Tag Archives: sustainability

The Ecological Outlook

There is an extensive literature on ecological traps going back two decades (e.g. Schlaepfer et al. 2002, Kristan 2003, Battin 2004) discussing the consequences of particular species selecting a habitat for breeding that is now unsuitable. A good example is discussed in Lamb et al. (2017) for grizzly bears in southeastern British Columbia in areas of high human contact. The ecological trap hypothesis has for the most part been discussed in relation to species threatened by human developments with some examples of whole ecosystems and human disturbances (e.g. Lindenmayer and Taylor 2020). The concept of an ecological trap can be applied to the Whole Earth Ecosystem, as has been detailed in the IPCC 2022 reports and it is this global ecological trap that I wish to discuss.

The key question for ecologists concerned about global biodiversity is how much biodiversity will be left after the next century of human disturbances. The ecological outlook is grim as you can hear every day on the media. The global community of ecologists can ameliorate biodiversity loss but cannot stop it except on a very local scale. The ecological problem operates on a century time scale, just the same as the political and social change required to escape the global ecological trap. E.O. Wilson (2016) wrote passionately about our need to set aside half of the Earth for biodiversity. Alas, this was not to be. Dinerstein et al. (2019) reduced the target to 30% in the “30 by 30” initiative, subsequently endorsed by 100 countries by 2022. Although a noble political target, there is no scientific evidence that 30 by 30 will protect the world’s biodiversity. Saunders et al. (2023) determined that for North America only a small percentage of refugia (5– 14% in Mexico, 4–10% in Canada, and 2–6% in the USA) are currently protected under four possible warming scenarios ranging from +1.5⁰C to +4⁰C. And beyond +2⁰C refugia will be valuable only if they are at high latitudes and high elevations.

The problem as many people have stated is that we are marching into an ecological trap of the greatest dimension. A combination of global climate change and continually increasing human populations and impacts are the main driving factors, neither of which are under the control of the ecological community. What ecologists and conservationists can do is work on the social-political front to protect more areas and keep analysing the dynamics of declining species in local areas. We confront major political and social obstacles in conservation ecology, but we can increase our efforts to describe how organisms interact in natural ecosystems and how we can reduce undesirable declines in populations. All this requires much more monitoring of how ecosystems are changing on a local level and depends on how successful we can be as scientists to diagnose and solve the ecological components of ecosystem collapse.

As with all serious problems we advance by looking clearly into what we can do in the future based on what we have learned in the past. And we must recognize that these problems are multi-generational and will not be solved in any one person’s lifetime. So, as we continue to march into the ultimate ecological trap, we must rally to recognize the trap and use strong policies to reverse its adverse effects on biodiversity and ultimately to humans themselves. None of us can opt out of this challenge.

There is much need in this dilemma for good science, for good ecology, and for good education on what will reverse the continuing degradation of our planet Earth. Every bit counts. Every Greta Thunberg counts.

Battin, J. (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conservation Biology, 18, 1482-1491.

Dinerstein, E., Vynne, C., Sala, E., et al. (2019) A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 5, eaaw2869.doi: 10.1126/sciadv.aaw2869..

IPCC, 2022b. In: Skea, J., Shukla, P.R., et al. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge University Press. doi: www.ipcc.ch/report/ar6/wg3/.

Kristan III, W.B. (2003) The role of habitat selection behavior in population dynamics: source–sink systems and ecological traps. Oikos, 103, 457-468.

Lamb, C.T., Mowat, G., McLellan, B.N., Nielsen, S.E. & Boutin, S. (2017) Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. Journal of Animal Ecology, 86, 55-65. doi. 10.1111/1365-2656.12589.

Lindenmayer, D.B. and Taylor, C. (2020) New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proceedings of the National Academy of Sciences 117, 12481-124485. doi. 10.1073/pnas.2002269117.

Saunders, S.P., Grand, J., Bateman, B.L., Meek, M., Wilsey, C.B., Forstenhaeusler, N., Graham, E., Warren, R. & Price, J. (2023) Integrating climate-change refugia into 30 by 30 conservation planning in North America. Frontiers in Ecology and the Environment, 21, 77-84. doi. 10.1002/fee.2592.

