Tag Archives: biodiversity

Should Ecology Abandon Popper?

The first question I must ask is whether you the reader have ever heard of Karl Popper. If the answer is no, then you could profit from reading Popper (1963) before you read this. An abbreviated version of the Popperian approach to science is presented in a short paper by Platt (1963) The simplest version of Popper and Platt is that we should have a hypothesis with specific predictions and one or more alternative hypotheses with other predictions, and science advances by finding out which hypotheses could be rejected with empirical evidence. The focus of this blog is on a recent paper by Raerinne (2024) claiming that Popperian ecology is a delusion. This is a claim well worth discussing particularly since most of the sciences progress using a Popperian approach to testing hypotheses.

To begin perhaps we should recognize two kinds of papers that appear in ecological journals. A very large set of ecological papers appear to be largely or entirely descriptive natural history typically of past or present events with no hypotheses in mind. Many of these papers end with a conclusion that could be designated as a hypothesis but with little discussion of alternatives. These papers can be very valuable in giving us the state of populations, communities, or ecosystems with recommendations for changes that should be made to alleviate developing problems. A good example are papers describing forest and grassland fires of recent years which can end with some management recommendations, and perhaps with alternative recommendations. These recommendations usually arise from experience and judgements, and they may or not be valid. The Popperian approach would be to set up hypotheses and test them empirically, but if we are people of action, we press onward with a preferred management action. The non-Popperian approach would be very efficient if we were correct in our diagnosis, and in many cases this approach works well. The basis of the issue here is what is evidence in ecology and how should it be sharpened into recommendations for conservation and management.  

The Popperian approach to ecological science is to recognize problems that require a solution to increase our knowledge base, and to suggest a series of alternative set of mechanisms that could solve or alleviate the problem. Ecological papers supporting this approach can often be recognized by searching for the word “hypothesis” in the text. A simple example of this Popperian approach could be finding the causes of the continuing decline of a commercial fishery. The decline might be due to predation on the target fish or invertebrate, a disease, added pollution to the water body, climate change increasing the water temperature and thus metabolic functions, introduced species of competitors for food or space. One or more of these causal factors could be involved and the job of the ecologist is to find out which one or several are diagnostic. Given the complexity of ecological problems, it is typically not possible to test these alternative hypotheses in one grand experiment, and the typical approach will involve adaptive management or evidence-based conservation (Gillson et al. 2019, Serrouya et al., Westgate et al. 2013). Complexity however should not be used as an excuse to do poor science.

What is the alternative if we abandon Popper? We could adopt the inductive approach and gather data that we put together with our judgement to declare that we have a correct answer to our questions, “seat of the pants” ecology. But this approach is heavily dependent on the idea that “the future will be like the past”. This approach to ecological problems will be most useful for the very short term. The simplest example comes from weather forecasting in which the prognosis for today’s weather is what it was like yesterday with minor adjustments. We could observe trends with this approach but then we must have a statistical model that predicts, for example, that the trend is linear or exponential. But the history of science is that we can do much better by understanding the mechanisms underlying the changes we see. A good overview of the dilemmas of this inductive approach for conservation biology is provided by Caughley (1994). The operative question here is whether the inductive approach achieves problem resolutions more efficiently than the Popperian approach through conjecture and refutation.

Raerinne (2023, 2024) does biology in general and ecology in particular a disservice in criticizing Popper’s approach to ecology by arguing that ecology should not be criticized nor evaluated from the Popperian perspective. I think this judgement is wrong, and Raerinne’s conclusion arises from a philosophical viewpoint which could well have little applicability to how ecologists solve empirical problems in the real world. But you can judge.  

Carducci, A., Federigi, I. & Verani, M. (2020) Airborne transmission and its prevention: Waiting for evidence or applying the Precautionary Principle? Atmosphere, 11 (7), 710.doi: 10.3390/atmos11070710.

Caughley, G. (1994) Directions in conservation biology. Journal of Animal Ecology, 63, 215-244. doi: 10.2307/5542.

Gillson, L., Biggs, H. & Rogers, K. (2019) Finding common ground between adaptive management and evidence-based approaches to biodiversity conservation. Trends in Ecology & Evolution, 34, 31-44.doi: 10.1016/j.tree.2018.10.003.

Platt, J.R. (1964) Strong inference. Science, 146, 347-353.doi: 10.1126/science.146.3642.347.

Popper, K.R. (1963) Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge and Kegan Paul, London.

Raerinne, J. (2023) Myths of past biases and progress in biology. Theory in Biosciences, 142, 383-399.doi: 10.1007/s12064-023-00403-2.

Raerinne, J. (2024) Popperian ecology is a delusion. Ecology and Evolution, 14, e11106.doi: 10.1002/ece3.11106.

Serrouya, R., Seip, D.R., Hervieux, D., McLellan, B.N., McNay, R.S., Steenweg, R., Heard, D.C., Hebblewhite, M., Gillingham, M. & Boutin, S. (2019) Saving endangered species using adaptive management. Proceedings of the National Academy of Sciences, 116, 6181-6186.doi: 10.1073/pnas.1816923116 .

Westgate, M.J., Likens, G.E. & Lindenmayer, D.B. (2013) Adaptive management of biological systems: A review. Biological Conservation, 158, 128-139.doi: 10.1016/j.biocon.2012.08.016 .

Biodiversity Science

Protecting biodiversity is a goal of most people who value the environment. My question is what are the goals of biodiversity science and how do we achieve them? Some history is in order here. The term ‘biodiversity’ was coined in the 1980s as the complete biosphere including all species and ecosystems on Earth. The idea of cataloguing all the species on Earth was present many decades before this time, since the origin of the biological sciences. By the 1990s ‘biodiversity conservation’ became a popular subject and has grown greatly since then as a companion to CO2 emissions and the climate change problem. The twin broad goals of biodiversity science and biodiversity conservation are (1) to name and describe all the species on Earth, and (2), to protect all species from extinction, preventing a loss of biodiversity. How can we achieve these two goals?

The first goal of describing species faces challenges from disagreements over what a species is or is not. The old description of a species was to describe what group it was part of, and then how different this particular species was from other members of the group. In the good old days this was primarily based on reproductive incompatibility between species, if no successful reproduction, must be a new species. This simple common-sense view was subject to many attacks since some organisms that we see as different can in fact interbreed. Lions and tigers breed together and are an example, but if their interbred offspring are sterile, clearly, they are two different species. But many arguments arose because there was no data available for 99% of species to know if they could interbreed or not. The fallback position has been to describe the anatomy of a potential species and its relatives and judge from anatomy how different they were. Endless arguments followed, egged on by naturalists who pointed out that if the elephants in India were separated by a continent from elephants in Africa, clearly, they must be different species defined by geography. Many academic wars were fought over these issues.

Then in 1953 the structure of DNA was unravelled, and a new era dawned because with advances in technology of decoding genes we could describe species in a completely new way by determining how much DNA they had in common. But what is the magic percentage of common DNA? Humans and chimpanzees have 98.6% of their DNA in common, but despite this high similarity no one argues that they are the same species.

