomic analyses. Examples abound of conservation problems that are immediate and typically underfunded (e.g., Turner et al. 2021, Silva et al, 2021).   

What is the resolution of these issues? I can recommend only that those in charge of dispensing funding for conservation science examine the hypotheses being tested and avoid endless funding for descriptive genomics that claim to have a potential and immediate outcome that will forward the main objectives of conservation. Certainly, some genomic projects will fit into this desirable science category, but many will not, and the money should be directed elsewhere.  

The Genomics Paradigm listed above is used in the literature on medicine and social science, and a good critique of this view from a human perspective is given in a review by Feldman and Riskin (2022). Scientists dealing with human breast cancer or schizophrenia show the partial but limited importance of DNA in determining the cause or onset of these complex conditions (e.g., Hilker et al 2018, Manobharathi et al. 2021). Conservation problems are equally complex, and in the climate emergency have a short time frame for action. I suspect that genomics for all its strengths will have only a minor part to play in the resolution of ecological problems and conservation crises in the coming years.

Feldman, Marcus W. and Riskin, Jessica (2022). Why Biology is not Destiny. The New York Review of Books 69 (April 21, 2022), 43-46.

Hausdorf, Bernhard (2021). A holistic perspective on species conservation. Biological Conservation 264, 109375. doi: 10.1016/j.biocon.2021.109375.

Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T.M., Nordentoft, M., and Glenthøj, B. (2018). Heritability of Schizophrenia and Schizophrenia Spectrum based on the Nationwide Danish Twin Register. Biological Psychiatry 83, 492-498. doi: 10.1016/j.biopsych.2017.08.017.

Manobharathi, V., Kalaiyarasi, D., and Mirunalini, S. (2021). A concise critique on breast cancer: A historical and scientific perspective. Research Journal of Biotechnology 16, 220-230.

Samuel, G. N. and Farsides, B. (2018). Public trust and ‘ethics review’ as a commodity: the case of Genomics England Limited and the UK’s 100,000 genomes project. Medicine, Health Care, and Philosophy 21, 159-168. doi: 10.1007/s11019-017-9810-1.

Silva, F., Kalapothakis, E., Silva, L., and Pelicice, F. (2021). The sum of multiple human stressors and weak management as a threat for migratory fish. Biological Conservation 264, 109392. doi: 10.1016/j.biocon.2021.109392.

Turner, A., Wassens, S., and Heard, G. (2021). Chytrid infection dynamics in frog populations from climatically disparate regions. Biological Conservation 264, 109391. doi: 10.1016/j.biocon.2021.109391.

On the Canadian Biodiversity Observation Network (CAN BON)

I have been reading the report of an exploratory workshop from July 2021 on designing a biodiversity monitoring network across Canada to address priority monitoring gaps and engage Indigenous people across Canada. The 34 pages of their workshop report can be accessed here, and I recommend you might read it before reading my comments on the report:

https://www.nserc-crsng.gc.ca/Media-Media/NewsDetail-DetailNouvelles_eng.asp?ID=1310

I have a few comments on this report that are my opinion only. I think the Report on this workshop outlines a plan so grand and misguided that it could not be achieved in this century, even with a military budget. The report is a statement of wisdom put together with platitudes. Why is this and what are the details that I believe to be unachievable?

The major goal of the proposed network is to bring together everyone to improve biodiversity monitoring and address the highest priority gaps to support biodiversity conservation. I think most of the people of Canada would support these objectives, but what does it mean? Let us do a thought experiment. Suppose at this instant in time we knew the distribution and the exact abundance of every species in Canada. What would we know, what could we manage, what good would all these data be except as a list taking up terabytes of data? If we had these data for several years and the numbers or biomass were changing, what could we do? Is all well in our ecosystems or not? What are we trying to maximize when we have no idea of the mechanisms of change? Contrast these concerns about biodiversity with the energy and resources applied in medicine to the mortality of humans infected with Covid viruses in the last 3 years. A monumental effort to examine the mechanisms of infection and ways of preventing illness, with a clear goal and clear measures of progress toward that goal.

There is no difficulty in putting out “dream” reports, and biologists as well as physicists and astronomers, and social scientists have been doing this for years. But in my opinion this report is a dream too far and I give you a few reasons why.

