Tag Archives: sustainability

On Politics and the Environment

This is a short story of a very local event that illustrates far too well the improvements we have to seek in our political systems. The British Columbia government has just approved the continuation of construction of the Site C dam on the Peace River in Northern British Columbia. The project was started in 2015 by the previous Liberal (conservative) government with an $8 billion price tag and with no (yes NO) formal studies of the economic, geological or environmental consequences of the dam, and in complete opposition by most of the First Nations people on whose traditional land the dam would be built. Fast forward 2 years, a moderate left-wing government takes over from the conservatives and the decision is now in their hands: do they carry on with the project, $2 billion having been spent already, or stop it with an additional $1-2 billion in costs to undo the damage to the valley from work already carried out? 2000 temporary construction jobs in the balance, the government in general pro-union and pro the working person rather than the 1%. They decided to proceed with the dam.

To the government’s credit it asked the Utilities Commission to prepare an economic analysis of the project in a very short time, but to make it simpler (?) did not allow the Commission to consider in its report environmental damage, climate change implications, greenhouse gas emissions, First Nations rights, or the loss of good agricultural land. Alas, that pretty well leaves out most things an ecologist would worry about. The economic analysis was sitting on the fence mostly because the question of the final cost of Site C is an unknown. It was estimated to be $8 billion, but already a few days after the government’s decision it is $10.5 billion, all to be paid by the taxpayer. If it is a typical large dam, the final overall cost will range between $16 to $20 billion when the dam is operational in 2024. The best news article I have seen on the Site C decision is this one by Andrew Nikiforuk:

https://thetyee.ca/Opinion/2017/12/12/Pathology-Site-C/

Ansar et al. (2014) did a statistical analysis of 245 large dams built since 1934 and found that on average actual costs for large dams were about twice estimated costs, and that there was a tendency for larger dams to have even higher than average final costs. There has been little study for Site C of the effects of the proposed dam on fish in the river (Cooper et al. 2017) and no discussion of potential greenhouse gas emissions (methane) released as a result of a dam at Site C (DelSontro et al. 2016). The most disturbing comment on this decision to proceed with Site C was made by the Premier of B.C. who stated that if they had stopped construction of the dam, they would have to spend a lot of money “for nothing” meaning that restoring the site, partially restoring the forested parts of the valley, repairing the disturbance of the agricultural land in the valley, recognizing the rights of First Nations people to their land, and leaving the biodiversity of these sites to repair itself would all be classed as “nothing” of value. Alas our government’s values are completely out of line with the needs of a sustainable earth ecosystem for all to enjoy.

What we are lacking, and governments of both stripes have no time for, is an analysis of what the alternatives are in terms of renewable energy generation. Alternative hypotheses should be useful in politics as they are in science. And they might even save money.

Ansar A, Flyvbjerg B, Budzier A, Lunn D (2014). Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43-56. doi: 10.1016/j.enpol.2013.10.069

Cooper AR, et al. (2017). Assessment of dam effects on streams and fish assemblages of the conterminous USA. Science of The Total Environment 586, 879-89. doi: 10.1016/j.scitotenv.2017.02.067

DelSontro T, Perez KK, Sollberger S, Wehrli B (2016). Methane dynamics downstream of a temperate run-of-the-river reservoir. Limnology and Oceanography 61, S188-S203. doi: 10.1002/lno.10387

 

On Mauna Loa and Long-Term Studies

If there is one important element missing in many of our current ecological paradigms it is long-term studies. This observation boils down to the lack of proper controls for our observations. If we do not know the background of our data sets, we lack critical perspective on how to interpret short-term studies. We should have learned this from paleoecologists whose many studies of plant pollen profiles and other time series from the geological record show that models of stability which occupy most of the superstructure of ecological theory are not very useful for understanding what is happening in the real world today.

All of this got me wondering what it might have been like for Charles Keeling when he began to measure CO2 levels on Mauna Loa in Hawaii in 1958. Let us do a thought experiment and suggest that he was at that time a typical postgraduate students told by his professors to get his research done in 4 or at most 5 years and write his thesis. These would be the basic data he got if he was restricted to this framework:

Keeling would have had an interesting seasonal pattern of change that could be discussed and lead to the recommendation of having more CO2 monitoring stations around the world. And he might have thought that CO2 levels were increasing slightly but this trend would not be statistically significant, especially if he has been cut off after 4 years of work. In fact the US government closed the Mauna Loa observatory in 1964 to save money, but fortunately Keeling’s program was rescued after a few months of closure (Harris 2010).

