Category Archives: Research Funding

On Conservation

The question of how ecology can guide decisions about conservation actions is a vexed one of which much has already been written with respect to conservation triage (Bottrill et al. 2009, Gerber 2016). The global question – what should we do now? – produces two extreme answers: (1) do nothing. The biodiversity on earth has gone through many climatic fluctuations imposed by geology and planetary physics and these forces are out of our hands. Or (2) we must protect all species because we do not know if they are important for ecosystem function. The government recognizes that (2) is impossible, and either reflects back to answer (1) or politely asks scientists to suggest what is possible to achieve with limited funding. John Wiens (2016) in an interesting discussion in the British Ecological Society Bulletin (December 2016, pp 38-39) suggests that two possible solutions to this conundrum are to get more funding for conservation to reduce this clear financial limitation, or secondly to move from the conservation of individual species to that of ecosystems. The problem he and many others recognize is that the public at large fall in love with individual species much more readily than with ecosystems. It is the same problem medical science often faces with contributions from wealthy people – attack individual diseases with my funding, not public health in general.

Ecologists face this dilemma with respect to their research agenda and research grants in general – what exactly can you achieve in 3-5 years with a small amount of money? If your research is species-specific, something useful can often be studied particularly if the threatening processes are partly understood and you adopt an experimental approach. If your research is ecosystem oriented and your funds are limited you must generally go to the computer and satellite ecology to make any short term research possible. This problem of larger scale = larger costs can be alleviated if you work in a group of scientists all addressing the same ecosystem issue. This still requires large scale funding which is not as easily obtained as ecologists might like. The government by contrast wishes more and more to see results even after only a few years, and asks whether you have answered your original question. The result is a patchwork of ecological data which too often makes no one happy.

If you want a concrete example, consider the woodland caribou of western Canada (Schneider et al. 2010). For these caribou Hebblewhite (2017) has clearly outlined a case in which the outcomes of any particular action are difficult to predict with the certainty that governments and business would be happy with. Many small herds are decreasing in size, and one path is to triage them, leaving many small herds to go extinct and trying to focus financial resources to save larger herds in larger blocks of habitat for future generations. The problem is the oil and gas industry in western Canada, and hence the battle between resources that are worth billions of dollars and a few caribou. Wolf control can serve as a short term solution, but it is expensive and temporary. Governments like action even if it is of no use in the long term; it makes good media coverage. None of these kinds of conservation decisions are scientific in nature, and must be policy decisions by governments. It flips us back into the continuum between options (1) and (2) in the opening paragraph above. And for governments policy decisions are more about jobs and money than about conservation.

The list of threatened and endangered species that make our newspapers are a tiny fraction of the diversity of species in any ecosystem. There is no question but that many of these charismatic species are declining in numbers, but the two larger questions are: will this particular species go extinct? And if this happens will this make any difference to ecosystem function? There is scarcely a single species of all that are listed as threatened and endangered for which ecologists have a good answer to either of these questions. So the fallback position to option (1) is that we have a moral obligation to protect all species. But this fallback position leads us even further out of science.

In the end we must ask as scientists what we can do with the understanding we have, and what more needs to be done to improve this understanding. Behind all this scientific research looms the elephant of climate change which we either ignore or build untestable computer models to make ‘predictions’ which may or may not occur, if only because of the time scales involved.

None of these problems prevents us from taking actions on conservation on the ground (Wiens 2016a). We know that, if we take away all the habitat, species abundances will decline and some will go extinct. Protecting habitat is the best course of action now because it needs little research to guide action. There is much to know yet about the scale of habitats that need preservation, and about how the present scale of climate change is affecting protected areas now. Short term research can be most useful for these issues. Long-term research needs to follow.

Bottrill, M.C., et al. (2009) Finite conservation funds mean triage is unavoidable. Trends in Ecology & Evolution, 24, 183-184. doi: 10.1016/j.tree.2008.11.007

Gerber, L.R. (2016) Conservation triage or injurious neglect in endangered species recovery. Proceedings of the National Academy of Sciences USA, 113, 3563-3566. doi: 10.1073/pnas.1525085113

Hebblewhite, M. (2017) Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biological Conservation, 206, 102-111. doi: 10.1016/j.biocon.2016.12.014

Schneider, R.R., Hauer, G., Adamowicz, W.L. & Boutin, S. (2010) Triage for conserving populations of threatened species: The case of woodland caribou in Alberta. Biological Conservation, 143, 1603-1611. doi: 10.1016/j.biocon.2010.04.002

Wiens, J.A. (2016) Is conservation a zero-sum game? British Ecological Society Bulletin 47(4): 38-39.