First, we have no clear definition of biodiversity except that it includes everything living, so if we are going to monitor biodiversity what exactly should we do? For some of us monitoring caribou and wolves would be a sufficient program, or whales in the arctic, or plant species in peat bogs. So, to begin with we have to say what operationally we would define as the biodiversity we wish to monitor. We could put all our energy into a single group of species like birds and claim that these are the signal species to monitor for ecosystem integrity. Or should we consider only the COSEWIC list of Threatened or Endangered Species in Canada as our major monitoring concern? So, the first job of CAN BON must be to make a list of what the observation network is supposed to observe (Lindenmayer 2018). There is absolutely no agreement on that simple question within Canada now, and without it we cannot move forward to make an effective network.

The second issue that I take with the existing report is that the emphasis is on observations, and then the question is what problems will be solved by observation alone. The advance of ecological science has been based on observation and experiment directed to specific questions either of ecological interest or of economic interest. In the Pacific salmon fishery for example the objective of observation is to predict escapement and thus allowable harvest quotas. Despite years of high-quality observations and experiments, we are still a long way from understanding the ecosystem dynamics that drive Pacific salmon reproduction and survival.

Contrast the salmon problem with the caribou problem. We have a reasonably good understanding of why caribou populations are declining or not, based on many studies of predator-prey dynamics, harvesting, and habitat management. At present the southern populations of caribou are disappearing because of a loss of habitat because of land use for forestry and mining, and the interacting nexus of factors is well understood. What we do not do as a society is put these ideas into practice for conservation; for example, forestry must have priority over land use for economic reasons and the caribou populations at risk suffer. Once ecological knowledge is well defined, it does not lead automatically to action that biodiversity scientists would like. Climate change is the elephant in the room for many of our ecological problems but it is simultaneously easy to blame and yet uneven in its effects.

The third problem is funding, and this overwhelms the objectives of the Network. Ecological funding in general in Canada is a disgrace, yet we achieve much with little money. If this ever changes it will require major public input and changed governmental objectives, neither is under our immediate control. One way to press this objective forward is to produce a list of the most serious biodiversity problems facing Canada now along with suggestions for their resolution. There is no simple way to develop this list. A by-product of the current funding system in Canada is the shelling out of peanuts in funding to a wide range of investigators whose main job becomes how to jockey for the limited funds by overpromising results. Coordination is rare partly because funding is low. So (for example) I can work only on the tree ecology of the boreal forest because I am not able to expand my studies to include the shrubs, the ground vegetation, the herbivores, and the insect pests, not to mention the moose and the caribou.  

For these reasons and many more that could be addressed from the CAN BON report, I would suggest that to proceed further here is a plan:

  1. Make a list of the 10 or 15 most important questions for biodiversity science in Canada. This alone would be a major achievement.
  2. Establish subgroups organized around each of these questions who can then self-organize to discuss plans for observations and experiments designed to answer the question. Vague objectives are not sufficient. An established measure of progress is essential.
  3. Request a realistic budget and a time frame for achieving these goals from each group.  Find out what the physicists, astronomers, and medical programs deem to be suitable budgets for achieving their goals.
  4. Organize a second CAN BON conference of a small number of scientists to discuss these specific proposals. Any subgroup can participate at this level, but some decisions must be made for the overall objectives of biodiversity conservation in Canada.

These general ideas are not particularly new (Likens 1989, Lindenmayer et al. 2018). They have evolved from the setting up of the LTER Program in the USA (Hobbie 2003), and they are standard operating procedures for astronomers who need to come together with big ideas asking for big money. None of this will be easy to achieve for biodiversity conservation because it requires the wisdom of Solomon and the determination of Vladimir Putin.

Hobbie, J.E., Carpenter, S.R., Grimm, N.B., Gosz, J.R., and Seastedt, T.R. (2003). The US Long Term Ecological Research Program. BioScience 53, 21-32. doi: 10.1016/j.oneear.2021.12.008

Likens, G. E. (Ed.) (1989). ‘Long-term Studies in Ecology: Approaches and Alternatives.’ (Springer Verlag: New York.) ISBN: 0387967435

Lindenmayer, D. (2018). Why is long-term ecological research and monitoring so hard to do? (And what can be done about it). Australian Zoologist 39, 576-580. doi: 10.7882/az.2017.018.

Lindenmayer, D.B., Likens, G.E., and Franklin, J.F. (2018). Earth Observation Networks (EONs): Finding the Right Balance. Trends in Ecology & Evolution 33, 1-3. doi: 10.1016/j.tree.2017.10.008.