Charles Keeling could in fact be a “patron saint” for aspiring ecology graduate students. In 1957 as a postdoc he worked on developing the best way to measure CO2 in the air by the use of an infrared gas analyzer, and in 1958 he had one of these instruments installed at the top of Mauna Loa in Hawaii (3394 m, 11,135 ft) to measure pristine air. By that time he had 3 published papers (Marx et al. 2017). By 1970 at age 42 his publication list had increased to a total of 22 papers and an accumulated total of about 50 citations to his research papers. It was not until 1995 that his citation rate began to exceed 100 citations per year, and after 1995 at age 67 his citation rate increased very much. So, if we can do a thought experiment, in the modern era he could never even apply for a postdoctoral fellowship, much less a permanent job. Marx et al. (2017) have an interesting discussion of why Keeling was undercited and unappreciated for so long on what is now considered one of the world’s most critical environmental issues.

What is the message for mere mortals? For postgraduate students, do not judge the importance of your research by its citation rate. Worry about your measurement methods. Do not conclude too much from short-term studies. For professors, let your bright students loose with guidance but without being a dictator. For granting committees and appointment committees, do not be fooled into thinking that citation rates are a sure metric of excellence. For theoretical ecologists, be concerned about the precision and accuracy of the data you build models about. And for everyone, be aware that good science was carried out before the year 2000.

And CO2 levels yesterday were 407 ppm while Nero is still fiddling.

Harris, D.C. (2010) Charles David Keeling and the story of atmospheric CO2 measurements. Analytical Chemistry, 82, 7865-7870. doi: 10.1021/ac1001492

Marx, W., Haunschild, R., French, B. & Bornmann, L. (2017) Slow reception and under-citedness in climate change research: A case study of Charles David Keeling, discoverer of the risk of global warming. Scientometrics, 112, 1079-1092. doi: 10.1007/s11192-017-2405-z

On Immigration – An Ecological Perspective

There is a great deal of discussion in the news about immigration into developed countries like Canada, USA, and Europe. The perspective on this important issue in the media is virtually entirely economic and social, occasionally moral, but in my experience almost never ecological. There are two main aspects of immigration that are particularly ecological – defining sustainable populations and protecting ecosystems from biodiversity loss. These ecological concerns ought to be part of the discussion.

Sustainability is one of the sciences current buzz words. As I write this, in the Web of Science Core Collection I can find 9218 scientific papers published already in 2017 that appear under the topic of ‘sustainability’. No one could read all these, and the general problem with buzz words like ‘sustainability’ is that they tend to be used so loosely that they verge on the meaningless. Sustainability is critical in this century, but as scientists we must specify the details of how this or that public policy really does increase some metric of sustainability.

There have been several attempts to define what a sustainable human population might be for any country or the whole Earth (e.g. Ehrlich 1996, Rees and Wackernagel 2013) and many papers on specific aspects of sustainability (e.g. Hilborn et al. 2015, Delonge et al. 2016). The controversy arises in specifying the metric of sustainability. The result is that there is no agreement particularly among economists and politicians about what to target. For the most part we can all agree that exponential population growth cannot continue indefinitely. But when do we quit? In developed countries the birth rate is about at equilibrium, and population growth is achieved in large part by immigration. Long term goals of achieving a defined sustainable population will always be trumped in the short term by changes in the goal posts – long term thinking seems almost impossible in our current political systems. One elephant in the room is that what we might define now as sustainable agriculture or sustainable fisheries will likely not be sustainable as climates change. Optimists predict that technological advances will greatly relieve the current limiting factors so all will be well as populations increase. It would seem to be conservative to slow our population growth, and thus wait to see if this optimism is justified (Ehrlich and Ehrlich 2013).

Few developed countries seem to have set a sustainable population limit. It is nearly impossible to even suggest doing this, so this ecological topic disappears in the media. One possible way around this is to divert the discussion to protecting ecosystems from biodiversity loss. This approach to the overall problem might be an easier topic to sell to the public and to politicians because it avoids the direct message about population growth. But too often we run into a brick wall of economics even when we try this approach to sustainability because we need jobs for a growing population and the holy grail of continued economic growth is a firm government policy almost everywhere (Cafaro 2014, Martin et al. 2016). At present this biodiversity approach seems to be the best chance of convincing the general public and politicians that action is needed on conservation issues in the broad sense. And by doing this we can hopefully obtain action on the population issue that is blocked so often by political and religious groups.