Despite this uncertainty the answer now seems much simpler: sequence the DNA of everything and you will have the true tree of life for defining separate species. While this was a dream 20 years ago, it is now a technical reality with rapid sequencing methods to help us get criminals and define species. Problem (1) solved?

Enter the lonely ecologist into this fray. Ecologists do not just want names, they wish to understand the function of each of the ‘species’ within communities and ecosystems, how does all this biodiversity interact to produce what we see in the landscape? For the moment we have approximately 10 million species on Earth, but somewhere around 80% of these ‘species’ are still undescribed. So now we have a clash of biodiversity visions, we cannot describe all the species on Earth even on the time scale of centuries, so we cannot achieve goal (1) of biodiversity science in any reasonable time. We have measured the DNA sequence of thousands of organisms that we can capture but we cannot describe them formally as species in the older sense. Perhaps it is akin to having all the phone numbers in the New York City phone book but not knowing to whom the numbers belong.

But the more immediate problem comes with objective (2) to prevent extinctions. Enter the conservation ecologist. The first problem is discussed above, we ecologists have no way of knowing how many species are in danger of extinction. We must look for rare or declining species, but we have complete inventory for few places on Earth. We must concentrate on large mammals and birds, and hope that they act as umbrella species and represent all of biodiversity. When we do have information on threatened species, for the most part there is no money to do the ecological studies needed to reverse declines in abundance. If there is money to list species and give a recovery plan on paper, then we find there is no money to implement the recovery plan. The Species-At-Risk act in Canada was passed in 2002 and has generated many recovery plans mostly for vertebrate species that have come to their attention. Almost none of these recovery plans have been completed, so in general we are all in favour of preventing extinctions but only it if costs us nothing. By and large the politics of preventing extinctions is very strongly supported, but the economic value of extinctions is nearly zero.

None of this is very cheery to conservation biologists. Two approaches have been suggested. The first is Big Science, use satellites and drones to scan the Earth every year to describe changes in landscapes and from these images infer biodiversity ‘health’. Simple and very expensive with AI to the rescue. But while we can see largescale landscape changes, the crux is to do something about them, and it is here that we fail because of the wall of climate change that we have no control over at present. Big Science may well assist us in seeing patterns of change, but it produces no path to understanding food webs or mediating changes in threatened populations. The second is small-scale biodiversity studies that focus on what species are present, how their numbers are changing, and what are the causes of change. Difficult, possible, but very expensive because you must put biologists in the field, on the ground to do the relevant measurements over a long-time frame. The techniques are there to use, thanks to much work on ecological methods in the past. What is missing again is the money. There are a few good examples of this small-scale approach but without good organization and good funding many of these attempts stop after too few years of data.

We are left with a dilemma of a particular science, Biodiversity Science, that has no way of achieving either of its two main objectives to name and to protect species on a global level. On a local level we can adopt partial methods of success by designating and protecting national parks and marine protected areas, and by studying only a few important species, the keystone species of food webs. But then we need extensive research to determine how to protect these areas and species from the inexorable march of climate change, which has singlehandedly complicated achieving biodiversity science’s two goals. Alas at the present time we may have another science to join the description of economics as a “dismal science” And we have not even started to discuss bacteria, viruses, and fungi.

Coffey, B. & Wescott, G. (2010) New directions in biodiversity policy and governance? A critique of Victoria’s Land and Biodiversity White Paper. Australasian Journal of Environmental Management 17: 204-214. doi: 10.1080/14486563.2010.9725268.

Donfrancesco, V., Allen, B.L., Appleby, R., et al. (2023) Understanding conflict among experts working on controversial species: A case study on the Australian dingo. Conservation Science and Practice 5: e12900. doi: 10.1111/csp2.12900.

Ritchie, J., Skerrett, M. & Glasgow, A. (2023) Young people’s climate leadership in Aotearoa. Journal of Peace Education, 12-2023: 1-23. doi: 10.1080/17400201.2023.2289649.

Sengupta, A., Bhan, M., Bhatia, S., Joshi, A., Kuriakose, S. & Seshadri, K.S. (2024) Realizing “30 × 30” in India: The potential, the challenges, and the way forward. Conservation Letters 2024, e13004. doi: 10.1111/conl.13004.

Wang, Q., Li, X.C. & Zhou, X.H. (2023) New shortcut for conservation: The combination management strategy of “keystone species” plus “umbrella species” based on food web structure. Biological Conservation 286: 110265.doi. 10.1016/j.biocon.2023.110265.

The Ecological Outlook

There is an extensive literature on ecological traps going back two decades (e.g. Schlaepfer et al. 2002, Kristan 2003, Battin 2004) discussing the consequences of particular species selecting a habitat for breeding that is now unsuitable. A good example is discussed in Lamb et al. (2017) for grizzly bears in southeastern British Columbia in areas of high human contact. The ecological trap hypothesis has for the most part been discussed in relation to species threatened by human developments with some examples of whole ecosystems and human disturbances (e.g. Lindenmayer and Taylor 2020). The concept of an ecological trap can be applied to the Whole Earth Ecosystem, as has been detailed in the IPCC 2022 reports and it is this global ecological trap that I wish to discuss.

The key question for ecologists concerned about global biodiversity is how much biodiversity will be left after the next century of human disturbances. The ecological outlook is grim as you can hear every day on the media. The global community of ecologists can ameliorate biodiversity loss but cannot stop it except on a very local scale. The ecological problem operates on a century time scale, just the same as the political and social change required to escape the global ecological trap. E.O. Wilson (2016) wrote passionately about our need to set aside half of the Earth for biodiversity. Alas, this was not to be. Dinerstein et al. (2019) reduced the target to 30% in the “30 by 30” initiative, subsequently endorsed by 100 countries by 2022. Although a noble political target, there is no scientific evidence that 30 by 30 will protect the world’s biodiversity. Saunders et al. (2023) determined that for North America only a small percentage of refugia (5– 14% in Mexico, 4–10% in Canada, and 2–6% in the USA) are currently protected under four possible warming scenarios ranging from +1.5⁰C to +4⁰C. And beyond +2⁰C refugia will be valuable only if they are at high latitudes and high elevations.

The problem as many people have stated is that we are marching into an ecological trap of the greatest dimension. A combination of global climate change and continually increasing human populations and impacts are the main driving factors, neither of which are under the control of the ecological community. What ecologists and conservationists can do is work on the social-political front to protect more areas and keep analysing the dynamics of declining species in local areas. We confront major political and social obstacles in conservation ecology, but we can increase our efforts to describe how organisms interact in natural ecosystems and how we can reduce undesirable declines in populations. All this requires much more monitoring of how ecosystems are changing on a local level and depends on how successful we can be as scientists to diagnose and solve the ecological components of ecosystem collapse.