Schlaepfer, M.A., Runge, M.C. & Sherman, P.W. (2002) Ecological and evolutionary traps. Trends in Ecology & Evolution, 17, 474-480.

Wilson, E.O. (2016) Half-Earth: Our Planet’s Fight for Life. Liveright, New York. ISBN: 978-1-63149-252-5.

In Honour of David Suzuki at his Retirement

David Suzuki is retiring from his media work this year at age 86. If you wish to have a model for a lifetime of work, he should be high on your list – scientist, environmentalist, broadcaster, writer. He has been a colleague of mine at the Department of Zoology, UBC from the time when I first came there in 1970. He was a geneticist doing imaginative and innovative research with his students on the humble fruit fly Drosophila melanogaster. The Department at that time was a beehive of research and teaching, and David was a geneticist breathing fire at the undergraduates taking the genetics course. Many a doctor would probably tell you now that Suzuki’s genetics course was the most challenging in their undergraduate education.

The hierarchy in the Department of Zoology was very clear in the 1970s. First came the physiologists, top of the pack and excellent scientists who turned the spotlight on the Department nationally and internationally. Second came the geneticists, with the DNA revolution full on. At the bottom of the pile were the ecologists causing nothing but trouble about fisheries and wildlife management problems, pointing out a rising tide of environmental problems including climate change. Contrary to what you might conclude from the media, environmental problems and climate change issues were very alive even in the 1970s. But somehow these problems did not get through to governments, and David has been a key person turning this around. In 1979 he began a natural history and science program on the CBC entitled “The Nature of Things” which he then hosted for 43 years. In doing so he began to fill an empty niche in Canadian news affairs between the environmental scientists who had data on what was going on in the environment and what needed attention. Environmental scientists were severely ignored both by industry and the governments of the day who operated on two premises – first, that the most critical issues for Canada were economics and economic growth, and second that environmental issues could largely be ignored or could be solved by promises but no action. Alas we are still inundated with the news that “growth is good”, and “more growth is better”.   

I had relatively little involvement in David’s increasing interest in environmental issues by 1979, but I had written 3 ecology textbooks by then, pushing some of the environmental issues that are still with us, and I became a friend of David’s in the Department. We ecologists could only admire his ability to speak so clearly on the environmental issues of our day and connect these issues with the many travesties of how First Nations people had been sidelined. He pointed out very forcefully the astonishing failure of governments to address these issues. The public which was much less aware of environmental issues in the 1980s is now highly mobilized thanks in great part to all the work David and his colleagues have done in the last 50 years. He has many friends now but still strong enemies who continue to think of the environment as a large garbage can for economic growth. And he, still in his retirement, having achieved so much from his environmental work, bemoans the slow pace of government actions on environmental problems, as does every ecologist I know. His Foundation continues to press for action on many conservation fronts. So, thank you David for all your work and your wisdom over all these many years. You have engineered a strong environmental movement among old and young and I thank you for all that.

https://davidsuzuki.org/

What Can You Do About the Climate Emergency?

It is very easy to do little in the climate emergency because it is a long-term problem, and many of us will be gone by 2050 when Shell Oil and our government promise Net Zero emissions. Possibly the first thing you should do is find out what “net zero” really means. “Net zero emissions” refers to achieving an overall balance between greenhouse gas emissions produced by us and greenhouse gas emissions taken out of the atmosphere. So clearly it does not mean zero emissions so pollution will still be with us, and all it promises is equality between what goes in and what comes out. If you believe that net-zero will happen, you are living in la-la land, but consider it a scientific hypothesis and if you are young and live to 2050, check the numbers. It means that all the greenhouse gases that are here today will remain and all the problems on our doorstep today will continue – floods, fires, drought, sea level rise, agricultural changes, temperature increases – and if you think none of this will bother you, you can probably buy an inexpensive house in New Mexico and avoid shopping for groceries.