Wiens, J.A. (2016a) Ecological Challenges and Conservation Conundrums: Essays and Reflections for a Changing World. John Wiley and Sons, Hoboken, New Jersey. 344 pp. ISBN: 9781118895108

University Conundrums

Universities in Canada and the United States and probably in Australia as well are bedeviled by not knowing what they should be doing. In general, they all want to be ‘excellent’ but this is largely an advertising gimmick unless one wishes to be more specific about excellent in what? Excellent in French literature? Probably not. Excellent in the engineering that facilitates the military-industrial complex? Probably yes, but with little thought of the consequences for universities or for Planet Earth (Smart 2016). Excellence in medicine? Certainly, yes. But much of the advertisement about excellence is self aggrandisement, and one can only hope that underneath the adverts there is some good planning and thinking of what a university should be (Lanahan et al. 2016).

There are serious problems in the world today and the question is what should the universities be doing about these long-term, difficult problems. There are two polar views on this question. At one extreme, universities can say it is our mandate to educate students and not our mandate to solve environmental or social problems. At the other extreme, universities can devote their resources to solving problems, and thereby educate students in problem analysis and problem solving. But these universities will not be very popular since for any serious issue like climate change, many voters are at odds over what can and should be done, Governments do not like universities that produce scholarship that challenges their policies. So we must always remember the golden rule – “she that has the gold, makes the rules”.

But there are constraints no matter what policies a university adopts, and there is an extensive literature on these constraints. I want to focus on one overarching constraint for biodiversity research in universities – graduate students have a very short time to complete their degrees. Given a 2-year or 3-year time horizon, the students must focus on a short-term issue with a very narrow focus. This is good for the students and cannot be changed. But it is potentially lethal for ecological studies that are long-term and do not fit into the demands of thesis writing. A basic assumption I make is that the most important ecological issues of our day are long-term problems, at least in the 20-year time frame and more likely in the 50 to 100-year time frame. The solution most prevalent in the ecology literature now is to use short term data to produce a model to extrapolate short term data into the indefinite future by use of a climate model or any other model that will allow extrapolation. The result of this conundrum is that the literature is full of studies making claims about ecological processes that are based on completely inadequate time frames (Morrison 2012). If this is correct, at least we ought to have the humility to point out the potential errors of extrapolation into the future. We make a joke about this situation in our comical advice to graduate students: “If you get an exciting result from your thesis research in year 1, stop and do no more work and write your thesis lest you get a different result if you continue in year 2.”

The best solution for graduate students is to work within a long-term project, so that your 2-3 years of work can build on past progress. But long-term projects are difficult to carry forward in universities now because research money is in short supply (Rivero and Villasante 2016). University faculty can piggy-back on to government studies that are well funded and long-term, but again this is not always possible. Conservation ecology is not often well funded by governments either, so we keep passing the buck. Collaboration here between governments and universities is essential, but is not always strong at the level of individual projects. Some long-term ecological studies are led by federal and regional government research departments directly, but more seem to be led by university faculty. And the limiting resource is typically money. There are a set of long-term problems in ecology that are ignored by governments for ideological reasons. Some politicians work hard to avoid the many ecological problems that are ‘hot potatoes’ and are best left unstudied. Any competent ecologist can list for you 5 or more long-term issues in conservation biology that are not being addressed now for lack of money. I doubt that ideas are the limiting resource in ecology, as compared with funding.

And this leads us back in a circle to the universities quest for ‘excellence’. Much here depends on the wisdom of the university’s leaders and the controls on university funding provided by governments for research. In Canada for example, funding constraints for research excellence exist based on university size (Murray et al. 2016). How then can we link the universities’ quest for excellence to the provision of adequate funding for long-term ecological issues? As one recommendation to the directors of funding programs within the universities, I suggest listing the major problems of your area and of the world at large, and then fund the research within your jurisdiction by how well the proposed research matches the major problems we face today.