As with all serious problems we advance by looking clearly into what we can do in the future based on what we have learned in the past. And we must recognize that these problems are multi-generational and will not be solved in any one person’s lifetime. So, as we continue to march into the ultimate ecological trap, we must rally to recognize the trap and use strong policies to reverse its adverse effects on biodiversity and ultimately to humans themselves. None of us can opt out of this challenge.

There is much need in this dilemma for good science, for good ecology, and for good education on what will reverse the continuing degradation of our planet Earth. Every bit counts. Every Greta Thunberg counts.

Battin, J. (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conservation Biology, 18, 1482-1491.

Dinerstein, E., Vynne, C., Sala, E., et al. (2019) A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 5, eaaw2869.doi: 10.1126/sciadv.aaw2869..

IPCC, 2022b. In: Skea, J., Shukla, P.R., et al. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge University Press. doi: www.ipcc.ch/report/ar6/wg3/.

Kristan III, W.B. (2003) The role of habitat selection behavior in population dynamics: source–sink systems and ecological traps. Oikos, 103, 457-468.

Lamb, C.T., Mowat, G., McLellan, B.N., Nielsen, S.E. & Boutin, S. (2017) Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. Journal of Animal Ecology, 86, 55-65. doi. 10.1111/1365-2656.12589.

Lindenmayer, D.B. and Taylor, C. (2020) New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proceedings of the National Academy of Sciences 117, 12481-124485. doi. 10.1073/pnas.2002269117.

Saunders, S.P., Grand, J., Bateman, B.L., Meek, M., Wilsey, C.B., Forstenhaeusler, N., Graham, E., Warren, R. & Price, J. (2023) Integrating climate-change refugia into 30 by 30 conservation planning in North America. Frontiers in Ecology and the Environment, 21, 77-84. doi. 10.1002/fee.2592.

Schlaepfer, M.A., Runge, M.C. & Sherman, P.W. (2002) Ecological and evolutionary traps. Trends in Ecology & Evolution, 17, 474-480.

Wilson, E.O. (2016) Half-Earth: Our Planet’s Fight for Life. Liveright, New York. ISBN: 978-1-63149-252-5.

On Conservation Complexities

It is too often the case that biodiversity problems are managed by single species solutions. If you have too many deer in your parks or conservation areas, start a culling program. If your salmon fishing stocks are declining, cull seals and sea lions. The overall issue confounding these kinds of ‘solutions’ are now being recognized as a failure to appreciate the food web of the community and ecosystem in which the problem is embedded. Much of conservation action is directed at heading back to the “good old days” without very much data about what the ecosystem was like in the “good old days”.

Problems with introduced species top the list of conservation dilemmas, and nowhere are these problems more clearly illustrated than by the conservation dilemmas of New Zealand and Australia. If we concentrate our management efforts on introduced predators or herbivores, we face a large set of conservation issues, well-illustrated by the current New Zealand situation (Leathwick and Byrom 2023, Parkes and Murphy 2003).

New Zealand is a particularly strong case history because we have a good knowledge of its indigenous biodiversity from the time that people colonized these islands, as well as reasonable information about how things have changed since Europeans colonized the country (Thomson 1922). It is in some respects the classic case of biodiversity impacts from introduced species. The introduced species list is large and I can talk only about part of these species introduced mostly in the late 1800s. Seven species of deer were released in New Zealand, along with chamois, hares, rabbits, cats, hedgehogs, three mustelid species, brushtail possums, rats, house mice, along with all the usual farm animals like cattle, horses, and dogs (King & Forsyth 2021). The first concerns began about 100 years ago over ungulate browsing in forests and grasslands. Deer control began about 1930, and over 3 million deer were shot between 1932 and 1954. Caughley (1983) showed that this amount of control did not reduce the impact of browsing and grazing by ungulates in native ecosystems. Control and harvesting efforts decreased in recent years partly from a lack of government funding with the result that deer numbers have rebounded. The recognition of the impact of other pests like rabbits, weasels, and rats led to a focus on poison campaigns. Brushtail possum control with poisons was started to reduce tree browsing damage by the 1970s and gradually increased to reduce TB transmission to domestic livestock by the 1990s. Large scale predator control began in the late 1990s with a focus on rats, stoats (weasels, Mustela erminea), and possums with good success in preventing declines in threatened bird species. All this history is covered in detail in Leathwick and Byrom (2023).

These efforts led to a declaration in 2016 of “Predator Free New Zealand 2050” (PF2050) a compelling promise that would alleviate biodiversity problems by making New Zealand free of possums, mustelids, and rats by 2050, and predator control has thus became the focus of recent conservation action. The 2050 part of the promise was always a worry, since governments in general promise much in advances by that year, but the optimistic view is that predator control will achieve this objective if careful planning is made, adequate funding is available (c.f. Department of Conservation 2021), and well-articulated guidelines for eradication of invasive species are followed (Bomford & O’Brien 1995). The message is that biodiversity goals can be achieved if we move from single species management to a stable system of ecosystem management in the broad sense, including strong research, good public participation and support toward these goals, and that biodiversity conservation will be greatly boosted by thorough consultation with (if not leadership by) the indigenous groups involved.

The New Zealand specific situation cannot be applied directly to all biodiversity concerns, but the New Zealand conservation story and the 12 recommendations given in Leathwick and Byrom (2023) show the necessity of goal definition and coordination between the public, government, and private foundations if we are to maximize the effectiveness of our approach to the biodiversity crisis. Not every conservation issue involves introduced species, but the principle must be: What do we want to achieve, and how are we going to get there?

Bomford, M, & O’Brien, P 1995. Eradication or control for vertebrate pests? Wildlife Society Bulletin 23, 249–255.

Caughley, G. (1983) The Deer Wars: The Story of Deer in New Zealand. Heinemann, Auckland. ISBN: 0868633895.

Department of Conservation (2020). Annual Report. Available at: https://www.doc.govt. nz/nature/pests-and-threats/predator-free-2050/goal-tactics-and-new-technology/tools-to-market/.    See also: PF2050-Limited-Annual-Report-2022.pdf

King, C.M. & Forsyth, D.M. (2021). eds. The Handbook of New Zealand Mammals. 3rd edition. CSIRO Publishing, Canberra. ISBN 978-1988592589.

Leathwick, J.R. & Byrom, A.E. (2023) The rise and rise of predator control: a panacea, or a distraction from conservation goals? New Zealand Journal of Ecology, 47, 3515. doi: 10.20417/nzjecol.47.3515.

Parkes, J. & Murphy, E. (2003) Management of introduced mammals in New Zealand. New Zealand Journal of Zoology, 30, 335-359. doi:10.1080/03014223.2003.9518346.

Thomson, G.M. (1922) The Naturalisation of Animals and Plants in New Zealand. The University Press, Cambridge, England. doi: 10.5962/bhl.title.28093.