On Biodiversity Science

With David Attenborough and all the amazing picture books on biodiversity there can be few people in the world who have not been alerted to the array of beautiful and interesting species on Earth. Until recently the subject of biodiversity, known to First Nations since long, long ago, had not entered the western world of automobiles, industry, farming, fishing, music, theatres, and movies. Biodiversity is now greatly appreciated by most people, but perhaps more as entertainment for western societies and more for subsistence food in less wealthy parts of our world.

There are many different measures of ‘biodiversity’ and when discussing how we should protect biodiversity we should be careful about exactly how this word is being used. The number of different species in an area is one simple measure of biodiversity. But often the types of organisms being considered are less well defined. Forest ecologists attempt to protect forest biodiversity, but logging companies are more concerned only with trees and tree size for commercial use. Bird watchers are concerned with birds and have developed much citizen science in counting birds. Mushroom connoisseurs may worry about what edible mushrooms will be available this summer. But in many cases biodiversity scientists recognize that the community of organisms and the ecosystem that contains them would be a more appropriate unit of analysis. But as the number of species in an ecosystem increases, the complexity of the ecosystem becomes unmanageable. A single ecosystem may have hundreds to thousands of species, and we are in the infant stage of trying to determine how to study these biological systems.

One result is that, given that there are perhaps 10 million species on Earth and only perhaps 10,000 biologists who study biodiversity, where do we begin? The first and most popular way to answer this question is to pick a single species and concentrate on understanding its ecology. This makes are researcher’s life fairly simple. If elephants in Africa are under threat, find out all about the ecology of elephants. If a particular butterfly in England is very rare, try to find out why and how to protect them. This kind of research is very valuable for conservation because it provides a detailed background for understanding the requirements of each species. But the single species approaches lead into at least two quagmires. First, all species exist in a web of other species and understanding this web greatly expands the problem. It is possible in many cases to decipher the effects other species have on our elephants or butterflies, but this requires many more scientists to assist in analysing the species’ food chain, its diseases, its predators and parasites, and that is only a start. The second quagmire is that one of the general rules of ecology is that most species on Earth are rare, and few are common. So that we must concentrate our person-power on the common species because they are easier to find and study. But it is often the rare species that are of conservation concern, and so we should focus on them rather than the common species. In particular, given that only about 10% of the species on Earth have been described scientifically, we may often be assigned a species that does not have any information on its food habits or habitat requirements, its distribution, and how its abundance might be changing over time, a lifetime research program.

The result of this general overview is that the mantra of our day – Protect Biodiversity – begins as a compelling slogan and ends in enormous scientific complexity. As such it falls into the category of slogans like ‘Reduce Poverty’ and ‘Peace on Earth’, something we can all agree on, but the devil is in the details of how to achieve that particular goal.

One way to avoid all these pitfalls has been to jump over the problems of individual species and analyse communities of species or entire ecosystems. The result of this approach is to boil down all the species in the community to a number that estimates “biodiversity” and then use that number in relating ‘biodiversity’ to community attributes like ‘productivity’ or ‘stability’. This approach leads to testing hypotheses like ‘Higher biodiversity leads to greater stability’. There are serious problems with this approach if it is used to test any such hypothesis. First, biodiversity in this example must be rigorously defined as well as stability. The fact that higher biodiversity of butterflies in a particular region is associated with a more stable abundance of these butterflies over time is worthy of note but not of generalization to global communities or ecosystems. And as in all ecological studies we do not know if this is a generalization applicable to all butterfly populations everywhere until many more studies have been done.

A second problem is that this community or ecosystem approach to address ecological questions about biodiversity is not very useful in promoting conservation which boils down to particular species in particular environments. It should force us back to looking at the population ecology of species that are of conservation concern. It is population ecologists who must push forward the main goals of the conservation of the Earth’s biota, as Caughley (1994) recognized long ago.

The practical goals of conservation have always been local, and this constraint is mostly ignored in papers that demand some global research priorities and global ecological rules. The broad problem is that the conservation of biodiversity is a gigantic scientific and political problem that is currently underfunded and in its scientific infancy. At the present too much biodiversity research is short-term and not structured in a comprehensive framework that identifies critical problems and concentrates research efforts on these problems (Nichols et al. 2019, Sutherland et al. 2018). One more important issue for a seminar discussion group. 

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Nichols, J.D., Kendall, W.L., and Boomer, G.S. (2019). Accumulating evidence in ecology: Once is not enough. Ecology and Evolution 9, 13991-14004. doi: 10.1002/ece3.5836.

