Category Archives: Conservation Biology

Biodiversity Science

Protecting biodiversity is a goal of most people who value the environment. My question is what are the goals of biodiversity science and how do we achieve them? Some history is in order here. The term ‘biodiversity’ was coined in the 1980s as the complete biosphere including all species and ecosystems on Earth. The idea of cataloguing all the species on Earth was present many decades before this time, since the origin of the biological sciences. By the 1990s ‘biodiversity conservation’ became a popular subject and has grown greatly since then as a companion to CO2 emissions and the climate change problem. The twin broad goals of biodiversity science and biodiversity conservation are (1) to name and describe all the species on Earth, and (2), to protect all species from extinction, preventing a loss of biodiversity. How can we achieve these two goals?

The first goal of describing species faces challenges from disagreements over what a species is or is not. The old description of a species was to describe what group it was part of, and then how different this particular species was from other members of the group. In the good old days this was primarily based on reproductive incompatibility between species, if no successful reproduction, must be a new species. This simple common-sense view was subject to many attacks since some organisms that we see as different can in fact interbreed. Lions and tigers breed together and are an example, but if their interbred offspring are sterile, clearly, they are two different species. But many arguments arose because there was no data available for 99% of species to know if they could interbreed or not. The fallback position has been to describe the anatomy of a potential species and its relatives and judge from anatomy how different they were. Endless arguments followed, egged on by naturalists who pointed out that if the elephants in India were separated by a continent from elephants in Africa, clearly, they must be different species defined by geography. Many academic wars were fought over these issues.

Then in 1953 the structure of DNA was unravelled, and a new era dawned because with advances in technology of decoding genes we could describe species in a completely new way by determining how much DNA they had in common. But what is the magic percentage of common DNA? Humans and chimpanzees have 98.6% of their DNA in common, but despite this high similarity no one argues that they are the same species.

Despite this uncertainty the answer now seems much simpler: sequence the DNA of everything and you will have the true tree of life for defining separate species. While this was a dream 20 years ago, it is now a technical reality with rapid sequencing methods to help us get criminals and define species. Problem (1) solved?

Enter the lonely ecologist into this fray. Ecologists do not just want names, they wish to understand the function of each of the ‘species’ within communities and ecosystems, how does all this biodiversity interact to produce what we see in the landscape? For the moment we have approximately 10 million species on Earth, but somewhere around 80% of these ‘species’ are still undescribed. So now we have a clash of biodiversity visions, we cannot describe all the species on Earth even on the time scale of centuries, so we cannot achieve goal (1) of biodiversity science in any reasonable time. We have measured the DNA sequence of thousands of organisms that we can capture but we cannot describe them formally as species in the older sense. Perhaps it is akin to having all the phone numbers in the New York City phone book but not knowing to whom the numbers belong.

But the more immediate problem comes with objective (2) to prevent extinctions. Enter the conservation ecologist. The first problem is discussed above, we ecologists have no way of knowing how many species are in danger of extinction. We must look for rare or declining species, but we have complete inventory for few places on Earth. We must concentrate on large mammals and birds, and hope that they act as umbrella species and represent all of biodiversity. When we do have information on threatened species, for the most part there is no money to do the ecological studies needed to reverse declines in abundance. If there is money to list species and give a recovery plan on paper, then we find there is no money to implement the recovery plan. The Species-At-Risk act in Canada was passed in 2002 and has generated many recovery plans mostly for vertebrate species that have come to their attention. Almost none of these recovery plans have been completed, so in general we are all in favour of preventing extinctions but only it if costs us nothing. By and large the politics of preventing extinctions is very strongly supported, but the economic value of extinctions is nearly zero.

None of this is very cheery to conservation biologists. Two approaches have been suggested. The first is Big Science, use satellites and drones to scan the Earth every year to describe changes in landscapes and from these images infer biodiversity ‘health’. Simple and very expensive with AI to the rescue. But while we can see largescale landscape changes, the crux is to do something about them, and it is here that we fail because of the wall of climate change that we have no control over at present. Big Science may well assist us in seeing patterns of change, but it produces no path to understanding food webs or mediating changes in threatened populations. The second is small-scale biodiversity studies that focus on what species are present, how their numbers are changing, and what are the causes of change. Difficult, possible, but very expensive because you must put biologists in the field, on the ground to do the relevant measurements over a long-time frame. The techniques are there to use, thanks to much work on ecological methods in the past. What is missing again is the money. There are a few good examples of this small-scale approach but without good organization and good funding many of these attempts stop after too few years of data.

We are left with a dilemma of a particular science, Biodiversity Science, that has no way of achieving either of its two main objectives to name and to protect species on a global level. On a local level we can adopt partial methods of success by designating and protecting national parks and marine protected areas, and by studying only a few important species, the keystone species of food webs. But then we need extensive research to determine how to protect these areas and species from the inexorable march of climate change, which has singlehandedly complicated achieving biodiversity science’s two goals. Alas at the present time we may have another science to join the description of economics as a “dismal science” And we have not even started to discuss bacteria, viruses, and fungi.

Coffey, B. & Wescott, G. (2010) New directions in biodiversity policy and governance? A critique of Victoria’s Land and Biodiversity White Paper. Australasian Journal of Environmental Management 17: 204-214. doi: 10.1080/14486563.2010.9725268.

Donfrancesco, V., Allen, B.L., Appleby, R., et al. (2023) Understanding conflict among experts working on controversial species: A case study on the Australian dingo. Conservation Science and Practice 5: e12900. doi: 10.1111/csp2.12900.

Ritchie, J., Skerrett, M. & Glasgow, A. (2023) Young people’s climate leadership in Aotearoa. Journal of Peace Education, 12-2023: 1-23. doi: 10.1080/17400201.2023.2289649.

Sengupta, A., Bhan, M., Bhatia, S., Joshi, A., Kuriakose, S. & Seshadri, K.S. (2024) Realizing “30 × 30” in India: The potential, the challenges, and the way forward. Conservation Letters 2024, e13004. doi: 10.1111/conl.13004.