But do not throw your hands up since there are many small things all of us can do to minimize these problems. Here is a partial list:

  1. Drive less, fly less, walk more, get an electric car if you can. Try a bicycle.
  2. Avoid coal, gasoline, and natural gas implements. Sit in the sun, not under a propane heater on the deck.
  3. Put solar panels on your roof if you can. In addition to your windmill generating power.
  4. Put your retirement funds into renewable energy funds, not into oil companies.
  5. Educate yourself and ignore all the dangerous nonsense about climate change that is provided in advertisements, radio, TV, and social media.
  6. Protest against climate nonsense by writing letters, using social media, phoning the stations that allow nonsense to be perpetrated. Your one letter may have minimal effect, but if a million people do the same, someone might listen.
  7. Demand that politicians actually answer questions about climate change action plans. And as they say in Chicago, vote early and vote often.
  8. Nominate Greta Thunberg again for the Nobel Prize. If she does not receive it, request that the Nobel Committee be disbanded and replaced by young people.
  9. Relax and enjoy your life while keeping a lid on your carbon budget.

The climate emergency is not difficult to comprehend. Help the world survive it for your grandchildren.

Our World View and Conservation

Recent events have large implications for conservation science. Behind these events – Covid, climate change, wars – lies a fundamental dichotomy of views about humanity’s place in the world today. At the most basic level there are those who view humans as the end-all-and-be-all of importance so that the remainder of the environment and all other species are far down the list of importance when it comes to decision making. The other view is that humans are the custodians of the Earth and all its ecosystems, so that humans are an important part of our policy decisions but not the only part or even the most important part. Between these extreme views there is not a normal distribution but a strongly bimodal one. We see this very clearly with respect to the climate emergency. If you explain the greenhouse dilemma to anyone, you can see the first reaction is that this does not apply to me, so I can do whatever I want versus the reaction of others that I should do something to reduce this problem now. It is the me-here-and-now view of our lives in contrast to the concern we should have about future generations.

Our hope lies in the expectation that things are improving, strongly in young people, more slowly in older people, and negligibly in our politicians. We must achieve sustainability professed by the Greta Thunberg’s of the world, and yet recognize that the action needed is promised by our policy makers only for 2050 or 2100. There is hope that the captains of industry will move toward sustainability goals, but this will be achieved only by rising public and economic pressure. We are beset by wars that make achieving any sustainability goals more difficult. In Western countries blessed with superabundant wealth we can be easily blinded by promises of the future like electricity from nuclear fusion at little cost, or carbon-capture to remove greenhouse gases from the atmosphere. If things get impossibly bad, we are told we can all go to Mars. Or at least the selected elite can.

Conservation gets lost in this current world, and pleas to set aside 30% or 40% of the Earth for biosphere conservation are rarely even heard about on the evening news. The requests for funds for conservation projects are continually cut when there are more important goals for economic growth. Even research funding through our first-class universities and government laboratories is falling, and I would wager without the data that less than 20% of funding for basic research goes to investigating environmental problems or conservation priorities. In my province in Canada a large section of this year’s budget labelled “Addressing Climate Change” is to be spent on repairing the highways from last year’s floods and trying to restore the large areas affected by fires in the previous dry summer.  

What is the solution to this rather depressing situation? Two things must happen soon. First, we the public must hold the government to account for sustainability. Funding oil companies, building pipelines, building highways through Class A farmland, and waging wars will not bring us closer to having a sustainable earth for our grandchildren. Second, we must encourage private industries and wealthy philanthropists to invest in sustainability research. Conservation cannot ever be achieved without setting aside large, protected areas. The list of species that are in decline around the Earth is growing, yet for the vast number of these we have no clear idea why they are declining or what can be done about it. We need funding for science and action, both in short supply in the world today. And some wisdom thrown in.   

More on Old Growth Forests and Conservation

This is a short blog to alert you to a well written plea for saving old growth forests in British Columbia by Karen Price. Karen works with Dave Daust and Rachel Holt, three of our ecological heroes pushing the provincial government to recognize the value of old growth forests. This problem is world-wide but the scientific data alone will not capture the general public as much as this article might.

https://northernbeat.ca/opinion/old-growth-complexity-in-a-sound-bite/ 

These ecologists have reported their detailed analysis in a report that you can access through the Sierra Club of BC if you want more information on the struggle here in Canada (https://sierraclub.bc.ca/laststand/ ). At present there is nothing but denial from the government and from the industry that there is a problem – the forestry industry is not overharvesting or if it is, we need the jobs. As one person told me, it is not a problem “because we plant one tree seedling for every thousand-year-old tree that we log”.