Sutherland, W.J., Butchart, Stuart H.M., Connor, B., Culshaw, C., Dicks, L.V., et al. (2018). A 2018 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity. Trends in Ecology & Evolution 33, 47-58. doi: 10.1016/j.tree.2017.11.006.

Ecology as a Contingent Science

The Northern Hemisphere is working through a summer of very warm weather, often temperatures 10ºC above ‘normal’. Climate change should in these conditions be obvious to all. Yet despite these clear changes, all the governments of developed countries – including Canada, USA, Australia, Britain – are doing next to nothing about the causes of climate change. This bald statement will lead to a lot of noise about “all we are now doing…”, a carbon tax promoted loudly but that is so low it can have little effect on emissions, and endless talk in the media about “sustainable practices” that are far from sustainable. Why should this be? There are many reasons and I want to discuss just one that pertains to the science of ecology.

Imagine that you are a physicist or chemist and are studying a physical or chemical problem in a lab in Germany and one in Canada. You would expect to get exactly the same experimental results in the two labs. The laws of chemistry and physics are universal and there would be consternation if results differed by geographical locations. Now transform this thought experiment to ecology. You might expect the converse for ecological experiments in the field, and there is much discussion of why this occurs (Brudvig et al. 2017, Marino et al. 2018, Zhou and Ning 2017). We need to think more about why this should be.

First, we might suspect that the ecological conditions are variable by place. The soils of Germany or France or New York or Vietnam differ in composition. The flora and fauna vary dramatically by site even within the same country. The impacts of human activities such as agriculture on the landscape vary by area. Climates are regional as well as local. Dispersal of seeds is not a uniform process. All these things ecologists know a great deal about, and they provide a rich source of post-hoc explanations for any differences. But the flip side is that ecology does not then produce general laws or principles except very general ones that provide guidance but not predictive models useful for management.

This thought leads me back to the general feeling that ecology is not categorized as a hard science and is thus often ignored. Ecologist have been pointing out many of the consequences of climate change for at least 30-40 years with few people in business or local political power listening. This could simply be a consequence of the public caring about the present but not about the future of the Earth. But it might be partly the result of ecology having produced no generality that the public appreciates, except for the most general ecological ‘law’ that “Mother Nature takes care of itself”, so we the public have little to be concerned about.

The paradigm of stability is deeply embedded in most people (Martin et al. 2016), and we are in the process of inventing a non-equilibrium ‘theory’ of ecology in which the outcome of ecological processes leads us into new communities and ecosystems we can only scarcely imagine and certainly not predict clearly. Physicists can predict generally what a future Earth climate with +2ºC or + 4ºC will entail (IPCC 2013, Lean 2018), but we cannot do this so readily with our ecological knowledge.

Where does this get us? Ecology is not appreciated as a science, and thus in the broad sense not funded properly. Ecologists fight over crumbs of funding even to monitor the changes that are occurring, and schemes that might alleviate some of the major effects of climate change are not tested because they are expensive and long-term. Ecology is a long-term science in a world that is increasingly short-term in thinking and in action. Perhaps this will change but no politician wants to wait 10-20 years to see if some experimental procedure works. Funding that is visionary is stopped after 4 years by politicians who know nothing about the problems of the Earth and sustainability. We should demand a politics of sustainability for our future and that of following generations. Thinking long-term should be a requirement not an option.

Brudvig, L.A., Barak, R.S., Bauer, J.T., Caughlin, T.T., and Laughlin, D.C. (2017). Interpreting variation to advance predictive restoration science. Journal of Applied Ecology 54, 1018-1027. doi: 10.1111/1365-2664.12938.

Chapman, M., LaValle, A., Furey, G., and Chan, K.M.A. (2017). Sustainability beyond city limits: can “greener” beef lighten a city’s Ecological Footprint? Sustainability Science 12, 597-610. doi: 10.1007/s11625-017-0423-7.

IPCC (2013) ‘IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, U.K.) http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf

Lean, J.L. (2018). Observation-based detection and attribution of 21st century climate change. Wiley Interdisciplinary Reviews. Climate Change 9, e511. doi: 10.1002/wcc.511.

Marino, N.A.C., Romero, G.Q., and Farjalla, V.F. 2018. Geographical and experimental contexts modulate the effect of warming on top-down control: a meta-analysis. Ecology Letters 21, 455-466. doi: 10.1111/ele.12913.