Wang, Q., Li, X.C. & Zhou, X.H. (2023) New shortcut for conservation: The combination management strategy of “keystone species” plus “umbrella species” based on food web structure. Biological Conservation 286: 110265.doi. 10.1016/j.biocon.2023.110265.

On Ecology and Medicine

As I grow older and interact more with doctors, it occurred to me that the two sciences of medicine and ecology have very much in common. That is probably not a very new idea, but it may be worth spending time on looking at the similarities and differences of these two areas of science that impinge on our lives. The key question for both is how do we sort out problems? Ecologists worry about population, community and ecosystem problems that have two distinguishing features. First, the problems are complex and the major finding of this generation of ecologists is to begin to understand and appreciate how complex they are. Second, the major problems that need solving to improve conservation and wildlife management are difficult to study with the classical tools of experimental, manipulative scientific methods. We do what we can to achieve scientific paradigms but there are many loose ends we can only wave our hands about. As an example, take any community or ecosystem under threat of global warming. If we heat up the oceans, many corals will die along with the many animals that depend on them. But not all corals will die, nor will all the fish and invertebrate species, and the ecologists is asked to predict what will happen to this ecosystem under global warming. We may well understand from rigorous laboratory research about temperature tolerances of corals, but to apply this to the real world of corals in oceans undergoing many chemical and physical changes we can only make some approximate guesses. We can argue adaptation, but we do not know the limits or the many possible directions of what we predict will happen.

Now consider the poor physician who must deal with only one species, Homo sapiens, and the many interacting organs in the body, the large number of possible diseases that can affect our well-being, the stresses and strains that we ourselves cause, and the physician must make a judgement of what to do to solve your particular problem. If you have a broken arm, it is simple thankfully. If you have severe headaches or dizziness, many different causes come into play. There is no need to go into details that we all appreciate, but the key point is that physicians must solve problems of health with judgements but typically with no ability to do the kinds of experimental work we can do with mice or rabbits in the laboratory. And the result is that the physician’s judgements may be wrong in some cases, leading possibly to lawyers arguing for damages, and one appreciates that once we leave the world of medical science and enter the world of lawyers, all hope for solutions is near impossible.

There is now some hope that artificial intelligence will solve many of these problems both in ecological science and in medicine, but this belief is based on the premise that we know everything, and the only problem is to find the solutions in some forgotten textbook or scientific paper that has escaped our memory as humans. To ask that artificial intelligence will solve these basic problems is problematic because AI depends on past knowledge and science solves problems by future research.

Everyone is in favour of personal good health, but alas not everyone favours good environmental science because money is involved. We live in a world where major problems with climate change have had solutions presented for more than 50 years, but little more than words are presented as the solutions rather than action. This highlights one of the main differences between medicine and ecology. Medical issues are immediate since we have active lives and a limited time span of life. Ecological issues are long-term and rarely present an immediate short-term solution. Setting aside protected areas is in the best cases a long-term solution to conservation issues, but money for field research is never long term and ecologists do not live forever. Success stories for endangered species often require 10-20 years or more before success can be achieved; research grants are typically presented as 3- or 5-year proposals. The time scale we face as ecologists is like that of climate scientists. In a world of immediate daily concerns in medicine as in ecology, long-term problems are easily lost to view.

There has been an explosion of papers in the last few years on artificial intelligence as a potentially key process to use for answering both ecological and medical questions (e.g. Buchelt et al. 2024, Christin, Hervet, and Lecomte, 2019, Desjardins-Proulx, Poisot, & Gravel, 2019). It remains to be seen exactly how AI will help us to answer complex questions in ecology and medicine. AI is very good in looking back, but will it be useful to solve our current and future problems? Perhaps we still need to continue training good experimental scientists in ecology and in medicine.  

Buchelt, A., Buchelt, A., Adrowitzer, A. & Holzinger, A. (2024) Exploring artificial intelligence for applications of drones in forest ecology and management. Forest Ecology and Management, 551, 121530. doi: 10.1016/j.foreco.2023.121530.

Christin, S., Hervet, É. & Lecomte, N. (2019) Applications for deep learning in ecology. Methods in Ecology and Evolution, 10, 1632-1644. doi: 10.1111/2041-210X.13256.

Desjardins-Proulx, P., Poisot, T. & Gravel, D. (2019) Artificial Intelligence for ecological and evolutionary synthesis. Frontiers in Ecology and Evolution, 7. doi: 10.3389/fevo.2019.00402.

On Critical Evaluation in Ecology

Science proceeds by “conjecture-and-refutation” if we agree with Karl Popper (1963). There is a rich literature on science in general and ecological science in particular that is well worth a series of graduate discussions even if it is pre-2000 ancient history (Peters 1991, Weiner 1995, Woodward and Goodstein 1996). But I wish to focus on a current problem that I think is hindering ecological progress. I propose that ecological journals at this time are focusing their publications on papers that present apparent progress and are shedding papers that are critical of apparent progress. Or in Popper’s words, they focus on publishing ‘conjecture’ and avoid ‘refutation’. The most important aspect of this issue involves wildlife management and conservation issues. The human side of this issue may involve personal criticism and on occasion the loss of a job or promotion. The issue arises in part because of a confusion between the critique of ideas or data and the interpretation that all critiques are personal. So, the first principle of this discussion is that I discuss here only critiques of ideas or data.

There are many simple reasons for critiques of experimental design and data gathering. Are the treatments replicated, are the estimates of data variables reliable and sufficient, are proxy variables good or poor? Have the studies been carried out long enough? All these critiques can be summarized under the umbrella of measurement reliability. There are many examples we can use to illustrate these ideas. Are bird populations declining across the globe or locally? Are fisheries overharvesting particular species? Can we use climate change as a universal explanation of all changes in wildlife populations? Are survey methods for population changes across very large areas reliable? The problem is tied into the need for good or bad news that must be filtered to the news media or social media with high impact but little reliability. 