So please keep up the pressure on governments around the world. Scientists have pushed a strong agenda on sustainable logging for many years with success now looking possible because ordinary citizens demand a change, understanding that forests are more than wood. We must continue the push for sustainable forestry and old growth forest protection.

Lindenmayer, D.B., Kooyman, R.M., Taylor, C., Ward, M., and Watson, J.E.M. (2020). Recent Australian wildfires made worse by logging and associated forest management. Nature Ecology & Evolution 4, 898-900. doi: 10.1038/s41559-020-1195-5.

Price, Karen, Holt, Rachel F., and Daust, Dave (2021). Conflicting portrayals of remaining old growth: the British Columbia case. Canadian Journal of Forest Research 51, 1-11. doi: 10.1139/cjfr-2020-0453.

A Poem on the State of Agriculture in 1935

After listening to me rant about the state of modern agriculture in the Anthropocene, a colleague in Australia sent me this poem by C.J. Dennis (1876 – 1938) written long before most of us were born. I reprint it here as a reminder that many of our ecological problems are not new, that we have perhaps made progress on some but that in many areas Dennis’s poem about agriculture could have been published today. A powerful poem that in a classroom discussion might lead us to second thoughts that we now live in the best of all possible worlds. Vale C.J. Dennis.

C.J. Dennis in the Herald in 1935 in Australia
THE SPOILERS

“Because overstocking and continuous grazing have denuded the land of vegetation and removed all resistance to wind and flood, it has now been suddenly realised that erosion in the Western districts of N.S.W. has reduced thousands of acres to little better than desert. A descendant of the original black inhabitants of this country might regard this as just retribution.

Ye are the Great White People, masters and lords of the earth,
Spreading your stern dominion over the world’s wide girth.
Here, where my fathers hunted since Time’s primordial morn,
To our land’s sweet, fecund places, you came with your kine and corn.
Mouthing your creed of Culture to cover a baser creed,
Your talk was of White Man’s magic, but your secret god was Greed.
And now that your generations to the second, the third have run,
White Man, what of my country?  Answer, what have you done?

Now the God of my Simple People was a simple, kindly God,
Meting his treasure wisely that sprang from this generous sod,
With never a beast too many and never a beast too few,
Thro’ the lean years and the fruitful, he held the balance true.
Then the White Lords came in their glory; and their cry was: “More!  Yet more!”
And to make them rich for a season they filched Earth’s age-old store,
And they hunted my Simple People — hunters of yester-year —
And they drove us into the desert — while they wrought fresh deserts here.

They ravaged the verdant uplands and spoiled wealth ages old,
Laid waste with their pumps and sluices for a gunny-bag of gold;
They raided the primal forests and the kind, rain-bringing trees
That poured wealth over the lowlands thro’ countless centuries;
They fed their kine on the grasslands, crowding them over the land,
Till blade and root in the lean years gave place to hungry sand.
Then, warned too late of their folly, the White Lords grew afraid,
And they cried to their great god Science; but Science could not aid.

This have you done to our country, lords of the air and the seas,
This to the hoarded riches of countless centuries —
Life-yielding loam, uncovered, unsheltered in the drought,
In the floods your hand unbridled, to the age-old sea drifts out.
You have sold man’s one true birthright for a White Man’s holiday,
And the smothering sands drift over where once green fields turn grey —
Filched by the White Man’s folly to pamper the White Lords’ vice;
And leave to your sons a desert where you found a paradise.”

Herald, 6 December 1935, page 6

http://www.middlemiss.org/lit/authors/denniscj/newspapers/herald/1935/works/spoilers.html

Whither the Big Questions in Ecology?

The science of ecology grows and grows and perhaps it is time to recognize the subcultures of the discipline which operate as nearly independent areas of science. Few people today would talk of the science of physics or the science of chemistry, but rather the subcultures of physics or chemistry in which critical problems are defined and tested. In a sense this has already been recognized in ecology by the increase in specific journals. No one goes to Conservation Biology to look up recent studies in insect pest control, and no one goes to Limnology and Oceanography to research progress in theoretical ecology. So, by default we ecologists have already subdivided the overall broad science of ecology into subcultures, and the problem then arises when we must consider major issues or big questions like the ecological impacts of climate change that encompass multiple subcultures, and the more specific issue of how we educate students of all ages about the broad problems of ecology and the environment.