Martin, J-L., Maris, V., and Simberloff, D.S. (2016). The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences 113, 6105-6112. doi: 10.1073/pnas.1525003113.

Zhou, J. and Ning, D. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002-00017. doi: 10.1128/MMBR.00002-17.

On Mauna Loa and Long-Term Studies

If there is one important element missing in many of our current ecological paradigms it is long-term studies. This observation boils down to the lack of proper controls for our observations. If we do not know the background of our data sets, we lack critical perspective on how to interpret short-term studies. We should have learned this from paleoecologists whose many studies of plant pollen profiles and other time series from the geological record show that models of stability which occupy most of the superstructure of ecological theory are not very useful for understanding what is happening in the real world today.

All of this got me wondering what it might have been like for Charles Keeling when he began to measure CO2 levels on Mauna Loa in Hawaii in 1958. Let us do a thought experiment and suggest that he was at that time a typical postgraduate students told by his professors to get his research done in 4 or at most 5 years and write his thesis. These would be the basic data he got if he was restricted to this framework:

Keeling would have had an interesting seasonal pattern of change that could be discussed and lead to the recommendation of having more CO2 monitoring stations around the world. And he might have thought that CO2 levels were increasing slightly but this trend would not be statistically significant, especially if he has been cut off after 4 years of work. In fact the US government closed the Mauna Loa observatory in 1964 to save money, but fortunately Keeling’s program was rescued after a few months of closure (Harris 2010).

Charles Keeling could in fact be a “patron saint” for aspiring ecology graduate students. In 1957 as a postdoc he worked on developing the best way to measure CO2 in the air by the use of an infrared gas analyzer, and in 1958 he had one of these instruments installed at the top of Mauna Loa in Hawaii (3394 m, 11,135 ft) to measure pristine air. By that time he had 3 published papers (Marx et al. 2017). By 1970 at age 42 his publication list had increased to a total of 22 papers and an accumulated total of about 50 citations to his research papers. It was not until 1995 that his citation rate began to exceed 100 citations per year, and after 1995 at age 67 his citation rate increased very much. So, if we can do a thought experiment, in the modern era he could never even apply for a postdoctoral fellowship, much less a permanent job. Marx et al. (2017) have an interesting discussion of why Keeling was undercited and unappreciated for so long on what is now considered one of the world’s most critical environmental issues.

What is the message for mere mortals? For postgraduate students, do not judge the importance of your research by its citation rate. Worry about your measurement methods. Do not conclude too much from short-term studies. For professors, let your bright students loose with guidance but without being a dictator. For granting committees and appointment committees, do not be fooled into thinking that citation rates are a sure metric of excellence. For theoretical ecologists, be concerned about the precision and accuracy of the data you build models about. And for everyone, be aware that good science was carried out before the year 2000.

And CO2 levels yesterday were 407 ppm while Nero is still fiddling.

Harris, D.C. (2010) Charles David Keeling and the story of atmospheric CO2 measurements. Analytical Chemistry, 82, 7865-7870. doi: 10.1021/ac1001492

Marx, W., Haunschild, R., French, B. & Bornmann, L. (2017) Slow reception and under-citedness in climate change research: A case study of Charles David Keeling, discoverer of the risk of global warming. Scientometrics, 112, 1079-1092. doi: 10.1007/s11192-017-2405-z

On Caribou and Hypothesis Testing

Mountain caribou populations in western Canada have been declining for the past 10-20 years and concern has mounted to the point where extinction of many populations could be imminent, and the Canadian federal government is asking why this has occurred. This conservation issue has supported a host of field studies to determine what the threatening processes are and what we can do about them. A recent excellent summary of experimental studies in British Columbia (Serrouya et al. 2017) has stimulated me to examine this caribou crisis as an illustration of the art of hypothesis testing in field ecology. We teach all our students to specify hypotheses and alternative hypotheses as the first step to solving problems in population ecology, so here is a good example to start with.