The problem at the level of science is the temptation to extrapolate beyond the limits of the available data. Now we come to the critical issue – how do our scientific journals respond to critical reviews of papers already published? My concern is that in the present time journals do not wish to receive or accept manuscripts that are critical of previously published papers. These decisions are no doubt confidential for journal publishers. There is perhaps some justification for this rejection policy, given that in the few cases where critiques are published on existing papers, the citation score of the original paper may greatly exceed that of the critique. So, conjecture pays, refutation does not.

Journals are flooded with papers and for the better journals I would expect at least a 60-80% rejection rate. For Science the rejection rate is 94%, for Nature 92%, and for the Journal of Animal Ecology 85% of submitted manuscripts are rejected. Consequently, the suggestion that they reserve space for ‘refutation’ is too negative to their publication model. There is little I can suggest if one in caught in this dilemma except to try another less premium journal, and remember that web searches find papers easily no matter where published. If you need inspiration, you can follow Peters (1991) and write a book critique and suffer the brickbats from the establishment (e.g. Nature 354: 444, 12 December 1991).

But if you are upset about a particular paper or series of papers, remember critiques are valuable but follow these rules for a critique:

  1. Keep it short, 5 typed pages should be near maximal length.
  2. Raise a set of major points. Do not try to cover everything.
  3. Summarize briefly the key points you are in agreement with, so they are not confounded in the discussion.
  4. Discuss what studies might distinguish hypothesis A vs B, or A+B vs C.
  5. Discuss what better methods of measurement might be used if funding is available.
  6. Never attack individuals or research groups. The discussion is about ideas, results, and inferences.

Decisions to accept some management actions may have to be taken immediately and journal editors must take that into consideration. Prognostication over accepting critiques may be damaging. But all actions must be continually evaluated and changed once the understanding of the problem changes.

There are too many examples to recommend reading about past and present controversies in ecology, so here are only two examples. Dowding et al. (2009) report a comment on suggested methods of controlling introduced pests on Macquarie Island in the Southern Ocean. I was involved in that discussion. A much bigger controversy in Canada involves Southern Mountain caribou populations which are in rapid decline. The proximate explanation for the decline is postulated to be predation by wolves and thus the suggested management action is shooting the wolves. Johnson et al. (2022), Lamb et al. (2022) and Superbie et al. (2022) provide an entre into this literature and the decisions of what to do now and in the future to prevent extinction of these ungulates. The caribou problem is complicated by the interaction of human alteration of landscapes and the natural processes of predation and food availability. Alas nothing is simple.

All these ecological dilemmas are controversial and the important role of criticism involving evaluations of alternative hypotheses are the only way forward for ecologists involved in controversies. In my opinion most ecological journals are not doing their part is publishing critiques of the conventional wisdom.

Dowding, J.E., Murphy, E.C., Springer, K., Peacock, A.J. & Krebs, C.J. (2009) Cats, rabbits, Myxoma virus, and vegetation on Macquarie Island: a comment on Bergstrom et al. (2009). Journal of Applied Ecology, 46, 1129-1132. doi: 10.1111/j.1365-2664.2009.01690.x.

Johnson, C.J., Ray, J.C. & St-Laurent, M.-H. (2022) Efficacy and ethics of intensive predator management to save endangered caribou. Conservation Science and Practice, 4: e12729. doi: 10.1111/csp2.12729.

Lamb, C.T., Willson, R., Richter, C., Owens-Beek, N., Napoleon, J., Muir, B., McNay, R.S., Lavis, E., Hebblewhite, M., Giguere, L., Dokkie, T., Boutin, S. & Ford, A.T. (2022) Indigenous-led conservation: Pathways to recovery for the nearly extirpated Klinse-Za mountain caribou. Ecological Applications 32 (5): e2581. doi: 10.1002/eap.2581.

Peters, R.H. (1991) A Critique for Ecology. Cambridge University Press, Cambridge, England. 366 pp. ISBN:0521400171.

Popper, K.R. (1963) Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge and Kegan Paul, London. 412 pp. ISBN-13: 978-0415285940.

Superbie, C., Stewart, K.M., Regan, C.E., Johnstone, J.F. & McLoughlin, P.D. (2022) Northern boreal caribou conservation should focus on anthropogenic disturbance, not disturbance-mediated apparent competition. Biological Conservation, 265, 109426. doi: 10.1016/j.biocon.2021.109426.

Weiner, J. (1995) On the practice of ecology. Journal of Ecology, 83, 153-158.

Woodward, J. & Goodstein, D. (1996) Conduct, misconduct and the structure of science. American Scientist, 84, 479-490.

The Problem of Evidence in Ecology

The good news is that the general public are becoming more concerned about the problems of wildlife management and conservation in general. The bad news arising from this interest is the lack of understanding exhibited by many of the comments in the media about ecological problems. This leads to a suggestion that we need an ecological “fact checking” team that looks at what is said about broad scale environmental issues and points out how much evidence there is for what is stated in the media. My interest in this issue is driven by so many news stories that are stated as fact with very little scientific understanding. Too many well-meaning reports fly around the media that border on complete error or complete nonsense. One consequence of this problem is a failure of evidence-based decision making for ecological problems (Christie et al. 2022).

This is not of course a problem confined to ecological science as you can see by reading nonsense claims about medical issues like Covid. It will not go away and with the climate crisis the number of ‘experts’ has multiplied. The problem comes down to the issue of evidence and how we evaluate evidence. A partial solution to this is better education about what is evidence in ecology as well as all of science. We need to teach workshops or courses on concrete examples of what is suggested to be evidence in ecological papers. The first step might be to analyse one or a few papers with the following procedure:

  1. What is the major conclusion of the paper?
  2. What data are presented to reach this conclusion?
  3. What background assumptions are being made to move from data to conclusions?