Lanahan, L., Graddy-Reed, A. & Feldman, M.P. (2016) The Domino Effects of Federal Research Funding. PLoS ONE, 11, e0157325. doi: 10.1371/journal.pone.0157325

Morrison, M.L. (2012) The habitat sampling and analysis paradigm has limited value in animal conservation: A prequel. Journal of Wildlife Management, 76, 438-450. doi: 10.1002/jwmg.333

Murray, D.L., Morris, D., Lavoie, C., Leavitt, P.R. & MacIsaac, H. (2016) Bias in research grant evaluation has dire consequences for small universities. PLoS ONE, 11, e0155876.doi: 10.1371/journal.pone.0155876

Rivero, S. & Villasante, S. (2016) What are the research priorities for marine ecosystem services? Marine policy, 66, 104-113. doi: 10.1016/j.marpol.2016.01.020

Smart, B. (2016) Military-industrial complexities, university research and neoliberal economy. Journal of Sociology, 52, 455-481. doi: 10.1177/1440783316654258

Biodiversity Conundrums

Conservation ecologists face a conundrum, as many have pointed out before. As scientists we do not make policy. Most conservation problems are essentially a moral issue of dealing with conflicts in goals and allowable actions. Both the United States and Canada have endangered species legislation in which action plans are written for species of concern. In the USA species of concern are allotted some funding and more legal protection than in Canada, where much good material is written but funding for action or research is typically absent. What is interesting from an ecological perspective is the list of species that are designated as endangered or threatened. Most of them can be described colloquially as the “charismatic megafauna”, species that are either large or beautiful or both. There are exceptions of course for some amphibians and rare plants, but by and large the list of species of concern is a completely non-random collection of organisms that people see in their environment. Birds and butterflies and large mammals are at the head of the list.

All of this is fine and useful because it is largely political ecology, but it raises the question of what will happen should these rescue plans for threatened or endangered species fail. This question lands ecologists in a rather murky area of ecosystem function, which leads to the key question: how is ecosystem function affected by the loss of species X? The answer to this question depends very much on how you define ecosystem function. If species X is a plant and the ecosystem function measured is the uptake of CO2 by the plant community, the answer could be a loss of function, no change, or indeed an increase in CO2 uptake if species X for example is replaced by a weed that is more productive that species X. The answer to this simple question is thus very complicated and requires much research. For a hypothetical example, plant X may be replaced by a weed that fixes more CO2, and thus ecosystem function is improved as measured by carbon uptake from the atmosphere. But the weed may deplete soil nitrogen which could adversely affect other plants and soil quality. Again more data are needed to decide this. If the effect size is small, much research could provide an ambiguous answer to the original question, since all measurement involves errors.

So now we are in a box, a biodiversity conundrum. The simplest escape is to say that all species loss is undesirable in any ecosystem, a pontification that is more political than scientific. And, for a contrary view, if the species lost is a disease organism, or an insect that spreads human diseases, we will not mourn its passing. In practice we seem to agree with the public that the species under concern are not all of equal value for conservation. The most serious outcome of this consideration is that where the money goes for conservation is highly idiosyncratic. There are two major calls for funding that perhaps should not be questioned: first, for land (and water) acquisition and protection, and second, for providing compensation for the people whose livelihoods are affected by protected areas with jobs and skills that improve their lives. The remaining funds need to be used for scientific research that will further the cause of conservation in the broad sense. The most useful principle at this stage is that all research has a clear objective and a clear list of what outcomes can be used to judge its success. For conservation outcomes this judgement should be clear cut. Currently they are not.

When Caughley (1994) described the declining population paradigm and the small population paradigm he clearly felt that the small population paradigm, while theoretically interesting, had little to contribute to most of the real world problems of biodiversity conservation. He could not have imagined at the time how genetics would develop into a powerful set of methods of analysis of genomes. But with a few exceptions the small population paradigm and all the elegant genetic work that has sprung from it has delivered a mountain of descriptive information with only a molehill of useful management options for real world problems. Many will disagree with my conclusion, and it is clear that conservation genetics is a major growth industry. That is all well and good but my question remains as to its influence on the solution of current conservation problems (Caro 2008; Hutchings 2015; Mattsson et al. 2008). Conservation genetic papers predicting extinctions in 100 years or more based on low levels of genetic variation are not scientifically testable and rely on a law of conservation genetics that is riddled with exceptions (Nathan et al. 2015; Robinson et al. 2016). Do we need more untestable hypotheses in conservation biology?

Caro, T. 2008. Decline of large mammals in the Katavi-Rukwa ecosystem of western Tanzania. African Zoology 43(1): 99-116. doi:10.3377/1562-7020(2008)43[99:dolmit]2.0.co;2.

Caughley, G. 1994. Directions in conservation biology. Journal of Animal Ecology 63: 215-244. doi: 10.2307/5542

Hutchings, J.A. 2015. Thresholds for impaired species recovery. Proceedings of the Royal Society. B, Biological sciences 282(1809): 20150654. doi:10.1098/rspb.2015.0654.