From the abstract of this paper, here is a statement of the problem and the major hypothesis:

“The expansion of moose into southern British Columbia caused the decline and extirpation of woodland caribou due to their shared predators, a process commonly referred to as apparent competition. Using an adaptive management experiment, we tested the hypothesis that reducing moose to historic levels would reduce apparent competition and therefore recover caribou populations. “

So the first observation we might make is that much is left out of this approach to the problem. Populations can decline because of habitat loss, food shortage, excessive hunting, predation, parasitism, disease, severe weather, or inbreeding depression. In this case much background research has narrowed the field to focus on predation as a major limitation, so we can begin our search by focusing on the predation factor (review in Boutin and Merrill 2016). In particular Serrouya et al. (2017) focused their studies on the nexus of moose, wolves, and caribou and the supposition that wolves feed preferentially on moose and only secondarily on caribou, so that if moose numbers are lower, wolf numbers will be lower and incidental kills of caribou will be reduced. So they proposed two very specific hypotheses – that wolves are limited by moose abundance, and that caribou are limited by wolf predation. The experiment proposed and carried out was relatively simple in concept: kill moose by allowing more hunting in certain areas and measure the changes in wolf numbers and caribou numbers.

The experimental area contained 3 small herds of caribou (50 to 150) and the unmanipulated area contained 2 herds (20 and 120 animals) when the study began in 2003. The extended hunting worked well, and moose in the experimental area were reduced from about 1600 animals down to about 500 over the period from 2003 to 2014. Wolf numbers in the experimental area declined by about half over the experimental period because of dispersal out of the area and some starvation within the area. So the two necessary conditions of the experiment were satisfied – moose numbers declined by about two-thirds from additional hunting and wolf numbers declined by about half on the experimental area. But the caribou population on the experimental area showed mixed results with one population showing a slight increase in numbers but the other two showing a slight loss. On the unmanipulated area both caribou populations showed a continuing slow decline. On the positive side the survival rate of adult caribou was higher on the experimental area, suggesting that the treatment hypothesis was correct.

From the viewpoint of caribou conservation, the experiment failed to change the caribou population from continuous slow declines to the rapid increase needed to recover these populations to their former greater abundance. At best it could be argued that this particular experiment slowed the rate of caribou decline. Why might this be? We can make a list of possibilities:

  1. Moose numbers on the experimental area were not reduced enough (to 300 instead of to 500 achieved). Lower moose would have meant much lower wolf numbers.
  2. Small caribou populations are nearly impossible to recover because of chance events that affect small numbers. A few wolves or bears or cougars could be making all the difference to populations numbering 10-20 individuals.
  3. The experimental area and the unmanipulated area were not assigned treatments at random. This would mean to a pure statistician that you cannot make statistical comparisons between these two areas.
  4. The general hypothesis being tested is wrong, and predation by wolves is not the major limiting factor to mountain caribou populations. Many factors are involved in caribou declines and we cannot determine what they are because they change for area to area, year to year.
  5. It is impossible to do these landscape experiments because for large landscapes it is impossible to find 2 or more areas that can be considered replicates.
  6. The experimental manipulation was not carried out long enough. Ten years of manipulation is not long for caribou who have a generation time of 15-25 years.

Let us evaluate these 6 points.

#1 is fair enough, hard to achieve a population of moose this low but possible in a second experiment.

#2 is a worry because it is difficult to deal experimentally with small populations, but we have to take the populations as a given at the time we do a manipulation.

#3 is true if you are a purist but is silly in the real world where treatments can never be assigned at random in landscape experiments.

#4 is a concern and it would be nice to include bears and other predators in the studies but there is a limit to people and money. Almost all previous studies in mountain caribou declines have pointed the finger at wolves so it is only reasonable to start with this idea. The multiple factor idea is hopeless to investigate or indeed even to study without infinite time and resources.

#5 is like #3 and it is an impossible constraint on field studies. It is a common statistical fallacy to assume that replicates must be identical in every conceivable way. If this were true, no one could do any science, lab or field.

#6 is correct but was impossible in this case because the management agencies forced this study to end in 2014 so that they could conduct another different experiment. There is always a problem deciding how long a study is sufficient, and the universal problem is that the scientists or (more likely) the money and the landscape managers run out of energy if the time exceeds about 10 years or more. The result is that one must qualify the conclusions to state that this is what happened in the 10 years available for study.

This study involved a heroic amount of field work over 10 years, and is a landmark in showing what needs to be done and the scale involved. It is a far cry from sitting at a computer designing the perfect field experiment on a theoretical landscape to actually carrying out the field work to get the data summarized in this paper. The next step is to continue to monitor some of these small caribou populations, the wolves and moose to determine how this food chain continues to adjust to changes in prey levels. The next experiment needed is not yet clear, and the eternal problem is to find the high levels of funding needed to study both predators and prey in any ecosystem in the detail needed to understand why prey numbers change. Perhaps a study of all the major predators – wolves, bears, cougars – in this system should be next. We now have the radio telemetry advances that allow satellite locations, activity levels, timing of mortality, proximity sensors when predators are near their prey, and even video and sound recording so that more details of predation events can be recorded. But all this costs money that is not yet here because governments and people have other priorities and value the natural world rather less than we ecologists would prefer. There is not yet a Nobel Prize for ecological field research, and yet here is a study on an iconic Canadian species that would be high up in the running.