These questions lead us back to basic questions illustrated well by statistical inference. What is the ‘population’ to which the major conclusions apply? There is very little discussion of this in most ecological papers and the consequence can be overgeneralizations. Suppose for example we are examining the hypothesis that the geographic range of a species set is moving toward the poles because of a warming climate. We must for practical purposes restrict our study to a small set of species, so this is a major assumption that the species selected are a random sample of the biota under discussion. Another limitation is that it may be difficult to isolate climate change without considering for example human disturbances to the landscape from forestry and agriculture. A consequence of these complications is that our major conclusion for all this research rests on minimal data. So, a conclusion might be that we need to design further extensive studies. But perhaps of the 6 species under study, 4 are moving as the climate hypothesis predicts, but one is not moving at all, and one is moving in the opposite direction to what is predicted. Do we now turn our attention to these anomalous species that do not follow our major hypothesis? Or should we be happy that most of our candidate species follow the rule specified in our major conclusion?

       By doing manipulative experiments ecologists attempt to insert more rigor into their conclusions, but many of the generic questions mentioned above apply equally to these experimental designs. If we do a set of experiments in Iowa and in Germany, should we get the same results? We are back to the question of generality in all our studies. We hope for global rules, but experiments are all limited in time and space.

Can we escape all these bottlenecks with models that capture the generality and behave according to our assumptions? But models suffer from the same problems that make empirical studies difficult – what are the hidden assumptions? Taper et al. (2021) discuss the problem of errors arising from model misspecification in evaluating empirical data. Perhaps every ecological publication should end with an additional short section listing the assumptions made in reaching the major conclusions of the research.

These points come to the fore when we attempt to predict future environmental changes. A simple example is the hypothesis that, by humans increasing CO2 in the atmosphere, plants will increase photosynthesis and thus negate part or all the effects of climate change on our current ecosystems. This has caused much discussion ranging from planting more trees to alleviate climate change to relying on engineering solutions to climate change.

The bottom line that we should all recognize is that our predictions in ecology and our understanding of ecosystem changes are more limited than we admit. We know that we cannot rely on the old adage of the equilibrium hypothesis that “Mother Nature will take care of the earth” so all will be well. Wisdom always relies on critical evaluations which are too often lost in the media of our current world.

An important alternative approach is illustrated by the Conservation Evidence Journal and the approaches recommended by Sutherland et al. (2022) to specify local actions that can improve the conservation status of particular species or groups of species, for example by reintroducing birds to islands or areas from which they have been extirpated. The dichotomy here is a divide between the particular and the general, from short-term local questions to long-term general questions (Saunders et al. 2020). The hope is that progress on local questions will gradually inform the dominant global theories of ecology to bring them together and support the “devil in the details’ approach that can define ecological progress in our time (Sutherland et al. 2021).

Christie, A.P., et al. (2022) Principles for the production of evidence-based guidance for conservation actions. Conservation Science and Practice, 4, e579.doi: 10.1111/csp2.12663 .

Saunders, M.E., Janes, J.K. & O’Hanlon, J.C. (2020) Moving on from the Insect Apocalypse Narrative: Engaging with Evidence-Based Insect Conservation. BioScience, 70, 80-89.doi: 10.1093/biosci/biz143.

Sutherland, W.J., Downey, H., Frick, W.F., Tinsley-Marshall, P. & McPherson, T. (2021) Planning practical evidence-based decision making in conservation within time constraints: the Strategic Evidence Assessment Framework. Journal for Nature Conservation, 60, 125975.doi: 10.1016/j.jnc.2021.125975.

Sutherland, W.J. et al. (2022) Creating testable questions in practical conservation: a process and 100 questions. Conservation Evidence Journal, 19, 1-7.doi: 10.52201/CEJ19XIFF2753.

Taper, M., Lele, S., Ponciano, J., Dennis, B. & Jerde, C. (2021) Assessing the global and local uncertainty of scientific evidence in the presence of model misspecification Frontiers in Ecology and Evolution, 9, 679155.doi: 10.3389/fevo.2021.679155.

The Problem of Time in Ecology

There is a problem in doing ecological studies that is too little discussed – what is the time frame of a good study? The normal response would be that the time frame varies with each study so that no guidelines can be provided. There is increasing recognition that more long-term studies are needed in ecology (e.g. Hughes et al. 2017) but the guidelines remain unclear.

The first issue is usually to specify a time frame, e.g. 5 years, 10 years. But this puts the cart before the horse, as the first step ought to be to define the hypothesis being investigated. In practice hypotheses in many ecological papers are poorly presented and there should not be one hypothesis but a series of alternative hypotheses. Given that, the question of time can be given with more insight. How many replicated time periods do you need to measure the ecological variables in the study? If your time scale unit is one year, 2 or 3 years is not enough to come to any except very tentative conclusions. We have instantly fallen into a central dilemma of ecology – studies are typically planned and financed on a 3–5-year time scale, the scale of university degrees.

Now we come up against the fact of climate change and the dilemma of trying to understand a changing system when almost all field work assumes an unchanging environment. Taken to some extreme we might argue that what happens in this decade tells us little about what will happen in the next decade. The way around this problem is to design experiments to test the variables that are changing ahead of time, e.g., what a 5⁰C temperature increase will do to the survival of your corals. To follow this approach, which is the classic experimental approach of science, we must assume we know the major variables affecting our population or community changes. At present we do not know the answer to this question, and we rely on correlations of a few variables as predictors of how large a change to expect.

There is no way out of this empirical box, which defines clearly how physics and chemistry differ from ecology and medicine. There are already many large-scale illustrations of this problem. Forest companies cut down old-growth timber on the assumption that they can get the forest back by replanting seedlings in the harvested area. But what species of tree seedlings should we replant if we are concerned that reforestation often operates on a 100–500-year time scale? And in most cases, there is no consideration of the total disruption of the ecosystem, and we ignore all the non-harvestable biodiversity. Much research is now available on reforestation and the ecological problems it produces. Hole-nesting birds can be threatened if old trees with holes are removed for forestry or agricultural clearing (Saunders et al. 2023). Replanting trees after fire in British Columbia did not increase carbon storage over 55 years of recovery when compared with unplanted sites (Clason et al. 2022). Consequently, in some forest ecosystems tree planting may not be useful if carbon storage is the desired goal.