On Ecological Imperialism

It is well known among ecologists that there are more species of almost everything in the tropical regions, and it is also well known that there is rather much more research in the ecosystems of the temperate zone. A recent note in Science 379 (6632) – 8 Feb. 2023 highlights the problems faced by ornithologists in Latin America and the Caribbean trying to carry out research on their local birds. The details are in two papers now published (Soares et al. 2023, Ruelas Inzunza et al. 2023). Both of these papers are a response to a review paper published in 2020 (Lees et al. 2020) which discussed how much was not known about birds in Latin America, but which ignored most of the contributions of Latin American scientists. The red flag arose in part because all the authors of the 2020 paper were based at universities either in the United States or in the United Kingdom. The central criticisms were that the 2020 paper perpetuated an elitist, exclusionary, “northern” approach that has overlooked the knowledge produced by Latin American experts and Indigenous people, partly because these papers were not in English.

    Their case is certainly important and should be a call-to-arms but it should be read with a few minor qualifications. It is certainly not valid to ignore local knowledge both of scientists and indigenous peoples. But this has been going on now for more than 200 years in all areas of biological science, not that history justifies these barriers. Alas Charles Darwin would fall under the knife of this criticism. The funding for ecological research is higher in most European countries as well as North America compared with tropical countries. So we are dealing with economic issues that underlie the scientific funding that is less in Latin America in addition to the global problem that too many governments prefer guns to butter. We recognize these problems, but we can do nothing immediately about them.

    The language issue is much more difficult because it is so clear. There is a long history of this conflict in scientific papers as well as in literature in general. French scientists years ago refused to publish in English, that has changed. Chinese scientists were all educated in Russian but when the tide turned they learned English and started to write scientific papers in English. The problem revolves back to the education system of North American schools that seem to operate on the assumption that to learn a foreign language is very close to being a traitor. Alas students hardly learn to speak and write English but that is another social issue. I think many northern scientists have helped Latin America scientists to assist them in English usage, so it is to me quite obscene to think that someone has a business charging people $600 for a translation. So much of the complaint in the predominance of English scientific papers arises from social issues that are difficult to overcome.

    In the end I am very sympathetic with the inequities raised in these papers and the desire to move forward on all these issues. Ironically the skeleton of the Lees et al. (2020) paper is an excellent roadmap for the analysis of any taxonomic group anywhere is the world, and these papers should be a reminder that similar reviews should be more inclusive of all published literature. Remember always that European or American knowledge is not the only or the best knowledge.

Lees, A.C., Rosenberg, K.V., Ruiz-Gutierrez, V., Marsden, S., Schulenberg, T.S. & Rodewald, A.D. (2020) A roadmap to identifying and filling shortfalls in Neotropical ornithology. Auk, 137, 1-17. doi: 10.1093/auk/ukaa048.

Ruelas Inzunza, E., Cockle, K.L., Núñez Montellano, M.G., Fontana, C.S., Cuatianquiz Lima, C., Echeverry-Galvis, M.A., Fernández-Gómez, R.A., Montaño-Centellas, F.A., Bonaccorso, E., Lambertucci, S.A., Cornelius, C., Bosque, C., Bugoni, L., Salinas-Melgoza, A., Renton, K., Freile, J.F., Angulo, F., Mugica Valdés, L., Velarde, E., Cuadros, S. & Miño, C.I. (2023) How to include and recognize the work of ornithologists based in the Neotropics: Fourteen actions for Ornithological Applications, Ornithology, and other global-scope journals. Ornithological Applications, 125, duac047. doi: 10.1093/ornithapp/duac047.

Soares, L., Cockle, K.L., Ruelas Inzunza, E., Ibarra, J.T., Miño, C.I., Zuluaga, S., Bonaccorso, E., Ríos-Orjuela, J.C., Montaño-Centellas, F.A., Freile, J.F., Echeverry-Galvis, M.A., Bonaparte, E.B., Diele-Viegas, L.M., Speziale, K., Cabrera-Cruz, S.A., Acevedo-Charry, O., Velarde, E., Cuatianquiz Lima, C., Ojeda, V.S., Fontana, C.S., Echeverri, A., Lambertucci, S.A., Macedo, R.H., Esquivel, A., Latta, S.C., Ruvalcaba-Ortega, I., Alves, M.A.S., Santiago-Alarcon, D., Bodrati, A., González-García, F., Fariña, N., Martínez-Gómez, J.E., Ortega-Álvarez, R., Núñez Montellano, M.G., Ribas, C.C., Bosque, C., Di Giacomo, A.S., Areta, J.I., Emer, C., Mugica Valdés, L., González, C., Rebollo, M.E., Mangini, G., Lara, C., Pizarro, J.C., Cueto, V.R., Bolaños-Sittler, P.R., Ornelas, J.F., Acosta, M., Cenizo, M., Marini, M.Â., Vázquez-Reyes, L.D., González-Oreja, J.A., Bugoni, L., Quiroga, M., Ferretti, V., Manica, L.T., Grande, J.M., Rodríguez-Gómez, F., Diaz, S., Büttner, N., Mentesana, L., Campos-Cerqueira, M., López, F.G., Guaraldo, A.C., MacGregor-Fors, I., Aguiar-Silva, F.H., Miyaki, C.Y., Ippi, S., Mérida, E., Kopuchian, C., Cornelius, C., Enríquez, P.L., Ocampo-Peñuela, N., Renton, K., Salazar, J.C., Sandoval, L., Correa Sandoval, J., Astudillo, P.X., Davis, A.O., Cantero, N., Ocampo, D., Marin Gomez, O.H., Borges, S.H., Cordoba-Cordoba, S., Pietrek, A.G., de Araújo, C.B., Fernández, G., de la Cueva, H., Guimarães Capurucho, J.M., Gutiérrez-Ramos, N.A., Ferreira, A., Costa, L.M., Soldatini, C., Madden, H.M., Santillán, M.A., Jiménez-Uzcátegui, G., Jordan, E.A., Freitas, G.H.S., Pulgarin-R, P.C., Almazán-Núñez, R.C., Altamirano, T., Gomez, M.R., Velazquez, M.C., Irala, R., Gandoy, F.A., Trigueros, A.C., Ferreyra, C.A., Albores-Barajas, Y.V., Tellkamp, M., Oliveira, C.D., Weiler, A., Arizmendi, M.d.C., Tossas, A.G., Zarza, R., Serra, G., Villegas-Patraca, R., Di Sallo, F.G., Valentim, C., Noriega, J.I., Alayon García, G., de la Peña, M.R., Fraga, R.M. & Martins, P.V.R. (2023) Neotropical ornithology: Reckoning with historical assumptions, removing systemic barriers, and reimagining the future. Ornithological Applications, 125, duac046. doi: 10.1093/ornithapp/duac046.

Should Empirical Ecology be all Long-term?