What would I add to this paper? My curiosity would be satisfied by the number of person-years and the budget needed to collect and analyze these results. These statistics should be on every scientific paper. And perhaps a discussion of what to do next. In much of ecology these kinds of discussions are done informally over coffee and students who want to know how science works would benefit from listening to how these informal discussions evolve. Ecology is far from simple. Physics and chemistry are simple, genetics is simple, and ecology is really a difficult science.

Boutin, S. and Merrill, E. 2016. A review of population-based management of Southern Mountain caribou in BC. {Unpublished review available at: http://cmiae.org/wp-content/uploads/Mountain-Caribou-review-final.pdf

Serrouya, R., McLellan, B.N., van Oort, H., Mowat, G., and Boutin, S. 2017. Experimental moose reduction lowers wolf density and stops decline of endangered caribou. PeerJ  5: e3736. doi: 10.7717/peerj.3736.

 

Fire and Fury and the Environment

The media at present is full of comments about having a war that will stimulate the economy, at least in reconstruction. And this concern over war and the costs of war prompted me to investigate the relative costs of military funding and environmental funding. So here is a very coarse look at the relative positions of military funding and environmental funding in a few western countries. All the numbers are approximate and refer to 2016 and possibly 2017 budgets, and all are in billions of dollars.

Military expenditures by countries are easiest to obtain, and here are a few for the most recent years I could find:

United States:         $ 611 billion
China:                       $ 216
Russia:                      $ 69
Saudi Arabia:           $ 64
Australia:                  $ 24
Canada:                    $ 15.5

Environmental funding is much more difficult to decompose because different countries amalgamate different agencies into one Department. Consequently, comparisons are best made within one country rather than between countries. Here are a few details for particular agencies:

USA            Department of the Interior     $ 13.4            1 military year = 46 Dept. years
NOAA                                                             $ 5.77             1 military year = 106 NOAA years

Canada      Environment Canada              $ 0.987            1 military year = 16 EC years

Australia     CSIRO                                       $ 0.803            1 military year = 30 CSIRO years

Clearly there are many problems with these simple comparisons. NOAA for example includes agencies covering Marine Fisheries, Weather Service, Environmental Satellites, Aviation Operations, and Oceanic Research among other responsibilities. CSIRO includes divisions dealing with agriculture, climate change, and mining research. I am sure that someone has done a more detailed analysis of these comparisons, but the general message is very clear: the environment is a low priority among western nations, and if you want a rough number one might say the military is about 30 times more “important” than the environment when it comes to funding. If you look for example at the Australian budget for 2017 (http://budget.gov.au/2017-18/content/glossies/overview/download/Budget2017-18-Overview.pdf ) and search for the word ‘environment’ as in the real biophysical environment, you will find not a single case of this word appearing. It is as though the biophysical environment does not exist as a problem in 2017.

I am not clear if anyone worries about these simple facts. The general problem is that federal government budgets are made so complex and presented so poorly that it is nearly impossible to separate out different equivalent expenditures. Thus for example the military argues that it does scientific research with part of its funding, and universities fail to point out that some of their basic research focuses on military questions rather than questions that might benefit humanity (Smart 2016).

I hope that others might look into these expenditures in more detail, and that in the long run we might be more aware of where our tax dollars go. The simple suggestion that the last page of our tax file should give us a choice of what general areas we would like to support with our taxes would be a start. On the last list I saw of 25 ‘items of interest’ to taxpayers who might like more information, the words ‘environment’, ‘conservation’, or ‘sustainability’ never appeared. We should demand this be changed.
Smart, B. (2016). Military-industrial complexities, university research and neoliberal economy. Journal of Sociology 52, 455-481. doi: 10.1177/1440783316654258

On Conservation

The question of how ecology can guide decisions about conservation actions is a vexed one of which much has already been written with respect to conservation triage (Bottrill et al. 2009, Gerber 2016). The global question – what should we do now? – produces two extreme answers: (1) do nothing. The biodiversity on earth has gone through many climatic fluctuations imposed by geology and planetary physics and these forces are out of our hands. Or (2) we must protect all species because we do not know if they are important for ecosystem function. The government recognizes that (2) is impossible, and either reflects back to answer (1) or politely asks scientists to suggest what is possible to achieve with limited funding. John Wiens (2016) in an interesting discussion in the British Ecological Society Bulletin (December 2016, pp 38-39) suggests that two possible solutions to this conundrum are to get more funding for conservation to reduce this clear financial limitation, or secondly to move from the conservation of individual species to that of ecosystems. The problem he and many others recognize is that the public at large fall in love with individual species much more readily than with ecosystems. It is the same problem medical science often faces with contributions from wealthy people – attack individual diseases with my funding, not public health in general.