The education issue ought to be the easiest part of this conundrum to deal with. The simple rule – Teach the Principles – is what textbook writers try to do. But this is easier said than done. Jim Hone et al. (2015) took on the problem of defining the principles of applied ecology and consolidated these into 22 prescriptive and 3 empirical principles that could serve as a starter for this area of general ecology. The same compilation could be done in many subdisciplines of ecology and there are many good examples of this (e.g., Lidicker, 2020, Ryo et al. 2019). A plethora of ecology textbooks exist to pull the broad subject together, and they are interesting themselves in what they emphasize.  

The larger problem is in the primary literature of ecology, and I pick here four big questions in ecology in which communication could be improved that would be useful both to educators and to the public.

  1. Sustainability of the Earth’s Ecosystems. This broad area covers human population dynamics, which can be generalized to many other species by the principles of population ecology. It would include agricultural issues and the consequences of soil erosion and degradation and cover the basics of atmospheric chemistry at least to question whether everyone going to Mars is particularly useful. Where relevant, every ecological publication should address how this research addresses the large issue of sustainability.
  2. Climate Change Effects. There is a general understanding of the geographic distribution of vegetation communities on Earth, how these have changed in geologic time and are changing now but projections for the future are vague. Much research is ongoing, but the ecological time frame of research is still too short (Hagerman and Pelai 2018). Teaching what we know now would include the essential physics and chemistry of sea level rise, changes in the distribution of good and bad species, including human diseases, and simple warnings about investing in real estate in Miami Beach. Every prediction about climate change effects should include a time frame at which the predictions could be accepted or rejected. If ecologists are to affect government policies, a testable action plan must be specified lest we keep barking up the wrong tree.
  3. Current conflicts in managing the Earth’s natural resources. The concern here is the social and economic drivers of why we continue overfishing and overharvesting resources that result in damage to local environments, and how we can manage conflicts over these resources. To manage intelligently we need to understand the interactions of the major species involved in the ecological community. Ecosystem dynamics will be the central set of concepts here, and the large topic of the resilience of our Earth’s ecosystems. Ecologists are clear that the resilience of ecosystems is limited but exactly where those limits are is far from clear at the present time.
  4. Conservation of Biodiversity. The ecological factors that limit biodiversity, and the consequences of biodiversity loss are major areas of current research and communication to the public. While the volume of concern is high in this subdiscipline, advances in understanding lag far behind. We operate now with only the vaguest of principles of how to achieve conservation results. The set of conservation principles (Prober et al. 2019) interacts strongly with the 3 big questions listed above and should cover advances in paleoecology and the methods of defining ancient environments as well as current conservation problems. Understanding how social conflict resolution can be achieved in many conservation controversies links across to the social sciences here. 

The key here is that all these big questions contain hundreds of scientific problems that need investigation, and the background of all these questions should include the principles by which ecological science advances, as well as the consequences of ignoring scientific advice. For educators, all these big questions can be analysed by examples from your favourite birds, or large mammals, or conifer trees, or fishes so that as scientific progress continues, we will have increased precision in our ecological understanding of the Earth. And more than enough material to keep David Attenborough busy.

For ecologists one recommendation of looking at ecology through the lens of big questions should be to include in your communications how your findings illuminate the road to improved understanding and further insights into how the Earth’s biodiversity supports us and how we need to support it. Ecology is not the science of the total environment, but it is an essential component of it.

Hagerman, S.M. and Pelai, R. (2018). Responding to climate change in forest management: two decades of recommendations. Frontiers in Ecology and the Environment 16, 579-587. doi: 10.1002/fee.1974.

Hone, J., Drake, A., and Krebs, C.J. (2015). Prescriptive and empirical principles of applied ecology. Environmental Reviews 23, 170-176. doi: 10.1139/er-2014-0076.

Lidicker, W.Z. (2020). A Scientist’s Warning to humanity on human population growth. Global Ecology and Conservation 24, e01232. doi: 10.1016/j.gecco.2020.e01232.