The majority of empirical ecology research published in our journals is short-term with the time span dictated by the need for 1–2-year Master’s degree studies and 3-4-year PhD research. This has been an excellent model when there was little of a framework for researching the critical questions ecologists ought to answer. Much of ecology in the good old days was based on equilibrium models of populations, communities, and ecosystems, an assumption we know to be irrelevant to a world with a changing climate. Perhaps we should have listened to the paleoecologists who kept reminding us that there was monumental change going on in the eras of glaciation and much earlier in the time of continental drift (Birks 2019). All of this argues that we need to change direction from short-term studies to long-term studies and long-term thinking.

There are many short-term ecological studies that are useful and should be done. It is necessary for management agencies to know if the spraying of forest insect pests this year reduces damage next year, and many similar problems exist that can be used for student projects. But the big issues of our day are long term problems, defined in the first place by longer than the research lifespan of the average ecologist, about 40 years. These big issues are insufficiently studied for two reasons. First, there is little funding for long term research. We can find a few exemptions to this statement, but they are few and many of them are flawed. Second, we as research scientists want to do something new that no one has done before. This approach leads to individual fame and sometimes fortune and is the social model behind many of the research prizes that we hear about in the media, the Nobel Prize, the MacArthur Awards, the National Medal of Science, the Kyoto Prize and many more. The point here is not that we should stop giving these awards (because they are socially useful), but that we should take a broader perspective on how research really works. Many have recognized that scientific advances are made by groups of scientists standing on the shoulders of an earlier generation. Perhaps some of the awards in medicine recognize this more frequently than other areas of science. My point is that large problems in ecology require a group effort by scientists that is too often unrecognized in favour of the individual fame model of science prizes.

A few examples may exemplify the need in ecology to support group studies of long-term problems. The simplest cases are in the media every day. The overharvesting of trees continues with little research into the long-term recovery of the harvested area and exactly how the forest community changes as it recovers. We mine areas for minerals and drill and mine tar sands for oil and gas with little long-term view of the recovery path which may stretch to hundreds or thousands of years while our current research program is long-term if it goes for 10 years. Canada has enough of these disturbance problems to fill the leger. The Giant Gold Mine in the Northwest Territories of Canada mined 220,000 kg of gold from 1948 to 2004 when it closed. It left 237 tonnes of arsenic trioxide dust, a by-product for extracting gold. The long-term ecosystem problems from this toxic compound will last for centuries but you might expect it will be much sooner forgotten than subjected to long-term study.

So where are we ecologists with respect to these large problems? We bewail biodiversity loss and when you look at the available data and the long-term studies you would expect to measure biodiversity and, if possible, manage this biodiversity loss. But you will find only piecemeal short-term studies of populations, communities, and ecosystems that are affected. We tolerate this unsatisfactory scientific situation even for ecosystems as iconic as the Great Barrier Reef of eastern Australia where we have a small number of scientists monitoring the collapse of the reef from climate change. The only justification we can give is that “Mother Nature will heal itself” or in the scientific lingo, “the organisms involved will adapt to environmental change”. All the earth’s ecosystems have been filtered through a million years of geological change, so we should not worry, and all will be well for the future, or so the story goes.

I think few ecologists would agree with such nonsense as the statements above, but what can we do about it? My main emphasis here is long-term monitoring. No matter what you do, this should be part of your research program. If possible, do not count birds on a plot for 3 years and then stop. Do not live trap mice for one season and think you are done. If you have any control over funding recommendations, think continuity of monitoring. Long-term monitoring is a necessary but not a sufficient condition for managing biodiversity change.

There are many obstacles interfering with achieving this goal. Money is clearly one. If your research council requests innovation in all research proposals, they are probably driven by Apple iPhone producers who want a new model every year. For the past 50 years we have been able to fund monitoring in our Yukon studies without ever using the forbidden word monitor because it was not considered science by the government granting agencies. In one sense it is not whether you consider science = innovation or not, but part of the discussion about long term studies might be shifted to consider the model of weather stations, and to discuss why we continue to report temperatures and CO2 levels daily when we have so much past data. No one would dream of shutting down weather monitoring now after the near fiasco around whether or not to measure CO2 in the atmosphere (Harris, 2010, Marx et al. 2017).

Another obstacle has been the destruction of research sites by human developments. Anyone with a long history of doing field research can tell you of past study areas that have been destroyed by fire or are now parking lots, or roads, or suburbia. This problem could be partly alleviated by the current proposals to maintain 30% of the landscape in protected areas. We should however avoid designating areas like the toxic waste site of the Giant Gold Mine as a “protected area” for ecological research.

Where does this all lead? Consider long-term monitoring if you can do the research as part of your overall program. Read the recent contributions of Hjeljord, and Loe (2022) and Wegge et al. (2022) as indicators of the direction in which we need to move, and if you need more inspiration about monitoring read Lindenmayer (2018).

Birks, H.J.B. (2019) Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecology & Diversity, 12, 189-385.doi: 10.1080/17550874.2019.1646831.

Harris, D.C. (2010) Charles David Keeling and the story of atmospheric CO2 measurements. Analytical Chemistry, 82, 7865-7870.doi: 10.1021/ac1001492.

Hjeljord, O. & Loe, L.E. (2022) The roles of climate and alternative prey in explaining 142 years of declining willow ptarmigan hunting yield. Wildlife Biology, 2022, e01058.doi: 10.1002/wlb3.01058.

Lindenmayer, D. (2018) Why is long-term ecological research and monitoring so hard to do? (And what can be done about it). Australian Zoologist, 39, 576-580.doi: 10.7882/az.2017.018.

Marx, W., Haunschild, R., French, B. & Bornmann, L. (2017) Slow reception and under-citedness in climate change research: A case study of Charles David Keeling, discoverer of the risk of global warming. Scientometrics, 112, 1079-1092.doi: 10.1007/s11192-017-2405-z.

Wegge, P., Moss, R. & Rolstad, J. (2022) Annual variation in breeding success in boreal forest grouse: Four decades of monitoring reveals bottom-up drivers to be more important than predation. Ecology and Evolution.12, e9327. doi: 10.1002/ece3.9327.

Alas Biodiversity

One would have to be on another planet not to have heard of the current COP 15 meeting in Montreal, the Convention on Biological Diversity. Negotiators have recently finalised an agreement on what the signatory nations will do in the next 5 years or so. I do not wish to challenge the view that these large meetings achieve much discussion and suggestions for action on conservation of biodiversity. I do wish to address, from a scientific viewpoint, issues around the “loss of biodiversity” and in particular some of the claims that are being made about this problem.

The first elephant in the room which must not be ignored is human population growth. At a best guess there are perhaps three times as many people now on earth as the earth can support. So the background for all biodiversity action is human population size and the accompanying resource demands. Too few wish to discuss this elephant.

The second elephant is the vagueness of the concept of biodiversity. If we take its simple meaning to be ‘all life on Earth’, we must face the fact that we are not even close to having a complete catalogue of life on earth. To be sure we know most of the species of birds and mammals, a lot of the fish and the reptiles, so we have made a start. But look at the insects and you will find guesses of several million species that are undescribed. And we have hardly begun to look at the bacteria, fungi, and viruses.