A more purely scientific issue is the question why the concept of a sustainable population is thought to be off limits for a symposium at a scientific meeting? In recent years attempts to organize symposia on sustainable population concepts at scientific conferences have been denied by the organizers because the topic is not considered a scientific issue. Many ecologists would deny this because without a sustainable population, however that is defined, we may well face social collapse (Ehrlich and Ehrlich 2013).

What can we do as ecologists? I think shying away from these population issues is impossible because we need to have a good grounding in population arithmetic to understand the consequences of short-term policies. It is not the ecologist’s job to determine public policy but it is our job to question much of the pseudo-scientific nonsense that gets repeated in the media every day. At least we should get the arithmetic right.

Cafaro, P. (2014) How Many Is Too Many? The Progressive Argument for Reducing Immigration into the United States. University of Chicago Press, Chicago. ISBN: 9780226190655

DeLonge, M.S., Miles, A. & Carlisle, L. (2016) Investing in the transition to sustainable agriculture. Environmental Science & Policy, 55, 266-273. doi: 10.1016/j.envsci.2015.09.013

Ehrlich, A.H. (1996) Towards a sustainable global population. Building Sustainable Societies (ed. D.C. Pirages), pp. 151-165. M. E. Sharpe, London. ISBN: 1-56324-738-0, 978-1-56324-738-5

Ehrlich, P.R. & Ehrlich, A.H. (2013) Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences, 280, 20122845. doi: 10.1098/rspb.2012.2845

Hilborn, R., Fulton, E.A., Green, B.S., Hartmann, K. & Tracey, S.R. (2015) When is a fishery sustainable? Canadian Journal of Fisheries and Aquatic Sciences, 72, 1433-1441. doi: 10.1139/cjfas-2015-0062

Hurlbert, S.H. (2013) Critical need for modification of U.S. population policy. Conservation Biology, 27, 887-889. doi: 10.1111/cobi.12091

Martin, J.-L., Maris, V. & Simberloff, D.S. (2016) The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences, 113, 6105-6112. doi: 10.1073/pnas.1525003113

Rees W.E. &, Wackernagel, M. (2013). The shoe fits, but the footprint is larger than Earth. PLOS Biology 11, e1001701. doi: 10.1371/journal.pbio.1001701

Fire and Fury and the Environment

The media at present is full of comments about having a war that will stimulate the economy, at least in reconstruction. And this concern over war and the costs of war prompted me to investigate the relative costs of military funding and environmental funding. So here is a very coarse look at the relative positions of military funding and environmental funding in a few western countries. All the numbers are approximate and refer to 2016 and possibly 2017 budgets, and all are in billions of dollars.

Military expenditures by countries are easiest to obtain, and here are a few for the most recent years I could find:

United States:         $ 611 billion
China:                       $ 216
Russia:                      $ 69
Saudi Arabia:           $ 64
Australia:                  $ 24
Canada:                    $ 15.5

Environmental funding is much more difficult to decompose because different countries amalgamate different agencies into one Department. Consequently, comparisons are best made within one country rather than between countries. Here are a few details for particular agencies:

USA            Department of the Interior     $ 13.4            1 military year = 46 Dept. years
NOAA                                                             $ 5.77             1 military year = 106 NOAA years

Canada      Environment Canada              $ 0.987            1 military year = 16 EC years

Australia     CSIRO                                       $ 0.803            1 military year = 30 CSIRO years

Clearly there are many problems with these simple comparisons. NOAA for example includes agencies covering Marine Fisheries, Weather Service, Environmental Satellites, Aviation Operations, and Oceanic Research among other responsibilities. CSIRO includes divisions dealing with agriculture, climate change, and mining research. I am sure that someone has done a more detailed analysis of these comparisons, but the general message is very clear: the environment is a low priority among western nations, and if you want a rough number one might say the military is about 30 times more “important” than the environment when it comes to funding. If you look for example at the Australian budget for 2017 (http://budget.gov.au/2017-18/content/glossies/overview/download/Budget2017-18-Overview.pdf ) and search for the word ‘environment’ as in the real biophysical environment, you will find not a single case of this word appearing. It is as though the biophysical environment does not exist as a problem in 2017.