Mattsson, B.J., Mordecai, R.S., Conroy, M.J., Peterson, J.T., Cooper, R.J., and Christensen, H. 2008. Evaluating the small population paradigm for rare large-bodied woodpeckers, with Implications for the Ivory-billed Woodpecker. Avian Conservation and Ecology 3(2): 5. http://www.ace-eco.org/vol3/iss2/art5/

Nathan, H.W., Clout, M.N., MacKay, J.W.B., Murphy, E.C., and Russell, J.C. 2015. Experimental island invasion of house mice. Population Ecology 57(2): 363-371. doi:10.1007/s10144-015-0477-2.

Robinson, J.A., Ortega-Del Vecchyo, D., Fan, Z., Kim, B.Y., and vonHoldt, B.M. 2016. Genomic flatlining in the endangered Island Fox. Current Biology 26(9): 1183-1189. doi:10.1016/j.cub.2016.02.062.

On Disease Ecology

One of the sleepers in population dynamics has always been the role of disease in population limitation and population fluctuations. Part of the reason for this is that disease studies need cooperation between skilled ecologists and skilled microbiologists. Another problem is the possibility of infinite regress in looking for disease agents as a cause of population change in natural populations – e.g. if it is not virus X, there are hundreds of other viruses that might be the culprit. In both North America and Europe one focus of concern has been on the hantavirus group (Luis et al. 2010; Mills et al. 2010, Davis et al. 2005, Mills et al. 1999). Hantaviruses come in many different forms and are typically carried by rodent species. Some varieties produce hemorrhagic fever with renal syndrome in Europe, Asia and Africa, but in the Americas the main disease of concern is HPS (hantavirus pulmonary syndrome). It is no surprise that often emerging diseases are studied only because some humans die from them. As of 2016, 690 cases of hantavirus pulmonary syndrome have been recorded in the USA, and 36% of these cases resulted in death. The reverse question of what the disease is doing to the animal population gets rather less attention typically than the human disease problem. The example I want to discuss here is the Sin Nombre virus (SNV) in deer mice (Peromyscus spp.), widespread rodents in North America.

The hantavirus outbreak in the Southwestern USA in the 1990s caused numerous human deaths and produced a number of field studies that showed a patchy pattern of infection among deer mice in Arizona and Colorado (Mills et al. 1999). Male mice were infected more than females and the suggestion was that males fighting for territories were infecting one another directly when population densities were high. The call for long-term studies went out and several studies from 3-5 years were carried out in the late 1990s until the problem of infection in the human population became less of an issue compared with other diseases such as Ebola in other parts of the world. The shift in concern resulted in reduced funding for field studies in North America.

In 1994 Rick Douglass and his research team began long term studies on the Sin Nombre virus in deer mice using 18 live trapping areas of 1 ha each spread across Montana and placed in a variety of habitats (Douglass et al. 2001). Long-term for their study was 15 years, all this at a time when 2-3 year studies were thought to be sufficient to unravel the nexus of infection and transmission. The idea was to complement in Montana similar rodent research in Arizona, New Mexico, and Colorado. The results are fascinating and important because they illustrate the importance of long term research and the understanding of what a well designed field study can produce.

Rightfully many of the hantavirus studies were focused on the human connection, but what I want to emphasize here is the impact of this virus on the rodent populations. Luis et al. (2012) estimated that male Peromyscus had their monthly survival rate reduced from 0.67 to 0.58 if they were seropositive, a 13% reduction, but females showed no effect of hantavirus on survival so that infected and uninfected females survived equally well. Hantavirus does reduce body growth rates of infected male mice. One consequence of these findings should be that the growth rate of Peromyscus populations in Montana should be only slightly affected by hantavirus infections, since it is the female component of the population that drives numbers. There are limitations to these conclusions since juveniles too young to live trap could suffer mortality that at present cannot be measured. The threshold for hantavirus transmission in these Peromyscus populations was about 17 individuals per ha (Luis et al. 2015), implying that hantavirus would disappear in populations smaller than this because it would not transmit. The consequence for us is that human hantavirus infections in North America are much more likely when deer mouse populations are high, and by monitoring deer mice ecologists can broadcast warnings when there are increased possibilities of infection with this lethal disease.