The consequence of this is loose speech. When we say we wish to ‘protect biodiversity’ what exactly do we wish to protect? Only the birds but not all of them, only the ones we like? Or only the large mammals like the polar bears, the African lion, and the panda? Typically, conservation of biodiversity focuses on one charismatic species and hopes for spill over to others, applying the well-known principles of population ecology to the immediate threat. But ecologists talk about ecological communities and ecosystems, so this raises another issue of how to define these entities and how protecting biodiversity can be applied to them.

Now the third elephant comes into play, climate change. To appreciate this, we need to talk to paleoecologists. If you were fortunate to live in central Alaska or the Yukon 30,000 years ago and you formed a society for the conservation of biodiversity, you would face a vegetation community that was destined to disappear or change dramatically, not to mention species like the mammoths and saber-toothed tigers that no longer exist but we love to see in museums. So there is a time scale as well as a spatial scale to biodiversity that is easily forgotten. Small national parks and reserves may not be a solution to the issue.

So whither biodiversity science? If we are serious about biodiversity change, we must lay out more specific questions as a start. Exactly what species are we measuring and for how long and with what precision? We need to concentrate on areas that are protected from human exploitation, one of the main reasons for biodiversity losses, the loss of habitat due to agriculture, mining, forestry, human housing, roads, invasive pests, the list goes on. We need groups of ecologists to concentrate on the key areas we define, on the key threats affecting each area, how we might mitigate these effects, and once these questions are decided we need to direct funding to these groups. Biodiversity funding is all over the map and often wasted on trivial problems. Biodiversity issues are at their core problems in community and ecosystem ecology, and yet we typically treat them as single species problems. We need to study communities and ecosystems. To say that we as ecologists do not know how to study community and ecosystem ecology would be a start. Studying one fish species extensively will not protect the community and ecosystem it requires for survival. If you need a concrete example, consider Pacific salmon on the west coast of North America and the ecosystems they inhabit. This is not a single species problem. In some river systems stocks are doing well, while in other rivers salmon are disappearing. Why? If we know that at least part of the answer to this question lies in ecosystem management and yet no action is undertaken, is this because it costs too much or what? Why can we spend a billion dollars going to the moon and not spend this money on serious ecological problems subject to biodiversity increases or declines? Perhaps part of the problem is that to get to the moon we do not give money to 10 different agencies that do not talk or coordinate with one another. Part of the answer is that governments do not see biodiversity loss or gain as an important problem, and it is easier to talk vaguely about it and do little in the hope that Nature will rectify the problems.

So, we continue in the Era of Biodiversity without knowing what this means and too often without having any plan to see if biodiversity is increasing or declining in any particular habitat or region, and then devising a plan to ameliorate the situation as required. This is not a 5 year or a 10-year plan, so it requires a long-term commitment of public support, scientific expertise, and government agencies to address. For the moment we get an A+ grade for talking and an F- grade for action.

Dupont-Doaré, C. & Alagador, D. (2021) Overlooked effects of temporal resolution choice on climate-proof spatial conservation plans for biodiversity. Biological Conservation, 263, 109330.doi: 10.1016/j.biocon.2021.109330.

Fitzgerald, N., Binny, R.N., Innes, J., Pech, R., James, A., Price, R., Gillies, C. & Byrom, A.E. (2021) Long-Term Biodiversity Benefits from Invasive Mammalian Pest Control in Ecological Restorations. Bulletin of the Ecological Society of America, 102, e01843.doi: 10.1002/bes2.1843.

Moussy, C., Burfield, I.J., Stephenson, P.J., Newton, A.F.E., Butchart, S.H.M., Sutherland, W.J., Gregory, R.D., McRae, L., Bubb, P., Roesler, I., Ursino, C., Wu, Y., Retief, E.F., Udin, J.S., Urazaliyev, R., Sánchez-Clavijo, L.M., Lartey, E. & Donald, P.F. (2022) A quantitative global review of species population monitoring. Conservation Biology, 36, e13721.doi. 10.1111/cobi.13721.

Price, K., Holt, R.F. & Daust, D. (2021) Conflicting portrayals of remaining old growth: the British Columbia case. Canadian Journal of Forest Research, 51, 1-11.doi: 10.1139/cjfr-2020-04530.

Shutt, J.D. & Lees, A.C. (2021) Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biological Conservation, 261, 109295.doi: 10.1016/j.biocon.2021.109295.

Five Stages of Ecological Research

Ecological research falls into five broad classes or stages. Each stage has its strengths and its limitations, and it is important to recognize these since no one stage is more or less important than any other. I suggest a classification of these five stages as follows:

  1. Natural History
  2. Behavioural Ecology
  3. Applied Ecology
  4. Conservation Ecology
  5. Ecosystem Ecology

The Natural History stage is the most popular with the public and in some sense the simplest type of ecological research while at the same time the critical foundation of all subsequent research. Both Bartholomew (1986) and Dayton (2003) made impassioned pleas for the study of natural history as a basis of understanding all the biological sciences. In some sense this stage of biological science has now come into its own in popularity, partly because of influential TV shows like those of David Attenborough but also because of the ability of talented wildlife photographers to capture amazing moments of animals in the natural world. Many scientists still look upon natural history as “stamp-collecting” unworthy of a serious ecologist, but this stage is the foundational element of all ecological research.

Behavioural ecology became popular as one of the early outcomes of natural history observations within the broad framework of asking questions about how individuals in a population behave, and what the ecological and evolutionary consequences of these behaviours are to adaptation and possible future evolution. One great advantage of studying behavioural ecology has been that it is quick, perfectly suited to asking simple questions, devising experimental tests, and then being able to write a report, or a thesis on these results (Davies et al. 2012). Behavioural ecology is one of the strongest research areas of ecological science and provides entertainment for students of natural history and excellent science to understand individual behaviour and how it fits into population studies. It is perhaps the strongest of the ecological approaches for drawing the public into an interest in biodiversity.

Applied ecology is one of the oldest fields of ecology since it arose more than 100 years ago from local problems of how organisms affected human livelihoods. It has subdivided into three important sub-fields – pest management, wildlife management, and fisheries management. Applied ecology relies heavily on the principles of population ecology, one level above the individual studies of behavioural and natural history research. These fields are concerned with population changes, whether to reduce populations to stop damage to crops, or to understand why some species populations become pests. All applied ecology heavily interreacts with human usage of the environment and the economics of farming, fisheries, and wildlife harvesting. In a general sense applied ecology is a step more difficult than behavioural ecology because answering the applied problems or management has a longer time frame than the typical three-year thesis project. Applied ecology has a broad interface with evolutionary ecology because human actions can disrupt natural selection and pest evolution can complicate every management problem.