I am not clear if anyone worries about these simple facts. The general problem is that federal government budgets are made so complex and presented so poorly that it is nearly impossible to separate out different equivalent expenditures. Thus for example the military argues that it does scientific research with part of its funding, and universities fail to point out that some of their basic research focuses on military questions rather than questions that might benefit humanity (Smart 2016).

I hope that others might look into these expenditures in more detail, and that in the long run we might be more aware of where our tax dollars go. The simple suggestion that the last page of our tax file should give us a choice of what general areas we would like to support with our taxes would be a start. On the last list I saw of 25 ‘items of interest’ to taxpayers who might like more information, the words ‘environment’, ‘conservation’, or ‘sustainability’ never appeared. We should demand this be changed.
Smart, B. (2016). Military-industrial complexities, university research and neoliberal economy. Journal of Sociology 52, 455-481. doi: 10.1177/1440783316654258

On Ecology and Economics

Economics has always been a mystery to me, so if you are an economist you may not like this blog. Many ecologists and some economists have written elegantly about the need for a new economics that includes the biosphere and indeed the whole world rather than just Wall Street and brings together ecology and the social sciences (e.g. Daily et al. 1991, Haly and Farley 2011, Brown et al. 2014, Martin et al. 2016). Several scientists have proposed measures that indicate how our current usage of natural resources is unsustainable (Wackernagel and Rees 1996, Rees and Wackernagel 2013). But few influential people and politicians appear to be listening, or if they are listening they are proceeding at a glacial pace at the same time as the problems that have been pointed out are racing at breakneck speed. The operating paradigm seems to be ‘let the next generation figure it out’ or more cynically ‘we are too busy buying more guns to worry about the environment’.

Let me discuss Canada as a model system from the point of view of an ecologist who thinks sustainability is something for the here and now. Start with a general law. No country can base its economy on non-renewable resources. Canada subsists by mining coal, oil, natural gas, and metals that are non-renewable. It also makes ends meet by logging and agricultural production. And we have done well for the last 200 years doing just that. Continue on, and to hell with the grandkids seems to be the prevailing view of the moment. Of course this is ecological nonsense, and, as many have pointed out, not the path to a sustainable society. Even Canada’s sustainable industries are unsustainable. Forestry in Canada is a mining operation in many places with the continuing need to log old growth forest to be a viable industry. Agriculture is not sustainable if soil fertility is continually falling so that there is an ever-increasing need for more fertilizer, and if more agricultural land is being destroyed by erosion and shopping malls. All these industries persist because of a variety of skillful proponents who dismiss long-term problems of sustainability. The oil sands of Alberta are a textbook case of a non-renewable resource industry that makes a lot of money while destroying both the Earth itself and the climate. Again, this makes sense short-term, but not for the grandkids.

So, we see a variety of decisions that are great in the short term but a disaster in the long term. Politicians will not move now unless the people lead them and there is little courage shown and only slight discussion of the long-term issues. The net result is that it is most difficult now to be an ecologist and be optimistic of the future even for relatively rich countries. Global problems deserve global solutions yet we must start with local actions and hope that they become global. We push ahead but in every case we run into the roadblocks of exponential growth. We need jobs, we need food and water and a clean atmosphere, but how do we get from A to B when the captains of industry and the public at large have a focus on short-term results? As scientists we must push on toward a sustainable future and continue to remind those who will listen that the present lack of action is not a wise choice for our grandchildren.

Brown, J.H. et al. 2014. Macroecology meets macroeconomics: Resource scarcity and global sustainability. Ecological Engineering 65(1): 24-32. doi: 10.1016/j.ecoleng.2013.07.071.

Daily, G.C., Ehrlich, P.R., Mooney, H.A., and Erhlich, A.H. 1991. Greenhouse economics: learn before you leap. Ecological Economics 4: 1-10.

Daly, H.E., and Farley, J. 2011. Ecological Economics: Principles and Applications. 2nd ed. Island Press, Washington, D.C.

Martin, J.-L., Maris, V., and Simberloff, D.S. 2016. The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences 113(22): 6105-6112. doi: 10.1073/pnas.1525003113.

Rees, W. E., and M. Wackernagel. 2013. The shoe fits, but the footprint is larger than Earth. PLoS Biology 11:e1001701. doi: 10.1371/journal.pbio.1001701

Wackernagel, M., and W. E. Rees. 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, Gabriola Island, B.C. 160 p.