The details about the Sin Nombre hantavirus in North America are well covered in these and other papers. The most important general message from this research has been the need for long term studies to get at what might initially seem to be a simple population problem (Carver et al. 2015). There are a host of other viruses that infect rodent species and many other mammals and birds about which we know very little. The path to understanding the effects of these viruses on the animals they infect and their potential for human transmission will require much detailed work over a longer time period than what is now the funding horizon of our granting agencies. The Montana studies on the Sin Nombre virus required ecologists to trap for 20 years with more than 851,000 trap nights to catch 16,608 deer mice, and collect 10,572 blood samples to assess infections and gain an understanding of this virus disease. The problem too often is that it is easy to find ecologists and virologists keen to cooperate in these studies of disease, but it is not easy to find the long term funding that looks at these ecological problems in the time scale of 10-20 years or more. We need much more long term thinking about ecological problems and the funding to support team efforts on difficult problems that are not soluble in a 3-year time frame.

Carver, S., Mills, J.N., Parmenter, C.A., Parmenter, R.R., Richardson, K.S., Harris, R.L., Douglass, R.J., Kuenzi, A.J., and Luis, A.D. 2015. Toward a mechanistic understanding of environmentally forced zoonotic disease emergence: Sin Nombre hantavirus. BioScience 65(7): 651-666. doi: 10.1093/biosci/biv047.

Davis, S., Calvet, E., and Leirs, H. 2005. Fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector-Borne and Zoonotic Diseases 5(4): 305-314.

Douglass, R.J., Wilson, T., Semmens, W.J., Zanto, S.N., Bond, C.W., Van Horn, R.C., and Mills, J.N. 2001. Longitudinal studies of Sin Nombre virus in deer mouse-dominated ecosystems of Montana. American Journal of Tropical Medicine and Hygiene 65(1): 33-41.

Luis, A.D., Douglass, R.J., Hudson, P.J., Mills, J.N., and Bjørnstad, O.N. 2012. Sin Nombre hantavirus decreases survival of male deer mice. Oecologia 169(2): 431-439. doi: 10.1007/s00442-011-2219-2.

Luis, A.D., Douglass, R.J., Mills, J.N., and Bjørnstad, O.N. 2010. The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre hantavirus. Journal of Animal Ecology 79(2): 462-470. doi: 10.1111/j.1365-2656.2009.01646.x.

Luis, A.D., Douglass, R.J., Mills, J.N., and Bjørnstad, O.N. 2015. Environmental fluctuations lead to predictability in Sin Nombre hantavirus outbreaks. Ecology 96(6): 1691-1701. doi: 10.1890/14-1910.1.

Mills, J.N., Amman, B.R., and Glass, G.E. 2010. Ecology of hantaviruses and their hosts in North America. Vector-Borne and Zoonotic Diseases 10(6): 563-574. doi: 10.1089/vbz.2009.0018.

Mills, J.N., Ksiazek, T.G., Peters, C.J., and Childs, J.E. 1999. Long-term studies of hantavirus reservoir populations in the southwestern United States: a synthesis. Emerging Infectious Diseases 5(1): 135-142.

On Gravity Waves and the 1%

The news this week has been all about the discovery of gravity waves and the great triumphs of modern physics to understand the origin of the universe. There is rather less news on the critical ecological problems of the Earth – of agricultural sustainability, biodiversity collapse, pollution, climate change – not to mention the long recognized economic problems of poverty and inequality, globally and within our own countries. All of these issues converge to the questions of resource allocations by our governments that have failed to assess priorities on many fronts. Many see this but have little power to change the system that is continually moving to save and improve the fortunes of the 1% to the detriment of most people.

In scientific funding there has always been a large bias in favor of the physical sciences, as I have commented on previously, and the question is how this might be publicized to produce  a better world. I suggest a few rules for scientific funding decisions both by governments and by private investors.

Rule 1: For maximizing scientific utility for the biosphere including humans, we require a mix of basic and applied science in every field. Whether this mix should be 50:50, 30:70, or 70:30 should be an item for extended discussion with the implicit assumption that it could differ in different areas of science.

Rule 2: Each major area of science should articulate its most important issues that must be addressed in the short term and the long term (>50 years). For biodiversity, as an example, the most important short term problem is to minimize extinctions while the most important long term problem might be to maintain genetic variability in populations.

Rule 3: The next step is most critical and perhaps most controversial: What are the consequences for the Earth and its human population if the most important issue in any particular science is not solved or achieved? If the required experiments or observations can be delayed for 30 (or 50) years, what will it matter?