At the least we should have more long-term monitoring of the survival of replanted forest tree seedlings so that the economics of planting could be evaluated. Short-term Australian studies in replanted agricultural fields showed over 4 years differences in survival of different plant species (Jellinek et al. 2020). For an on-the-ground point of view story about tree planting in British Columbia see:
https://thetyee.ca/Opinion/2023/11/02/Dont-Thank-Me-Being-Tree-Planter/. But we need longer-term studies on control and replanted sites to be more certain of effective restoration management. Gibson et al. (2022) highlighted the fact that citizen science over a 20-year study could make a major contribution to measuring the effectiveness of replanting. Money is always in short supply in field ecology and citizen science is one way of achieving goals without too much cost. 

Forest restoration is only one example of applied ecology in which long-term studies are too infrequent. The scale of restoration of temperate and boreal ecosystems is around 100 years, and this points to one of the main failures of long-term studies, that they are difficult to carry on after the retirement of the principal investigators who designed the studies.

The Park Grass Experiment begun in 1856 on 2.8 ha of grassland in England is the oldest ecological experiment in existence (Silvertown et al. 2006). As such it is worth a careful evaluation for the questions it asked and did not ask, for the scale of the experiment, and for the experimental design. It raises the question of generality for all long-term studies and cautions us about the utility and viability of many of the large-scale, long-term studies now in progress or planned for the future.

The message of this discussion is that we should plan for long-term studies for most of our critical ecological problems with clear hypotheses of how to conserve biodiversity and manage our agricultural landscapes and forests. We should move away from 2–3-year thesis projects on isolated issues and concentrate on team efforts that address critical long-term issues with specific hypotheses. Which says in a nutshell that we must develop a vision that goes beyond our past practices in scatter-shot, short-term ecology and at the same time avoid poorly designed long-term studies of the future.

Clason, A.J., Farnell, I. & Lilles, E.B. (2022) Carbon 5–60 Years After Fire: Planting Trees Does Not Compensate for Losses in Dead Wood Stores. Frontiers in Forests and Global Change, 5, 868024. doi: 10.3389/ffgc.2022.868024.

Gibson, M., Maron, M., Taws, N., Simmonds, J.S. & Walsh, J.C. (2022) Use of citizen science datasets to test effects of grazing exclusion and replanting on Australian woodland birds. Restoration Ecology, 30, e13610. doi: 10.1111/rec.13610.

Hughes, B.B.,et al. (2017) Long-term studies contribute disproportionately to ecology and policy. BioScience, 67, 271-281. doi.: 10.1093/biosci/biw185.

Jellinek, S., Harrison, P.A., Tuck, J. & Te, T. (2020) Replanting agricultural landscapes: how well do plants survive after habitat restoration? Restoration Ecology, 28, 1454-1463. doi: 10.1111/rec.13242.

Saunders, D.A., Dawson, R. & Mawson, P.R. (2023) Artificial nesting hollows for the conservation of Carnaby’s cockatoo Calyptorhynchus latirostris: definitely not a case of erect and forget. Pacific Conservation Biology, 29, 119-129. doi: 10.1071/PC21061.

Silvertown, J., Silvertown, J., Poulton, P. & Biss, P.M. (2006) The Park Grass Experiment 1856–2006: its contribution to ecology. Journal of Ecology, 94, 801-814. doi: 10.1111/j.1365-2745.2006.01145.x.

The Ecological Outlook

There is an extensive literature on ecological traps going back two decades (e.g. Schlaepfer et al. 2002, Kristan 2003, Battin 2004) discussing the consequences of particular species selecting a habitat for breeding that is now unsuitable. A good example is discussed in Lamb et al. (2017) for grizzly bears in southeastern British Columbia in areas of high human contact. The ecological trap hypothesis has for the most part been discussed in relation to species threatened by human developments with some examples of whole ecosystems and human disturbances (e.g. Lindenmayer and Taylor 2020). The concept of an ecological trap can be applied to the Whole Earth Ecosystem, as has been detailed in the IPCC 2022 reports and it is this global ecological trap that I wish to discuss.

The key question for ecologists concerned about global biodiversity is how much biodiversity will be left after the next century of human disturbances. The ecological outlook is grim as you can hear every day on the media. The global community of ecologists can ameliorate biodiversity loss but cannot stop it except on a very local scale. The ecological problem operates on a century time scale, just the same as the political and social change required to escape the global ecological trap. E.O. Wilson (2016) wrote passionately about our need to set aside half of the Earth for biodiversity. Alas, this was not to be. Dinerstein et al. (2019) reduced the target to 30% in the “30 by 30” initiative, subsequently endorsed by 100 countries by 2022. Although a noble political target, there is no scientific evidence that 30 by 30 will protect the world’s biodiversity. Saunders et al. (2023) determined that for North America only a small percentage of refugia (5– 14% in Mexico, 4–10% in Canada, and 2–6% in the USA) are currently protected under four possible warming scenarios ranging from +1.5⁰C to +4⁰C. And beyond +2⁰C refugia will be valuable only if they are at high latitudes and high elevations.

The problem as many people have stated is that we are marching into an ecological trap of the greatest dimension. A combination of global climate change and continually increasing human populations and impacts are the main driving factors, neither of which are under the control of the ecological community. What ecologists and conservationists can do is work on the social-political front to protect more areas and keep analysing the dynamics of declining species in local areas. We confront major political and social obstacles in conservation ecology, but we can increase our efforts to describe how organisms interact in natural ecosystems and how we can reduce undesirable declines in populations. All this requires much more monitoring of how ecosystems are changing on a local level and depends on how successful we can be as scientists to diagnose and solve the ecological components of ecosystem collapse.

As with all serious problems we advance by looking clearly into what we can do in the future based on what we have learned in the past. And we must recognize that these problems are multi-generational and will not be solved in any one person’s lifetime. So, as we continue to march into the ultimate ecological trap, we must rally to recognize the trap and use strong policies to reverse its adverse effects on biodiversity and ultimately to humans themselves. None of us can opt out of this challenge.