On Wildlife Management

There are two global views about wildlife management that are echoed in conservation biology. The first view is that we manage wildlife for the sake of wildlife so that future generations have the ability to see what we see when we go out into the woods and fields. The second view is that we manage wildlife and indeed all of nature for humans to exploit. The second view was elegantly summarized many years ago by White (1967):

Our science and technology have grown out of Christian attitudes toward man’s relation to nature which are almost universally held not only by Christians and neo-Christians but also by those who fondly regard themselves as post-Christians. Despite Copernicus, all the cosmos rotates around our little globe. Despite Darwin, we are not, in our hearts, part of the natural process. We are superior to nature, contemptuous of it, willing to use it for our slightest whim. The newly elected Governor of California, like myself a churchman but less troubled than I, spoke for the Christian tradition when he said (as is alleged), “when you’ve seen one redwood tree, you’ve seen them all.” (p.1206)

The first view of wildlife is now for ecologists the dominant conservation ethic of our time, the recognition that wildlife and nature in general has intrinsic value (Vucetich et al. 2015). Yet when there are conflicts in environmental management, the second view that humans trump all comes to the fore. Think of examples in your region. When caribou and moose are declining, the shout goes up to shoot the wolves. The golden example of this is perhaps Norway where wolves are nearly all gone and moose are superabundant and fed in winter so that there are plenty for hunters to shoot in the following year. Where domestic and feral cats threaten bird populations, the view typically expressed is that cats are our pets and quite cute, and certainly cannot be regulated or controlled as feral pests.

One of the main defenses of biodiversity conservation during the last 20 years has been the role of ecosystem services. The utilitarian view that ecosystems do things for humans that you can then calculate in dollars has been used to carry conservation forward for those who subscribe to the second global view of nature as something that exists only for our exploitation. Two recent reviews are critical of this approach. Silvertown (2015) argues that the ecosystem services paradigm has been oversold and suggests alternatives. An important critical overview of the conundrum of biodiversity research is presented very clearly in Vellend (2017) and is essential reading for all those interested in environmental management issues and the collision of science and human values expressed in our two global views of biodiversity conservation.

Wildlife managers must operate with the first view in mind to manage wildlife for wildlife but at the same time must act in ways determined by their political masters to adopt the second view of human values over wildlife. Ecologists walk a thin line in this dilemma. A good example is the book by Woinarski et al. (2007) which details the disastrous state of environmental management in northern Australia. There are courageous attempts to resolve these management problems and to bridge the two global views by bringing ecological knowledge into policy development and environmental management (e.g. Morton et al. 2009, Lindenmayer et al. 2015). Many others beginning with Aldo Leopold in North America and many others in Europe have made elegant pleas for the first global view of wildlife conservation. The attempts now to bridge this gap between exploitation and preservation are to bring social sciences into environmental research programs, and these efforts can be increasingly effective. But there is a large contingent of the public that support the second view that humans are the most important species on earth. The increasing collision of rising human populations, resource shortages, and climate change produce a perfect storm of events that place wildlife management and environmental sustainability in a difficult position. Everyone who is able must speak up for the first global view in order to achieve a sustainable society on earth and for wildlife and biodiversity in general to be protected for future generations.

Lindenmayer, D.B.,et al. 2015. Contemplating the future: Acting now on long-term monitoring to answer 2050’s questions. Austral Ecology 40(3): 213-224. doi: 10.1111/aec.12207.

Morton, S.R., et al. 2009. The big ecological questions inhibiting effective environmental management in Australia. Austral Ecology 34(1): 1-9. doi: 10.1111/j.1442-9993.2008.01938.x.

Silvertown, J. 2015. Have Ecosystem Services been oversold? Trends in Ecology & Evolution 30(11): 641-648. doi: 10.1016/j.tree.2015.08.007.

Vellend, M. 2017. The biodiversity conservation paradox. American Scientist 105(2): 94-101.

Vucetich, J.A., Bruskotter, J.T., and Nelson, M.P. 2015. Evaluating whether nature’s intrinsic value is an axiom of or anathema to conservation. Conservation Biology 29(2): 321-332. doi: 10.1111/cobi.12464.

White, L., Jr. 1967. The historical roots of our ecologic crisis. Science 155(3767): 1203-1207.