Prober, S.M., Doerr, V.A.J., Broadhurst, L.M., Williams, K.J., and Dickson, F. (2019). Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecological Monographs 89, e01333. doi: 10.1002/ecm.1333.

Ryo, M., Aguilar-Trigueros, C.A., Pinek, L., Muller, L.A.H., and Rillig, M.C. (2019). Basic Principles of Temporal Dynamics. Trends in Ecology & Evolution 34, 723-733. doi: 10.1016/j.tree.2019.03.007.

Ecology as a Contingent Science

The Northern Hemisphere is working through a summer of very warm weather, often temperatures 10ºC above ‘normal’. Climate change should in these conditions be obvious to all. Yet despite these clear changes, all the governments of developed countries – including Canada, USA, Australia, Britain – are doing next to nothing about the causes of climate change. This bald statement will lead to a lot of noise about “all we are now doing…”, a carbon tax promoted loudly but that is so low it can have little effect on emissions, and endless talk in the media about “sustainable practices” that are far from sustainable. Why should this be? There are many reasons and I want to discuss just one that pertains to the science of ecology.

Imagine that you are a physicist or chemist and are studying a physical or chemical problem in a lab in Germany and one in Canada. You would expect to get exactly the same experimental results in the two labs. The laws of chemistry and physics are universal and there would be consternation if results differed by geographical locations. Now transform this thought experiment to ecology. You might expect the converse for ecological experiments in the field, and there is much discussion of why this occurs (Brudvig et al. 2017, Marino et al. 2018, Zhou and Ning 2017). We need to think more about why this should be.

First, we might suspect that the ecological conditions are variable by place. The soils of Germany or France or New York or Vietnam differ in composition. The flora and fauna vary dramatically by site even within the same country. The impacts of human activities such as agriculture on the landscape vary by area. Climates are regional as well as local. Dispersal of seeds is not a uniform process. All these things ecologists know a great deal about, and they provide a rich source of post-hoc explanations for any differences. But the flip side is that ecology does not then produce general laws or principles except very general ones that provide guidance but not predictive models useful for management.

This thought leads me back to the general feeling that ecology is not categorized as a hard science and is thus often ignored. Ecologist have been pointing out many of the consequences of climate change for at least 30-40 years with few people in business or local political power listening. This could simply be a consequence of the public caring about the present but not about the future of the Earth. But it might be partly the result of ecology having produced no generality that the public appreciates, except for the most general ecological ‘law’ that “Mother Nature takes care of itself”, so we the public have little to be concerned about.

The paradigm of stability is deeply embedded in most people (Martin et al. 2016), and we are in the process of inventing a non-equilibrium ‘theory’ of ecology in which the outcome of ecological processes leads us into new communities and ecosystems we can only scarcely imagine and certainly not predict clearly. Physicists can predict generally what a future Earth climate with +2ºC or + 4ºC will entail (IPCC 2013, Lean 2018), but we cannot do this so readily with our ecological knowledge.

Where does this get us? Ecology is not appreciated as a science, and thus in the broad sense not funded properly. Ecologists fight over crumbs of funding even to monitor the changes that are occurring, and schemes that might alleviate some of the major effects of climate change are not tested because they are expensive and long-term. Ecology is a long-term science in a world that is increasingly short-term in thinking and in action. Perhaps this will change but no politician wants to wait 10-20 years to see if some experimental procedure works. Funding that is visionary is stopped after 4 years by politicians who know nothing about the problems of the Earth and sustainability. We should demand a politics of sustainability for our future and that of following generations. Thinking long-term should be a requirement not an option.

Brudvig, L.A., Barak, R.S., Bauer, J.T., Caughlin, T.T., and Laughlin, D.C. (2017). Interpreting variation to advance predictive restoration science. Journal of Applied Ecology 54, 1018-1027. doi: 10.1111/1365-2664.12938.

Chapman, M., LaValle, A., Furey, G., and Chan, K.M.A. (2017). Sustainability beyond city limits: can “greener” beef lighten a city’s Ecological Footprint? Sustainability Science 12, 597-610. doi: 10.1007/s11625-017-0423-7.