If we could begin to lay out this agenda for science, we could start a process of ranking the importance of each of the sciences for funding in the present and in the long term. At the present time this ranking process is partly historical and partly based on extreme promises of future scenarios or products that are of dubious validity. There is no need to assume that all will agree, and I am sure that several steps would have to be designated to involve not only young and older scientists but also members of the business community and the public at large.

If this agenda works, I doubt that we would spend quite so much money on nuclear physics and astronomy and we might spend more money on ocean science, carbon budgets, and sustainable agricultural research. This agenda would mean that powerful people could not push their point of view in science funding quite so freely without being asked for justification. And perhaps when budgets are tight for governments and businesses, the first people on the firing line for redundancy will not be environmental scientists trying their best to maintain the health of the Earth for future generations.

So I end with 2 simple questions: Could gravity waves have waited another 100 years for discovery? What is there that cannot wait?

(Finally, an apology. I failed to notice that on a number of recent blogs the LEAVE A REPLY option was not available to the reader. This was inadvertent and somehow got deleted with a new version of the software. I should have noticed it and it is now corrected on all blogs.)

On Philanthropic Investment in Conservation – Part 2

Here is an optimistic thought for the day. After writing my previous blog on philanthropy and conservation, it occurred to me that a single scenario might focus the mind of ecologists and conservation biologists as we think about relevant research:

Suppose you are sitting in your office and someone comes in and tells you that they wish to donate one billion dollars to your research in ecology. What would you tell them you would like to do?

This is of course ridiculous but let us be optimistic and think it may happen. There are a lot of very rich people around the world and they will have to do something with all their money. Some of it will be wasted but some could do much good for the development of strong science. So let us pretend for the moment that this will happen sometime in the future.

We need to think clearly what this money entails. First, if we want to live off the interest and we expect 5% return on investment, we end up with $ 50 million to spend per year. What are we going to do with all this money? The two options would seem to be to buy land and maintain it for conservation, or to set up a foundation for conservation that would support graduate student and postdoctoral fellows. Let us check these options out with a broad brush.

The first option is based on the belief that habitat loss is the key process driving biodiversity decline so we should use part of the money for land purchase or marine rights to areas. But we note that land purchases are not very useful if the land is not managed and protected so that some group of people need to be in charge. So suppose we spend half immediately on land acquisition, and land costs are $100 per ha, we could purchase about 50,000 km2, an area approximately the size of Denmark, slightly smaller than Scotland, and about the size of West Virginia. Then we can employ about 250 people full time to do research or manage the protected landscape at an overall cost of $100 K per scientist including salary and operating research costs. This is an attractive option and the decision that would need to be made is what areas are most important to purchase for conservation in what part of the world.

The second option is to establish a permanent foundation for conservation that would be devoted to supporting graduates and postdoctoral fellows worldwide. I am not clear on the costs for a foundation to operate but let us assume $ 2 million a year for staff and operating costs. This would leave $ 48 million for operating costs, supporting 480 students or postdocs at $100,000 each per year or 320 students if you wished to give each an average $150,000 per year for research and salary. If these were spread out over the 196 countries on Earth, clearly there would be about 2 scientists per country. If we spread them out evenly over the 148 million km2 of land area over the whole Earth, we would require each student or scientist to be in charge of about 300,000 km2, an area about the size of Norway, or Poland or the Philippines. Clearly one would not operate in such a fashion, and would concentrate person-power in the areas of greatest need.

There is considerable literature discussing the issue of how philanthropy can augment conservation in the most effective manner, and a few papers are given here that further the discussion.

Where does this theoretical exercise leave us? Clearly there would be many other ways to utilize these hypothetical funds for conservation, but the point that shows clearly is that the funds needed to achieve conservation on a global scale are very large, and even a billion dollars disappears very quickly if we are attempting to achieve solid conservation outcomes. The costs of conservation are large and there is the need to recognize that government funding is critical, so that an additional billion dollars from a philanthropist will only add icing on the cake and not the whole cake.

Not that anyone I know would turn down a billion-dollar donation as too little.

Adams, W., and J. Hutton. 2007. People, parks and poverty: Political ecology and biodiversity conservation. Conservation and Society 5:147-183.