Woinarski, J., Mackey, B., Nix, H., and Traill, B. 2007. The Nature of Northern Australia: Natural values, ecological processes and future prospects. Australian National University E Press, Canberra. (available at: http://press.anu.edu.au/publications/nature-northern-australia)

Ecological Alternative Facts

It has become necessary to revise my recent ecological thinking about the principles of ecology along the lines now required in the New World Order. I list here the thirteen cardinal principles of the new ecology 2017:

  1. Population growth is unlimited and is no longer subject to regulation.
  2. Communities undergo succession to the final equilibrium state of the 1%.
  3. Communities and ecosystems are resilient to any and all disturbances and operate best when challenged most strongly, for example with oil spills.
  4. Resources are never limiting under any conditions for the 1% and heavy exploitation helps them to trickle down readily to assist the other 99%.
  5. Overexploiting populations is good for the global ecosystem because it gets rid of the species that are wimps.
  6. Mixing of faunas and floras have been shown over the last 300 years to contribute to the increasing ecological health of Earth.
  7. Recycling is unnecessary in view of recent advances in mining technology.
  8. Carbon dioxide is a valuable resource for plants and we must increase its contribution to atmospheric chemistry.
  9. Climate change is common and advantageous since it occurs from night to day, and has always been with us for many millions of years.
  10. Evolution maximizes wisdom and foresight, especially in mammals.
  11. Conservation of less fit species is an affront to alternative natural laws that were recognized during the 18th century and are now mathematically defined in the new synthetic theory of economic and ecological fitness.
  12. Scientific experiments are no longer necessary because we have computers and technological superiority.
  13. Truth in science is no longer necessary and must be balanced against equally valid post-truth beliefs.

The old ecology, now superseded, was illustrated in Krebs (2016), and is already out of date. Recommendations for other alternative ecological facts will be welcome. Please use the comments.

Krebs, C.J. (2016) Why Ecology Matters. University of Chicago Press, Chicago. 208 pp.

What Can Ecologists Do?

For about 40 years many ecologists as well as other scientists have reported on the consequences of climate change. In recent years there has been more and more public awareness of the problems associated with changing climate. But there it all seems to stop. Jobs and dollars trump everything in the western world. I sit today listening to the Federal Government in Canada approving a very large export agreement for liquefied natural gas (LNG) on the central west coast of British Columbia. The gas will be largely obtained by fracking and in spite of the fact that the shipping point is near the mouth of one of the largest salmon rivers on the west coast, and requires a long pipeline to deliver the gas with all its problems, the report of the government states that this development will have no harmful effects on the environment. The perception that burning natural gas is somehow good for the environment boggles my mind. You have heard all of this kind of discussion many times before I am sure.

Yet as far as we can tell these are not evil people who are approving these developments but their decisions are so far away from scientific reality that one can only wonder what drives this current economic system. There are several competing hypotheses. (1) Climate change is not a problem and is not caused by human actions releasing greenhouse gases. This is not believable if scientific evidence is given any credibility. So we need a better excuse for our current myopia. (2) The problems of climate change are so uncertain and far into the distant future so that it is not our job to be concerned about action now. (3) We should take action now but if we do it will disrupt the global economy too much to contemplate. Taxes will have to increase. (4) Much money can be made by these enterprises and this will allow western countries to develop technologies that will remove carbon from the atmosphere, so all will be well in the future. (5) A price can be set on carbon so that business as usual under a carbon price will take care of the problem. The market will take care of us.

Take your pick on these last 4 excuses, but as an ecologist I cannot buy any of them. Clearly I am not a social scientist or an economist, and consequently have little understanding of how all of this proceeds and how the continued nonsense of business as usual is reported on much of the media as though this is the only way forward. The disconnect between what the educated public believes and what the government and business economists push has never been more serious. Perhaps the dominant view of many people is that we have always managed to muddle through in the past, and so this is a minor issue that we will overcome as usual by some kind of technological fix. And it is a long term problem, and I will not be here in the long term.

What can we ecologists do? Teach, report, communicate to the wider public via social media or traditional media, and hope that progress in understanding will finally take hold. Set an example, and hope that we can turn this juggernaut around. David Suzuki and Bill McKibben and many others are doing this. As an army dedicated to peace we can move forward and hope for wisdom to prevail.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences 280(1754): 20122845. doi: 10.1098/rspb.2012.2845.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Future collapse: how optimistic should we be? Proceedings of the Royal Society B: Biological Sciences 280(1767): 20131373. doi: 10.1098/rspb.2013.1373.