Conservation ecology is the new kid on the block. It was part of wildlife and fisheries management until about 1985 when it was clear to all that some populations were endangered by human changes to the ecosystems of fisheries, forestry, and agriculture. The essential problems of conservation ecology were described elegantly by Caughley (1994). Conservation issues are the most visible of all issues in population and community ecology, and they are often the most difficult to resolve when science dictates one conservation solution that interferes with the dominant economic view of human society. If species of interest are rare the problem is further confounded by the difficulty of studying rare species in the field. What will become of the earth’s ecosystems in the future depends in large part as to how these conservation conflicts can be resolved.

Ecosystem ecology and community ecology are the important focus at present but are hampered by a lack of a clear vision of what needs to be done and what can be done. The problem is partly that there is much poor theory, coupled with much poor data. The critical questions in ecosystem ecology are currently too vague to be studied in a realistic time period of less than 50 years. Climate change is impacting all our current ideas about community stability and resilience, and what predictions we can make for whole ecosystems in the light of a poor database. Ironically experimental manipulations are being done by companies with an economic focus such as forestry but there are few funds to make use of these large-scale landscape changes. In the long term, ecosystem ecology is the most significant aspect of ecology for humans, but it is the weakest in terms of understanding ecosystem processes. We can all see the negative effects of human changes on landscapes, but we have little in the way of scientific guidance to predict the long-term consequences of these changes and how they can be successfully ameliorated.

All of this is distressing to practical ecologists who wish to make a difference and be able to counteract undesirable changes in populations and ecosystems. It is important for all of us not to give up on reversing negative trends in conservation and land management and we need to do all we can to influence the public in general and politicians in particular to change negative trends to positive ones in our world. An array of good books points this out very forcefully (e.g., Monbiot 2018, Klein 2021). It is the job of every ecologist to gather the data and present ecological science to the community at large so we can contribute to decision making about the future of the Earth.

Bartholomew, G. A. (1986). The role of natural history in contemporary biology. BioScience 36, 324-329. doi: 10.2307/1310237

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Davies, N.B., Krebs, J.R., and West, S.A. (2012) ‘An Introduction to Behavioural Ecology.‘ 4th edn. (Wiley-Blackwell: Oxford.). 520 pp.

Dayton, P.K. (2003). The importance of the natural sciences to conservation. American Naturalist 162, 1-13. doi: 10.1086/376572

Klein, Naomi (2021) ‘How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other ‘ (Simon and Schuster: New York.) 336 pp. ISBN: 978-1534474529

Monbiot, George. (2018) ‘Out of the Wreckage: A New Politics for an Age of Crisis.’ (Verso.). 224 pp. ISBN: 1786632896

What is the Ratio of Thought to Action in Biodiversity Conservation?

Many ecologists who peruse the conservation literature will come away with a general concern about the amount of effort that goes into thoughts about how conservation should be done and how much action is currently being carried out to achieve these goals in the field. My premise here is that currently the person-power given to thought greatly exceeds the person-power devoted to actually achieving the broad conservation goal of protecting biodiversity. Let me illustrate this with one dilemma in conservation: should we be concerned predominately with the loss of threatened and endangered species, or should we concentrate on the major dominant species in our ecosystems? Of course, this is not a black-or-white dichotomy, and the first answer is that we should do both. But the economist would suggest that resources are limited, and you cannot do both, so the question should be reworded as to what fraction of resources should go to one or the other of these two activities.

Consider the example of threatened and endangered species. Many of these species are rare numerically at present. In the past they may have been abundant but that is not always the case. The ecologist will know as a universal constant that most species in ecosystems are rare, and because they are rare, they are most difficult to study to answer the simple question why are they rare? Pick your favourite rare species and try to answer this question. For some species under persecution by humans the answer is simple; for most it is not, and ecologists fall back on explanations like the resources they require are not abundant, or their niche is specialized, meaningless statements that can be called panchrestons unless we have infinite time and funds to find out exactly what the limiting resources are, or why their niche is specialized. Now let us make a simple thought experiment that asks: what would happen if all these rare and endangered species disappeared from the world’s ecosystems? The first response would be total outrage that anyone would ask such a terrible question, so it is best not to talk about it. The second would be that we would be outraged if our favorite bird or frog disappeared like the passenger pigeon. The third might be that we should consider this question seriously.

Some community and ecosystem ecologists might wager that nothing would happen to ecosystem dynamics if all the rare and endangered species disappeared. No one of course would admit to such a point of view since it would end their career. At the moment we are in the unenviable state of doing the opposite experiment on the world’s coral reefs which are suffering in an ocean that is acidifying and heating up, pollution that is increasing, and overfishing that is common (Fraser et al. 2019, Lebrec et al. 2019, Romero-Torres et al. 2020). Coral reefs are an extreme example of human impacts on areas of high conservation and economic value such that the entire ecosystem will have to reconstruct itself with corals of greater tolerance to current and future conditions, a future with no clear guess of what positive effects will transpire.

Perhaps the message of both coral reef conservation and terrestrial ecosystem conservation is that you cannot destroy the major species without major consequences. Australia provides a good example of the consequences of altering predator abundance in an ecosystem. The dingo (Canis familaris) has been persecuted because of predation on sheep, and at the same time domestic cats (Felis catus) and red foxes (Vulpes vulpes) have been introduced to the continent. The ecological question is whether the reintroduction of the dingo to places where it has been exterminated will reduce the abundance of cats and foxes, and thus save naïve prey species from local extinction (Newsome et al. 2015). The answer to this question is far from clear (Morgan et al. 2017, Hunter and Letnic 2022) and may differ in different ecosystems within Australia.  

The bottom line is that our original question about rare species cannot be answered. There is much literature on introduced predators affecting food webs, following from Estes et al. (2011) important paper. and now there is much research effort on the roles of apex predators and consumers on ecosystem dynamics (Serrouya et al. 2021). Much of this effort concentrates on the common animals rather than the rare ones with which we began this discussion. Much more action in the field is needed on all conservation fronts since in my opinion the amount of thought we have available now will last field workers for the rest of the century.

Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., et al. (2011). Trophic downgrading of Planet Earth. Science 333, 301-306. doi: 10.1126/science.1205106.

Fraser, K.A., Adams, V.M., Pressey, R.L., and Pandolfi, J.M. (2019). Impact evaluation and conservation outcomes in marine protected areas: A case study of the Great Barrier Reef Marine Park. Biological Conservation 238, 108185. doi: 10.1016/j.biocon.2019.07.030

Hunter, D.O. and Letnic, M. (2022). Dingoes have greater suppressive effect on fox populations than poisoning campaigns. Australian Mammalogy 44. doi: 10.1071/AM21036.

Lebrec, M., Stefanski, S., Gates, R., Acar, S., Golbuu, Y., Claudel-Rusin, A., Kurihara, H., Rehdanz, K., Paugam-Baudoin, D., Tsunoda, T., and Swarzenski, P.W. (2019). Ocean acidification impacts in select Pacific Basin coral reef ecosystems. Regional Studies in Marine Science 28, 100584. doi: 10.1016/j.rsma.2019.100584.