Diallo, R. 2015. Conservation philanthropy and the shadow of state power in Gorongosa National Park, Mozambique. Conservation and Society 13:119-128. doi: 10.4103/0972-4923.164188

Ferraro, P. J., and S. K. Pattanayak. 2006. Money for Nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biology 4:e105.
doi: 10.1371/journal.pbio.0040105

Jones, C. 2012. Ecophilanthropy, neoliberal conservation, and the transformation of Chilean Patagonia’s Chacabuco Valley. Oceania 82:250-263.
doi: 10.1002/j.1834-4461.2012.tb00132.x

 

On Philanthropic Investment in Biodiversity Conservation

In the holiday season there is much talk and recommendations about donations to worthy causes, and this raises an interesting conundrum in biodiversity conservation. The question is relatively simple to answer if you have little money, but any reading of the business pages of our newspapers or a walk around the shopping centers of our large cities makes you realize that there are a great many people with more than a little money. What should you do with your excess cash?

Some people (but not all) will want to ‘make a difference’ with their accumulated wealth, at least until medical science can overcome the universal belief that “you can’t take it with you”. Peter Singer (2015) has addressed this question of how to spend your money most effectively when you donate. It comes down in the first instance of your time frame. If you wish to make a difference in the short term of a few years, your choices may differ fundamentally from those taken to make a difference in the long term of 100-500 years. The bulk of philanthropic donations now are in the short-term camp. We have poor people living on the street in most of our cities, people with curable diseases in less developed countries but no medical aid, and victims of wars, earthquakes and tsunamis who must rebuild their lives. So we must start with what I think is the biggest decision regarding philanthropy – do we worry only about people, or do we worry about the biological world as well? Most donations are directly related to improving the human condition, locally or globally.

But there is hope because more and more people are realizing that we cannot separate people from biodiversity because of ecosystem services. Without well-functioning ecosystems on Earth, all the medical advances of our time are for naught. This is an important message to convey to potential donors.

Conservation philanthropy is a curious mix of short term and long term goals. Many endangered species need action now to survive. But ecologists typically look at both the shorter and the longer term goals of conservation. The simplest goal is to set aside land for protection. Without habitat all is lost. But this goal must be paired with long term funding to hire rangers to protect the area from poachers and to monitor the status of the species within the protected zone. Relying on the government to do this by itself is not adequate and never has been. But beyond this primary goal of land protection, the conservation movement fractionates. There are arguments that without effective human population stabilization biodiversity loss must continue. So does this mean that effective donations should be earmarked for agencies that empower women and offer reproductive services? But this points out that we must not fall into the trap of thinking we can do only one thing at a time. Pandas or population – why not “both and”? Climate change is a similar ‘elephant in the room’ problem.

What are the long-term goals of conservation biology that would benefit from philanthropic investment? Start with pest control. Biological control of pests is a long-term issue par excellence (Goldson et al. 2015, Myers et al. 2009, Wyckhuys et al. 2013). But biological control programs are underfunded by governments and obtain little private philanthropy. Weed control, insect pest control, vertebrate pest control all fit in the same problem basket – long term problem supported only by short term funding. Invasive pest eradication on islands is one area of pest control in which both governments and private funding have been joining forces (http://www.islandconservation.org/ ) with good results.

Two other areas of conservation biology that are classically underfunded are taxonomy and monitoring. In many taxonomic groups the majority of the species on Earth are not yet identified and described with a scientific name. The nearest analogy would be having a bank with tons of coins of different sizes and shapes, but only a few of which had any engraving on them. Taxonomy which is so vital to biology suffers because physical scientists consider it “stamp collecting” and unworthy of scientific funding. Monitoring of ecological communities faces the same problem. Monitoring ecological communities is similar to monitoring weather, yet we support meteorological stations around the world but provide little support for ecological monitoring. At present ecological monitoring is done ad hoc by dedicated people but with little systematic organization. Monitoring of changes in the arctic is being coordinated globally (http://www.amap.no/ ) and specific programs have been outlined for example for northern Canada (https://www.ec.gc.ca/faunescience-wildlifescience/, but the funding levels are low considering the size of the areas under consideration. Tropical ecosystem monitoring is even less well funded, yet that is where much of global biodiversity is located (c.f. for example, Cardoso et al. 2011, Burton 2012).

So what can you do about this? Talk up the necessity and the advantages of conservation biodiversity. Imagine what would happen to any of these biodiversity problems if a foundation the size of the Bill & Melinda Gates Foundation devoted a large amount of its donations to conservation. Environmental stewardship is the key to the Earth’s survival, and a combination of problem solving of current biodiversity problems combined with a strong research component on how species interact and ecosystems operate to sustain themselves would be a legacy for future generations and a flagship for the next 100 years.