Kelly, M.J. 2013. Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich. Proceedings of the Royal Society B: Biological Sciences 280(1767). doi: 10.1098/rspb.2013.1193.

McKibben, B. 2013. Oil and Honey: The Education of an Unlikely Activist. Henry Holt and Company, New York. 257 pp.  ISBN: 978-08050-9284-4

Does Forestry Make Money – Part 2

About 2 years ago I wrote a blog asking the simple question of whether the forest industry in British Columbia makes money or whether it is operational only because of subsidies and the failure to recognize that biodiversity and ecosystem services could be valuable. A recent report from the research group in the Fenner School of the Australian National University has put the spotlight on the mountain ash forests of the Central Highlands of Victoria to answer this question for one region of southern Australia. I summarize their findings from their report (Keith et al. 2016) that you can access from the web address given below.

The ANU research group chose the Central Highlands study area because it included areas with controversial land use activities. The study area of 7370 sq km contains a range of landscapes including human settlements, agricultural land, forests, and waterways, and is used for a variety of activities including timber production, agriculture, water supply and recreation. It is also home to a range of species, including the endemic and critically endangered Leadbeater’s Possum. These activities and their use of ecosystems can be either complementary or conflicting. Managing the various activities within the region is therefore complex and requires evaluation of the trade-offs between different land uses and users, an issue common to forestry areas around the world.

The accounting structure (System of Environmental-Economic Accounting) which is used by the United Nations is described in more detail in the report. Both economic and ecological data are needed to produce ecosystem accounts and these sources of data must be integrated to gain an overall picture of the system. This integration of ecosystem services with traditional cash crops is the key to evaluating an area for all of its values to humans. In this particular area the provisioning of water to cities is a key economic benefit provided by this particular area. The following table from their report puts all these accounts together for the Central Highlands of Victoria:

Table 5. Economic information for industries within the study region in 2013-14
Agriculture Native Forestry Water supply Tourism
Area of land used (ha) 96,041a 324,380b 115,149c 737,072d
Sale of products ($m) 474 49 911 485
Industry valued added ($m) 257 9 233 260
Ecosystem services ($m) 121 15 101 42
Sale of products ($ ha-1) 4918 151 7911 659
Industry value added ($ ha-1) 2667 29 2023 353
Ecosystem services ($ ha-1) 1255 46 877 57

a area of agricultural land use
b area of native forest timber production
c area of water catchments
d total area of study region

The key point in this table is that the value-added per ha of forestry is $29 per ha per year. The equivalent value for water is $2033 per ha per year – or 70 times more, and the value added for agriculture is about 90 time more than that of forestry. The value-added value for tourism is $350 per ha per year, about 12 times more than that of forestry. None of this takes into account any potential government subsidies to these industries, and none involves directly the endangered species in the landscape. Three main points emerge from this analysis:

  1. In 2013-14, the most valuable industries in the region were tourism ($260 million), agriculture ($257 million), water supply ($233 million) and forestry ($9 million). This is as measured by the estimated industry value added (the contribution to GDP).
  2. In 2013-14, the most valuable ecosystem services in the region were food provisioning ($121 million), water provisioning ($101 million), cultural and recreation services ($42 million).
  3. At a carbon price of $12.25 per ton (the average price paid by the Commonwealth in 2015), the potential ecosystem service of carbon sequestration ($20 million) was more valuable than the service of timber provisioning ($15 million).

The main implications from the report for this large geographical area are three:

  • The benefits from tourism, agriculture, and water supply are large, while those from forestry are comparatively small. There is a potential for income from carbon sequestration.
  • The activities of tourism, agricultural and water supply industries are complimentary and may be combined with biodiversity conservation and carbon sequestration.
  • Timber harvesting in native forests needs to better account for the occurrence of fires and can be incompatible with species requirements for conservation.

The recent global interest in both climate change and species conservation has pushed this type of analysis to uncover the complementary and conflicting activities of all major global industries. Replacing the conventional GDP of a country or a region with a measure that takes into account the changes in the natural capital including gains and losses is a necessary step for sustainability (Dasgupta 2015, Guerry et al. 2015). This report from Australia shows how this goal of replacing the current GDP calculation with a green GDP can be done in specific areas. Much of biodiversity conservation hinges on these developments.