There is much need in this dilemma for good science, for good ecology, and for good education on what will reverse the continuing degradation of our planet Earth. Every bit counts. Every Greta Thunberg counts.

Battin, J. (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conservation Biology, 18, 1482-1491.

Dinerstein, E., Vynne, C., Sala, E., et al. (2019) A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 5, eaaw2869.doi: 10.1126/sciadv.aaw2869..

IPCC, 2022b. In: Skea, J., Shukla, P.R., et al. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge University Press. doi: www.ipcc.ch/report/ar6/wg3/.

Kristan III, W.B. (2003) The role of habitat selection behavior in population dynamics: source–sink systems and ecological traps. Oikos, 103, 457-468.

Lamb, C.T., Mowat, G., McLellan, B.N., Nielsen, S.E. & Boutin, S. (2017) Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. Journal of Animal Ecology, 86, 55-65. doi. 10.1111/1365-2656.12589.

Lindenmayer, D.B. and Taylor, C. (2020) New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proceedings of the National Academy of Sciences 117, 12481-124485. doi. 10.1073/pnas.2002269117.

Saunders, S.P., Grand, J., Bateman, B.L., Meek, M., Wilsey, C.B., Forstenhaeusler, N., Graham, E., Warren, R. & Price, J. (2023) Integrating climate-change refugia into 30 by 30 conservation planning in North America. Frontiers in Ecology and the Environment, 21, 77-84. doi. 10.1002/fee.2592.

Schlaepfer, M.A., Runge, M.C. & Sherman, P.W. (2002) Ecological and evolutionary traps. Trends in Ecology & Evolution, 17, 474-480.

Wilson, E.O. (2016) Half-Earth: Our Planet’s Fight for Life. Liveright, New York. ISBN: 978-1-63149-252-5.

The Meaningless of Random Sampling

Statisticians tell us that random sampling is necessary for making general inferences from the particular to the general. If field ecologists accept this dictum, we can only conclude that it is very difficult to nearly impossible to reach generality. We can reach conclusions about specific local areas, and that is valuable, but much of our current ecological wisdom on populations and communities relies on the faulty model of non-random sampling. We rarely try to define the statistical ‘population’ which we are studying and attempting to make inferences about with our data. Some examples might be useful to illustrate this problem.

Marine ecologists ae mostly agreed that sea surface temperature rise is destroying coral reef ecosystems. This is certainly true, but it camouflages the fact that very few square kilometres of coral reefs like the Great Barrier Reef have been comprehensively studied with a proper sampling design (e.g. Green 1979, Lewis 2004). When we analyse the details of coral reef declines, we find that many species are affected by rising sea temperatures, but some are not, and it is possible that some species will adapt by natural selection to the higher temperatures. So we quite rightly raise the alarm about the future of coral reefs. But in doing so we neglect in many cases to specify the statistical ‘population’ to which our conclusions apply.

Most people would agree that such an approach to generalizing ecological findings is tantamount to saying the problem is “how many angels can dance on the head of a pin”, and in practice we can ignore the problem and generalize from the studied reefs to all reefs. And scientists would point out that physics and chemistry seek generality and ignore this problem because one can do chemistry in Zurich or in Toronto and use the same laws that do not change with time or place. But the ecosystems of today are not going to be the ecosystems of tomorrow, so generality in time cannot be guaranteed, as paleoecologists have long ago pointed out.

It is the spatial problem of field studies that collides most strongly with the statistical rule to random sample. Consider a hypothetical example of a large national park that has recently been burned by this year’s fires in the Northern Hemisphere. If we wish to measure the recovery process of the vegetation, we need to set out plots to resample. We have two choices: (1) lay out as many plots as possible, and sample these for several years to plot recovery. Or (2) lay out plots at random each year, never repeating the same exact areas to satisfy the specifications of statisticians to “random sample” the recovery in the park. We typically would do (1) for two reasons. Setting up new plots each year as per (2) would greatly increase the initial field work of defining the random plots and would probably mean that travel time between the plots would be greatly increased. Using approach (1) we would probably set out plots with relatively easy access from roads or trails to minimize costs of sampling. We ignore the advice of statisticians because of our real-world constraints of time and money. And we hope to answer the initial questions about recovery with this simpler design.

I could find few papers in the ecological literature that discuss this general problem of inference from the particular to the general (Ives 2018, Hauss 2018) and only one that deals with a real-world situation (Ducatez 2019). I would be glad to be sent more references on this problem by readers.

The bottom line is that if your supervisor or research coordinator criticizes your field work because your study areas are not randomly placed or your replicate sites were not chosen at random, tell him or her politely that virtually no ecological research in the field is done by truly random sampling. Does this make our research less useful for achieving ecological understanding – probably not. And we might note that medical science works in exactly the same way field ecologists work, do what you can with the money and time you have. The law that scientific knowledge requires random sampling is often a pseudo-problem in my opinion.  

Ducatez, S. (2019) Which sharks attract research? Analyses of the distribution of research effort in sharks reveal significant non-random knowledge biases. Reviews in Fish Biology and Fisheries, 29, 355-367. doi. 10.1007/s11160-019-09556-0

Green, R.H. (1979) Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York. 257 pp.

Hauss, K. (2018) Statistical Inference from Non-Random Samples. Problems in Application and Possible Solutions in Evaluation Research. Zeitschrift fur Evaluation, 17, 219-240. doi.

Ives, A.R. (2018) Informative Irreproducibility and the Use of Experiments in Ecology. BioScience, 68, 746-747. doi. 10.1093/biosci/biy090

Lewis, J. (2004) Has random sampling been neglected in coral reef faunal surveys? Coral Reefs, 23, 192-194. doi: 10.1007/s00338-004-0377-y.

The Five Stages of Conservation

While listening to the reports on the COP 15 meeting in Montreal I began thinking that one way to look at conservation science and action is to think of it in 5 stages. So I decided to put out this discussion of how we might view all the conservation news.