IPCC (2013) ‘IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, U.K.) http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf

Lean, J.L. (2018). Observation-based detection and attribution of 21st century climate change. Wiley Interdisciplinary Reviews. Climate Change 9, e511. doi: 10.1002/wcc.511.

Marino, N.A.C., Romero, G.Q., and Farjalla, V.F. 2018. Geographical and experimental contexts modulate the effect of warming on top-down control: a meta-analysis. Ecology Letters 21, 455-466. doi: 10.1111/ele.12913.

Martin, J-L., Maris, V., and Simberloff, D.S. (2016). The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences 113, 6105-6112. doi: 10.1073/pnas.1525003113.

Zhou, J. and Ning, D. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002-00017. doi: 10.1128/MMBR.00002-17.

A Need for Champions

The World has many champions for the Olympics, economists have champions for free trade, physicists have champions for the Hadron Collider, astronomists for space telescopes, but who are the champions for the environment?  We have many environmental scientists who try to focus the public’s attention on endangered species, the state of agriculture, pollution of air and water, and the sustainability of marine fisheries, but they are too much ignored. Why do we have this puzzle that the health of the world we all live in is too often ignored when governments release their budgets?

There are several answers to this simple question. First of all, the ‘jobs and growth’ paradigm rules, and exponential growth is the ordained natural order. The complaint we then get is that environmental scientists too often suggest that studies are needed, and the results of these studies produce recommendations that will impede jobs and growth. Environmental science not only does not produce more dollar bills but in fact diverts dollars from other more preferred activities that increase the GDP.

Another important reason is that environmental problems are slow-moving and long-term, and our human evolutionary history shows that we are poor at dealing with such problems. We can recognize and adapt quickly to short-term problems like floods, epidemics, and famines but we cannot see the inexorable rise in sea levels of 3 mm per year. We need therefore champions of the environment with the charisma to attract the world’s attention to slow-moving, long-term problems. We have some of these champions already – James Hansen, David Suzuki, Tim Flannery, Paul Ehrlich, Naomi Klein – and they are doing an excellent job of producing scientific discussions on our major environmental problems, information that is unfortunately still largely ignored on budget day. There is progress, but it is slow, and in particular young people are more aware of environmental issues than are those of the older generation.

What can we do to change the existing dominant paradigm into a sustainable ecological paradigm? Begon (2017) argues that ecology is both a science and a crisis discipline, and his concern is that at the present time ecological ideas about our current crises are not taken seriously by the general public and policy leaders. One way to change this, Begon argues, is to reduce our reliance on specific and often complicated evidence and convert to sound bites, slogans that capture the emotions of the public rather than their intellect. So, I suggest a challenge can be issued to ecology classes across the world to spend some time brainstorming on suitable slogans, short appealing phrases that encapsulate what ecologists understand about our current problems. Here are three suggestions: “We cannot eat coal and oil – support agriculture”, “Think long-term, become a mental eco-geologist”, and “The ocean is not a garbage can”. Such capsules are not for all occasions, and we must maintain our commitment to evidence-based-ecology of course (as Saul et al. 2017 noted). That this kind of communication to the general public is not simple is well illustrated in the paper by Casado-Aranda et al. (2017) who used an MRI to study brain waves in people exposed to ecological information. They found that people’s attitudes to ecological messages were much more positive when the information was conveyed in future-framed messages delivered by a person with a younger voice. So perhaps the bottom line is to stop older ecologists from talking so much, avoid talking about the past, and look in the future for slogans to encourage an ecological world view.

Begon, M. 2017. Winning public arguments as ecologists: Time for a New Doctrine? Trends in Ecology & Evolution 32:394-396. doi: 10.1016/j.tree.2017.03.009

Casado-Aranda, L.-A., M. Martínez-Fiestas, and J. Sánchez-Fernández. 2018. Neural effects of environmental advertising: An fMRI analysis of voice age and temporal framing. Journal of Environmental Management 206:664-675. doi: 10.1016/j.jenvman.2017.10.006

Saul, W.-C., R.T. Shackleton, and F.A. Yannelli. 2017. Ecologists winning arguments: Ends don’t justify the means. A response to Begon. Trends in Ecology & Evolution 32:722-723. doi: 10.1016/j.tree.2017.08.005