Dasgupta, P. 2015. Disregarded capitals: what national accounting ignores. Accounting and Business Research 45(4): 447-464. doi: 10.1080/00014788.2015.1033851.

Guerry, A.D., et al. 2015. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences 112(24): 7348-7355. doi: 10.1073/pnas.1503751112.

Keith, H., Vardon, M., Stein, J., Stein, J., and Lindenmayer, D. 2016. Exzperimental Ecosystem Accounts for the Central Highlands of Victoria. Australian National University, Fenner School of Environment and Society. 22 pp. Available from:
http://fennerschool-associated.anu.edu.au/documents/CLE/VCH_Accounts_Summary_FINAL_for_pdf_distribution.pdf

Reducing Greenhouse Gases at the Local Scale

This blog is devoted to the simple question of what we might do about climate change at a very small scale. As individuals we can do little directly about the big issues of fracking and oil extraction from tar sands and shale deposits. Of course we can and should vote about these large issues, but my question is what can we do at a local level to support the Paris Agreement?

This was all brought to my attention on a recent drive of 50 km from Haines Junction in the southern Yukon north to Kluane Lake. Along the side of the Alaska Highway on each side of the road for a perpendicular distance of perhaps 20 m the highways department had mowed down all the vegetation to the ground level along a stretch of about 25 km. Willows 1-2 m in height, small aspen, spruce and poplar trees up to 3 m in height were all mowed down and chopped into small pieces. This observation gave rise to two thoughts. First, highways departments have always done this kind of mowing so why worry about it? But second, why should we keep doing now what we always did in the past?

We have just signed the Paris Agreement to try to stop the increases of greenhouse gases in the atmosphere. This means we should be looking at everything we do to see if it is generating more greenhouse gases than necessary. Mowing down the edges of highways has two detrimental effects on our environment. First, diesel or petrol is used to run the machines that do the mowing, Second, we have now lost the only mechanism we currently have for taking CO2 out of the atmosphere, plant growth via photosynthesis. We mow down the plants, thus making compost that releases CO2 as it decays, and we lose the structure of the road edge that captures CO2 at no cost to us. But of course new plants will now start to colonize and re-grow along the road edge, capturing CO2, but the key point here is that in northern Canada it will take probably 20-30 years to have the vegetation recover to the point that it was before mowing. Thus on every score this mowing along the highway is a direct affront to the Paris Agreement.

The argument about road edges is always to protect vehicles from wildlife suddenly coming out of the forest on to the road and causing a collision. The frequency of this for the larger species would have to be measured, and the assumption that a mowed strip reduces collisions with wildlife would have to be quantified. In my observations a nicely mowed strip in northern Canada becomes green early in the spring and in fact then attracts large and small herbivores like moose, bison, and hares to the edges of the road. Thus mowing might actually increase the probability of collisions with wildlife. In Newfoundland Tanner and Leroux (2015) showed that moose browsed less in recently cut highway edges but this effect might be lost within a few years. The critical question if moose-vehicle collisions are to be reduced is to know exactly what actions produce fewer accidents (Jägerbrand and Antonson, 2016). Reducing speed limits has a strong effect on accident rates. No one has looked into the greenhouse gas issue regarding the cost and benefit of roadside clearing. Many authors (e.g. Meisingset et al. 2014) point out how little serious experimental work has been done on the wildlife collision issue, another opportunity for adaptive management.

The highways department would probably consider this all very silly to worry about. But it does raise the more general issue that many others have pointed out: should we somehow have a greenhouse gas indicator app that would tell us for our own houses, vehicles, and property what we are doing in our everyday actions to assist the reduction of greenhouse gases as mandated in the Paris Agreement. It cannot simply be business as usual.

Jägerbrand, A.K., and Antonson, H. 2016. Driving behaviour responses to a moose encounter, automatic speed camera, wildlife warning sign and radio message determined in a factorial simulator study. Accident Analysis & Prevention 86(1): 229-238. doi:10.1016/j.aap.2015.11.004.

Meisingset, E.L., Loe, L.E., Brekkum, Ø., and Mysterud, A. 2014. Targeting mitigation efforts: The role of speed limit and road edge clearance for deer–vehicle collisions. Journal of Wildlife Management 78(4): 679-688. doi:10.1002/jwmg.712.

Tanner, A.L., and Leroux, S.J. 2015. Effect of roadside vegetation cutting on moose browsing. PloS One 10(8): e0133155. doi:10.1371/journal.pone.0133155.