Stage 1: Recognize the Issue

The most important issue is to make both scientists and the general public aware that there is a large problem with the conservation of the Earth’s biota. We start with having to convince all that biodiversity does not mean dangerous animals and plants. This stage would be simple for anyone who has taken a good biology course in school, but we still find that some people fear the “environment” because it is synonymous with spiders and alligators and bears and wolves. One might think that children’s books involving cute or anthropomorphised animals would make them less susceptible to this worry, but this does not work for all who have read “The Big Bad Wolf” and Little Red Riding Hood. So education about animals and plants should begin to point everyone toward conservation.

Stage 2: Become Concerned

People see that animals die from a great array of problems, and this connects to the human world where people get ill and pass away or become injured in a car accident. Depending on what their interest is, concern about this leads to interventions such as the feeding of birds and other wildlife on the assumption that they cannot take care of themselves. These worries generate a concern in many to protect wildlife on the unfounded assumption that without human interference, all would disappear.

Stage 3: Demand Action

By this stage wildlife and fishery scientists have begun doing many excellent studies on how some populations of wildlife are in serious trouble. The crux at this point is that often the origin of these problems are human actions in cutting down forests, clearing land for agriculture and housing, and polluting the general environment. The problem is people do things related to “progress” and then find it is killing wildlife. If you need an example, think DDT or seismic lines. The public grows more aware and demands conservation action. These demands are translated into small amounts of government action with large amounts of publicity.

Stage 4: Achieve Action

The consequences of the human exploitation of the earth’s resources begins to bite, largely driven by climate emergencies. Much pressure from NGOs and even business people starts to result in action. Wildlife and fisheries agencies make progress but almost always on the scale of single species management often constrained by state or provincial boundaries. Who is in charge of this mess? Biodiversity becomes the cry of the age, and even the New York Times begins to realize that the Earth consists of more than human beings. But while there is more talk, there is less understanding because of the shouting of people who know very little about these conservation issues and how tangled they are. It is important to appear to be on the side of the angels, so progress is slower than one would like.

Stage 5: Understand the Problem

We have barely entered this stage. To be sure ecologists have been at this Stage for many years with reasonable understanding of how to ameliorate conservation problems, but still too few powers that be are convinced, so that we continue to provide subsidies to oil and gas companies that are busy destroying the earth. Subsidies can go in good or bad directions, but few of us can comprehend the volumes of money being committed to subsidies in all directions. We hear promises to achieve X by 2030, and Y by 2050, and still we believe these when we can just look up and see that few of the promises of the last 30 years have been achieved. Few beyond ecologists understand that it is communities and ecosystems that must be protected but almost all our conservation efforts now operate on single species of ecological beauty. Think rhinos.

One hopes for Stage 6 to come to be, but only a small sign of that progress is so far in sight. If only we could convince everyone that conservation issues ought to be treated with the urgency and the funding that COVID has obtained, we could press ahead with more serious conservation objectives. But it is more than declaring that we should protect 30% of our wild areas. Even if we can achieve the 30% goal in the next 8 years, it is but a start toward understanding the stewardship of the Earth if we do not know how the machinery of nature works. Alas, it is a long road ahead being driven by humans who are short-sighted. Can we avoid Plus ça change?

The Two Questions: So what? What next?

Assuming that these two questions are not copyright, I wanted to explore them as a convenient part of writing a scientific or popular paper in ecology, conservation, and wildlife and fisheries management. To protect the innocent, I will not identify which of many ecological colleagues has stimulated this blog.

The first question should be addressed in every scientific paper but clearly is not if you read a random sample of the articles in many ecological journals. So what? is the critical question of exactly what current problem this paper or book will contribute to. It is the microscopic and macroscopic focus of why we do science, and it does not matter at all if it addresses a minor problem or a major catastrophe like species loss in conservation. In writing one should assume that time is the critical limiting factor in our lives, and while it is fine to be entertained by watching a movie, scientists do not read scientific papers to be entertained. Some journals demand that the abstract of every paper ends with a statement of the importance of the research findings, captured by So what? Too often these statements are weak and editors as well as granting agencies should demand more incisive statements. Asking yourself So what? can be a useful guide as you progress in your research and evaluate others.

While most scientists should agree on the findings presented in a paper or lecture, not all of them will agree about the importance of the answer to So what? What is a major and important scientific finding for some may be of minor significance to others, but the key is to remember here that science is a broad church that should be progressing on a broad front, so that differences of opinion are to be expected, and we rely on evidence to evaluate these differences of opinion. Tests of ideas that turn out to be incorrect or only partly correct must not be considered as failures. If you doubt that, interview any senior scientist in your area and ask about progress and regress during their scientific career. If you find a scientist who insists that they were correct in all their ideas, you should probably request them to go into politics to improve decision making in the real world.

The second question is probably the most critical for all scientific research. Once research is completed, there are two paths. If the original question or problem is solved or answered, the question becomes what does this work suggest needs to be done to advance the general area of research. Most typically however a research project will end up with more questions than it solves. The growing end of science is the critical one, and by asking What next? we delve deeper into the area of research to fill in details that were not evident when it was started. Read Sutherland et al. (2013, 2022) for an excellent example of this approach in conservation science. A simple example of this approach comes from many conservation problems. A particular species of bird may be thought to be declining in numbers, so the first issue is whether this is correct, and so an investigation into the changes in abundance of the species becomes the first step. This could lead to an analysis of the demography of the species population, birth, death and movement rates could be determined to isolate more precisely why abundance is changing. Given these data, the next step might be (for example) why the death rate is increasing if indeed this is the case. The next step is what management methods can be applied to reduce the death rate, and does this situation apply to other closely related species. It is important that asking What next? does not imply a linear sequence in time, and a study could be designed to address more than one question at the same time. We finish the What next? approach with a web of information and conclusions that address a broader question than the original simple question. And What next? should not be answered with a broad set of statements like “climate change is the cause” but by suggestions of very specific experiments and studies to carry investigations forward.