 

Three Approaches to Ecology

I ask the question here why ecology is not appreciated as a science at a time when it is critical to the survival of the existing world. So the first question we need to answer is if this premise is correct. I offer only one example. A university zoology department has recently produced a discussion paper on its plans for faculty recruitment over the next 15 years. This document does not include the word “ecology” in any of its forward planning. Now it is probably not unusual for biology or zoology departments in major universities to downplay ecology when there is so much excitement in molecular biology, but it is an indicator that ecology is not a good place to put your money and reputation as you await a Nobel Prize. So if we can accept the initial premise that ecology is not appreciated, we might ask why this situation exists, a point raised long ago by O’Connor (2000). Here are a few thoughts on the matter.

There are three broad approaches to the science of ecology – theoretical ecology, empirical ecology, and applied ecology. These three areas of ecology rarely talk to each other, although one might hope that they could in future evolve into a seamless thread of science.

Theoretical ecology deals with the mathematical world that has too often only a tangential concern with ecological problems. It has its own journals and a whole set of elegant discussions that have few connections to the real world. It is most useful for exploring what might be if we make certain mathematical assumptions. It is without question the most prestigious part of the broad science of ecology, partly because it involves elegant mathematics and partly because it does not get involved in all the complexities of real-world ecological systems. It is the physics of ecology. As such it carries on in its own world and tends to be ignored by most of those working in the other two broad areas of ecology.

Empirical ecology has set itself the task of understanding how the natural world works at the level of individuals, populations, communities and ecosystems. In its pure form it does not care about solving practical ecological or environmental problems, but its practitioners assume probably correctly that the information they provide will in fact be useful now or in the future. It seeks generality but rarely finds it because all individuals and species differ in how they play the ecological game of survival. If it has a mantra, it is “the devil is in the details”. The problem is the details of empirical ecology are boring to politicians, business people, and to much of the television generation now operating with a 7 second or 140 character limit on concentration.

Applied ecology is where the action is now, and if you wish to be relevant and topical you should be an applied ecologist, whether a conservation biologist, a forester, or an agricultural scientist. The mantra of applied ecologists is to do no harm to the environment while solving real world problems. Applied ecologists are forced to put the human imprint into empirical ecology, so they are very much concerned with declining populations and extinctions of plants and animals. The main but not the sole impact of humans is on climate change, so much of applied ecology traces back to the impacts of climate change on ecosystems, all added to by the increasing human population with its rising expectations. But applied ecologists are always behind the environmental problems of the day because the issues multiply faster than possible solutions can be evaluated. This ought to make for high employment for applied ecologists but in fact the opposite seems to be happening because governments too often avoid long-term problems beyond their 4-year mandate. If you do not agree, think climate change.

So, the consequence is that we have three independent worlds out there. Applied ecologists are too busy to apply the successful paradigms of empirical ecology to their problems because they are under strict time limits by their line managers who need to suggest immediate action on problems. They must therefore fire off solutions like golf balls in all directions, hoping that some might actually help solve problems. Empirical ecologists may not be helpful for applied ecologists if they are overwhelmed by the details of their particular system of study and are constrained by the ‘publish or perish’ mentality of the granting agencies.

Finally, we lay on top all this a lack of funding in the environmental sciences for investigating and solving both immediate and long-term ecological problems. And I am back to my favourite quote in the ecological literature:

“Humans, including ecologists, have a peculiar fascination with attempting to correct one ecological mistake with another, rather than removing the source of the problem.” (Schindler 1997).

What can we do about this? Three things. Pressure our politicians to increase funding on long-term environmental problems. This will provide the person-power to find and test solutions to our known problems. Vote with your ballot and your feet to improve sustainability. And whether you are young or old strive to do no harm to the Earth. And if all this is too difficult, take some practical advice not to buy a house in Miami Beach, or any house near the beach. Do something for the environment every day.

 

O’Connor, R.J. (2000) Why ecology lags behind biology. The Scientist 14(20):35. (October 16, 2000).

Schindler, D.W. (1997) Liming to restore acidified lakes and streams: a typical approach to restoring damaged ecosystems? Restoration Ecology 5:1-6