Ecologists face this dilemma with respect to their research agenda and research grants in general – what exactly can you achieve in 3-5 years with a small amount of money? If your research is species-specific, something useful can often be studied particularly if the threatening processes are partly understood and you adopt an experimental approach. If your research is ecosystem oriented and your funds are limited you must generally go to the computer and satellite ecology to make any short term research possible. This problem of larger scale = larger costs can be alleviated if you work in a group of scientists all addressing the same ecosystem issue. This still requires large scale funding which is not as easily obtained as ecologists might like. The government by contrast wishes more and more to see results even after only a few years, and asks whether you have answered your original question. The result is a patchwork of ecological data which too often makes no one happy.

If you want a concrete example, consider the woodland caribou of western Canada (Schneider et al. 2010). For these caribou Hebblewhite (2017) has clearly outlined a case in which the outcomes of any particular action are difficult to predict with the certainty that governments and business would be happy with. Many small herds are decreasing in size, and one path is to triage them, leaving many small herds to go extinct and trying to focus financial resources to save larger herds in larger blocks of habitat for future generations. The problem is the oil and gas industry in western Canada, and hence the battle between resources that are worth billions of dollars and a few caribou. Wolf control can serve as a short term solution, but it is expensive and temporary. Governments like action even if it is of no use in the long term; it makes good media coverage. None of these kinds of conservation decisions are scientific in nature, and must be policy decisions by governments. It flips us back into the continuum between options (1) and (2) in the opening paragraph above. And for governments policy decisions are more about jobs and money than about conservation.

The list of threatened and endangered species that make our newspapers are a tiny fraction of the diversity of species in any ecosystem. There is no question but that many of these charismatic species are declining in numbers, but the two larger questions are: will this particular species go extinct? And if this happens will this make any difference to ecosystem function? There is scarcely a single species of all that are listed as threatened and endangered for which ecologists have a good answer to either of these questions. So the fallback position to option (1) is that we have a moral obligation to protect all species. But this fallback position leads us even further out of science.

In the end we must ask as scientists what we can do with the understanding we have, and what more needs to be done to improve this understanding. Behind all this scientific research looms the elephant of climate change which we either ignore or build untestable computer models to make ‘predictions’ which may or may not occur, if only because of the time scales involved.

None of these problems prevents us from taking actions on conservation on the ground (Wiens 2016a). We know that, if we take away all the habitat, species abundances will decline and some will go extinct. Protecting habitat is the best course of action now because it needs little research to guide action. There is much to know yet about the scale of habitats that need preservation, and about how the present scale of climate change is affecting protected areas now. Short term research can be most useful for these issues. Long-term research needs to follow.

Bottrill, M.C., et al. (2009) Finite conservation funds mean triage is unavoidable. Trends in Ecology & Evolution, 24, 183-184. doi: 10.1016/j.tree.2008.11.007

Gerber, L.R. (2016) Conservation triage or injurious neglect in endangered species recovery. Proceedings of the National Academy of Sciences USA, 113, 3563-3566. doi: 10.1073/pnas.1525085113

Hebblewhite, M. (2017) Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biological Conservation, 206, 102-111. doi: 10.1016/j.biocon.2016.12.014

Schneider, R.R., Hauer, G., Adamowicz, W.L. & Boutin, S. (2010) Triage for conserving populations of threatened species: The case of woodland caribou in Alberta. Biological Conservation, 143, 1603-1611. doi: 10.1016/j.biocon.2010.04.002

Wiens, J.A. (2016) Is conservation a zero-sum game? British Ecological Society Bulletin 47(4): 38-39.

Wiens, J.A. (2016a) Ecological Challenges and Conservation Conundrums: Essays and Reflections for a Changing World. John Wiley and Sons, Hoboken, New Jersey. 344 pp. ISBN: 9781118895108