Morgan, H.R., Hunter, J.T., Ballard, G., Reid, N.C.H., and Fleming, P.J.S. (2017). Trophic cascades and dingoes in Australia: Does the Yellowstone wolf–elk–willow model apply? Food Webs 12, 76-87. doi: 10.1016/j.fooweb.2016.09.003.

Newsome, TM., Ballard, G.-A., Crowther, M.S., Dellinger, J.A., Fleming, P.J.S., et al. (2015). Resolving the value of the dingo in ecological restoration. Restoration Ecology 23, 201-208.  doi: 10.1111/rec.12186.

Romero-Torres, M., Acosta, A., Palacio-Castro, A.M., Treml, E.A., Zapata, F.A., Paz-García, D.A., and Porter, J.W. (2020). Coral reef resilience to thermal stress in the Eastern Tropical Pacific. Global Change Biology 26, 3880-3890. doi: 10.1111/gcb.15126

Serrouya, R., Dickie, M., Lamb, C., Oort, H. van, Kelly, A.P., DeMars, C., et al. (2021). Trophic consequences of terrestrial eutrophication for a threatened ungulate. Proceedings of the Royal Society B: Biological Sciences 288, 20202811. doi: 10.1098/rspb.2020.2811.

How Do We Decide Controversial Issues in Conservation?

While almost everyone favours conservation of plants and animals around the globe, it is far from clear how this broad goal can be disarticulated into smaller issues. Once we have done this the solution of the conservation problem should be simple. But it is not (Sutherland et al, 2021). Take an example of the koala in Australia, cute mid-size marsupials that live in trees and eat leaves. If koalas are to be protected, you must protect forests, but if you protect forests the companies that survive by logging on both private and crown land will be adversely affected. We have an immediate conflict, so how do we decide what to do. One response which we can label have-your-cake-and-eat-it-too suggests that we use some of our forests for logging and protect some forests for ecological reserves. Everyone is now happy, but things unravel. As the human population grows, we need more wood, so over time we would have to log more and more of the forested areas that could support koalas. Conflict now, jobs for loggers vs. conservation of koalas. The simplest solution is to decide all this in economic terms. Logging produces much money; conservation is largely a drain on the taxpayers. To propose that conservation should win, ecologists will pull out David Attenborough to show all the beauties of the forest and to point out that the forest contains many other animals and plants and not just trees for lumber. Stalemate, and social and economic goals begin to override the ecological issue until some compromise is suggested and accepted.

While this kind of oversimplified scenario is common, the whole issue of conservation decision making is fraught with problems and who is going to decide these issues (Christie et al. 2022)? In a democracy in the good old days, you took a vote or a poll and decided to win/lose at >50% of the vote. But this cannot work for critical problems. We have a good example of this problem now with Covid vaccination requirements, and a vocal minority opposed to vaccinations. This now spills over into the issue of whether to wear a face mask or not. In all these kinds of scenarios science delivers a simple decision about the consequences of decision A vs decision B, but the problem is that society can refuse to recognize the scientific results or just prefer decision B with little visible justification. Science is not always perfect, adding further complications. And in the case of the covid virus, the virus can mutate in unexpected ways, complicating prognoses. In the case of protected conservation areas, we can suffer fires, floods, insect outbreaks and any number of events that affect the balance of decision making.

There is a large literature on decision making in conservation (e.g., Bower et al. 2018) and even good advice from the field of psychology about this problem of making decisions (Papworth 2017). The best systematic decision tree I have found is that in Sutherland et al. 2021). Sutherland et al. (2021) compiled a framework that can be used profitably in deciding on the level of evidence assessment (see Table 1 and Figure 1 below from their paper).

Table 1 and Figure 1 from Sutherland et al. (2021)

The Strategic Evidence Assessment Framework. Seven levels of evidence assessment, how to apply them.

Assessment LevelApproach UsedGeneral Database ApplicationApproximate Time to reflect on the evidence
1 No consideration of evidenceContinue with existing practice or make decisions without considering scientific evidencenone
2 Assertion but no independent consideration of evidenceConsultation with others (including experts) that affect decision but are not verified e.g. “we normally do this”, “accepted best practice is to do this”minutes
3Papers reviewed, looking at: Read the title and/or summary points to determine whether action described in the paper is likely to be effective or not. Review effectiveness category e.g. “likely to be beneficial” on action page to decide whether action is likely to be effective or notminutes
4 Read abstract to assess the evidence described in the paper in relation to the local problemTens of minutes- hours
5  Read abstract, key results and conclusion assessing each paper in relation to the decision being madeHours
6 Read the full underlying paper/s. This is likely to affect decisions on study quality, relevance and modificationsHours to days
7Comprehensive assessmentA systematic review of all available literature. Assessed papers summarised as part of new reviewMonths to a year

Figure 1. A framework for considering the appropriate level of effort in decision making. Numbers refer to assessment level (Table 1). For a given decision about an action identify the column with the relevant level of consequence, start at the lowest level (1) and decide whether it would benefit from examining higher levels of evidence. Keep moving up until either the uncertainty in the effectiveness of the action is resolved from examining the evidence (from any platform) or the arrows end. This final number is the level at which the evidence assessment should occur. (From Sutherland et al. 2021 with permission).

Clearly conservation ecologists cannot use the highest assessment level for all issues that arise and must result to triage in many cases (Hayward and Castley 2018). But triage and assessment levels 1 and 2 should be rare in making judgement on what program to adopt. We need to get the science right for all conservation problems.

But this is not enough to get thoughtful political decisions. Some native species can be pests, yet nothing is done to reduce their damage (e.g. horses in North America and Australia, camels and goats in Australia, feral pigs in North America) and the list goes on. Nothing is done because of budget limitations or political concerns about “cute species”. The science of conservation is difficult enough, the social science of conservation is too often out of our control.

Bower, S.D., Brownscombe, J.W., Birnie-Gauvin, K. Ford, M.I. et al. (2018). Making Tough Choices: Picking the appropriate conservation decision-making tool. Conservation Letters 11, e12418. doi: 10.1111/conl.12418.

Christie, A.P., Downey, H., Bretagnolle, V., Brick, C., Bulman, C.R., et al. (2022). Principles for the production of evidence-based guidance for conservation actions. Conservation Science and Practice 4, e579. doi: 10.1111/csp2.12663.

Hayward, M.W. and Castley, J.G. (2018). Triage in Conservation. Frontiers in Ecology and Evolution 5, 168. doi: 10.3389/fevo.2017.00168.

Papworth, Sarah (2017). Decision-making psychology can bolster conservation. Nature Ecology & Evolution 1, 1217-1218. doi: 10.1038/s41559-017-0281-9.

Sutherland, W.J., Downey, H., Frick, W.F., Tinsley-Marshall, P., and McPherson, T. (2021). Planning practical evidence-based decision making in conservation within time constraints: the Strategic Evidence Assessment Framework. Journal for Nature Conservation 60, 125975. doi: 10.1016/j.jnc.2021.125975.