The result in ecology is an increasing precision of thought into ecological interactions and the processes that link species, communities, and ecosystems to very large questions such as the environmental response to climate change. Not all questions need to be large-scale because there are important local questions about the adequacy of designated parks and protected areas to protect species, communities, and ecosystems. The key message is that ecological understanding is not static but grows incrementally by well-designed research programs that by themselves seem to address only small-scale issues.

Seemingly failed research programs are not to be scorned but rather to indicate what avenues of research have not led to good insights. In a sense ecological science is like an evolutionary tree in which some branches fade away with time and others blossom into a variety of forms that surprise us all. So, my advice is to carry on asking these two simple questions in science to help sharpen your research program.

Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D., Carmel, Y., Coomes, D.A., Coulson, T., Emmerson, M.C., Hails, R.S., Hays, G.C., Hodgson, D.J., Hutchings, M.J., Johnson, D., Jones, J.P.G., Keeling, M.J., Kokko, H., Kunin, W.E. & Lambin, X. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.doi: 10.1111/1365-2745.12025.

Sutherland, W.J. & Jake M. Robinson, D.C.A., Tim Alamenciak, Matthew Armes, Nina Baranduin, Andrew J. Bladon, Martin F. Breed, Nicki Dyas, Chris S. Elphick, Richard A. Griffiths, Jonny Hughes, Beccy Middleton, Nick A. Littlewood, Roger Mitchell, William H. Morgan, Roy Mosley, Silviu O. Petrovan, Kit Prendergast, Euan G. Ritchie,Hugh Raven, Rebecca K. Smith, Sarah H. Watts, Ann Thornton (2022) Creating testable questions in practical conservation: a process and 100 questions. Conservation Evidence Journal, 19, 1-7.doi: 10.52201/CEJ19XIFF2753.

The Two Ecologies

Trying to keep up with the ecological literature is a daunting task, and my aging efforts shout to me that there are now two ecologies that it might be worth partially separating. First, many published “ecological” papers are natural history. This is certainly an important component of the environmental literature but for the most part good observations alone are not science in the formal sense of science addressing problems and trying to solve them with the experimental approach. The information provided in the natural history literature regarding both plants and animals include their identification, where they live, what nutrients or food resources they utilize and in some cases information on their conservation status. A good foundation of natural history is needed to do good ecological research to be sure so my statements must not be misinterpreted to suggest that I do not appreciate natural history. Good natural history leads into the two parts of ecology that I would like to discuss. I call these social ecology and scientific ecology.

Social ecology flows most easily out of natural history and deals with the interaction between humans and the biota. Thus, for example, many people love birds which are ever present in both cities and countryside, are often highly colourful and vocal in our environment. Similarly, many tourists from North America visit Australia, Africa and Central America to see birds that are unique to those regions. Similar adventures are available to see elephants, bison, bears, and whales in their natural habitats. Social ecology flows into conservation biology in cases where preferred species are threatened by human changes to the landscape. The key here is that there is a mix in social ecology between human entertainment and a concern for species losses that are driven by human actions. Social ecology is mostly about people and their views of what parts of the environment are important to them. People love elephants but are little concerned about earthworms unless they bother them.

Scientific ecology should operate with a broader perspective of testing hypotheses to understand how populations and communities of animals and plants interact to produce the world as we see it. It asks about how species interactions change over time and whether they lead to environmental stability or instability. Scientific ecology has a time dimension that is much longer than that of social ecology. The focus of scientific ecology is hypothesis testing to answer problems or questions about how the biological world works. This perspective interacts strongly with climate change and human disturbances as well as natural disturbances like flooding or forest fires. While social ecology asks what is happening, scientific ecology asks why this is happening in our ecosystems. Scientific ecology allows us to determine the causal factors behind problems of change and the management approaches that might be required. While social ecology observes that migratory birds appear to be declining in abundance, scientific ecology asks exactly which bird species are at risk and what factors like food supplies, predation, or disease are the cause of the decline. And most importantly can humans change the environment to prevent species losses?

Conservation ecology has become the link between social and scientific ecology and shares elements of both approaches. Too much of social conservation biology consists of moaning and groaning about changes with little data and unverifiable speculations. As such it provides little help to solve conservation problems. When there is clear public support for issues like old growth logging, politicians often do not act ethically to follow public support because of economics or inertia. Scientific ecology has been strongly influenced by Karl Popper’s (1963) book, with much discussion today among philosophers about Popper’s approach to hypotheses within the context of our social values and objectives (Dias 2019). Lundblad and Conway (2021) provide a classic example of hypothesis testing for clutch size in birds which illustrates well the path of scientific ecology over many years from initial conjectures to more refined understanding of the original scientific question.

In a sense this ecological dichotomy is found in many of the sciences. Medicine is a good example. We can observe and describe symptoms of people dying of lung cancer, but medical scientists really wish to know what environmental causes like air pollution or cigarette smoking are producing this mortality, and whether genetic backgrounds are involved. Science is far from perfect and there are many false leads in proposals of drugs in medicine that turn out to be counterproductive to solving a particular problem. Kim and Kendeou (2021) discuss the critical question of knowledge transfer as science progresses in our society today through knowledge transfer from generation to generation.

My concern is that social ecology is replacing scientific ecology in the ecological literature so that as we are so enamoured with the beauty of nature, we forget the need to find out quantitatively what is happening and how it might be mitigated. As with medicine, talking about problems does not solve them without serious empirical scientific study.

Dias, E.A. (2019) Science as a game in Popper. Griot : Revista de Filosofia,, 19, 327-337.doi: 10.31977/grirfi.v19i3.1239. (in Portuguese; use Google Translate)

Kim, J. & Kendeou, P. (2021) Knowledge transfer in the context of refutation texts. Contemporary Educational Psychology, 67, 102002.doi: 10.1016/j.cedpsych.2021.102002.

Lundblad, C.G. & Conway, C.J. (2021) Ashmole’s hypothesis and the latitudinal gradient in clutch size. Biological Reviews, 96, 1349-1366.doi: 10.1111/brv.12705.

Popper, K.R. (1963) Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge and Kegan Paul, London. 412 pp.