Burton, A.C. (2012) Critical evaluation of a long-term, locally-based wildlife monitoring program in West Africa. Biodiversity and Conservation, 21, 3079-3094. doi: 10.1007/s10531-012-0355-6

Cardoso, P., Erwin, T.L., Borges, P.A.V. & New, T.R. (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647-2655. doi: 10.1016/j.biocon.2011.07.024

Glen, A.S., Atkinson, R., Campbell, K.J., Hagen, E., Holmes, N.D., Keitt, B.S., Parkes, J.P., Saunders, A., Sawyer, J. & Torres, H. (2013) Eradicating multiple invasive species on inhabited islands: the next big step in island restoration? Biological Invasions, 15, 2589-2603. doi: 10.1007/s10530-013-0495-y

Goldson, S.L., Bourdôt, G.W., Brockerhoff, E.G., Byrom, A.E., Clout, M.N., McGlone, M.S., Nelson, W.A., Popay, A.J., Suckling, D.M. & Templeton, M.D. (2015) New Zealand pest management: current and future challenges. Journal of the Royal Society of New Zealand, 45, 31-58. doi: 10.1080/03036758.2014.1000343

Myers, J.H., Jackson, C., Quinn, H., White, S.R. & Cory, J.S. (2009) Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biological Control, 50, 66-72. doi: 10.1016/j.biocontrol.2009.02.008

Singer, P. (2015) The Most Good You Can Do. Yale University Press, New Haven. ISBN: 978-0-300-18027-5

Wyckhuys, K.A.G., Lu, Y., Morales, H., Vazquez, L.L., Legaspi, J.C., Eliopoulos, P.A. & Hernandez, L.M. (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biological Control, 65, 152-167. doi: 10.1016/j.biocontrol.2012.11.010 http://www.islandconservation.org/where-we-work/

 

On Improving Canada’s Scientific Footprint – Breakthroughs versus insights

In Maclean’s Magazine on November 25, 2015 Professor Lee Smolin of the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo, and a member of the Royal Society of Canada, wrote an article “Ten Steps to Make Canada a Leader in Science” (http://www.macleans.ca/politics/ottawa/ten-steps-to-make-canada-a-leader-in-science/ ). Some of the general points in this article are very good but some seem to support the view of science as big business and that leaves ecology and environmental science in the dust. We comment here on a few points of disagreement with Professor Smolin. The quotations are from the Maclean’s article.

  1. Choose carefully.

“Mainly invest in areas of pure science where there is a path to world leadership. This year’s Nobel prize shows that when we do this, we succeed big.” We suggest that the Nobel Prizes are possibly the worst example of scientific achievement that is currently available because of their disregard for the environment. This recommendation is at complete variance to how environmental sciences advance.

  1. Aim for breakthroughs.

“No “me-too” or catch-up science. Don’t hire the student of famous Prof. X at an elite American university just because of the proximity to greatness. Find our own path to great science by recruiting scientists who are forging their own paths to breakthroughs.” But the essence of science has always been replication. Long-term monitoring is a critical part of good ecology, as Henson (2014) points out for oceanographic research. But indeed we agree to the need to recruit excellent young scientists in all areas.

  1. Embrace risk.

“Learn from business that it takes high risk to get high payoff. Don’t waste money doing low-risk, low-payoff science. Treat science like venture capital.” That advice would remove most of the ecologists who obtain NSERC funding. It is one more economic view of science. Besides, most successful businesses are based on hard work, sound financial practices, and insights into the needs of their customers.

  1. Recruit and invest in young leaders-to-be.

“Be savvy and proactive about choosing them…. Resist supporting legacies and entitlements. Don’t waste money on people whose best work is behind them.” We agree. Spending money to fund a limited number of middle aged, white males in the Canadian Excellence in Research Chairs was the antithesis of this recommendation. See the “Folly of Big Science” by Vinay Prasad (2015). Predicting in advance who will be leaders will surely depend on diverse insights and is best evaluated by giving opportunities for success to many from which leaders will arise.

  1. Recruit internationally.

“Use graduate fellowships and postdoctoral positions as recruitment tools to bring the most ambitious and best-educated young scientists to Canada to begin their research here, and then target the most promising of these by creating mechanisms to ensure that their best opportunities to build their careers going forward are here.” This seems attractive but means Canadian scientists have little hope of obtaining jobs here, since we are < 0.1% of the world’s scientists. A better idea – how about Canada producing the “best-educated” young scientists?

  1. Resist incrementalism.

If you spread new money around widely, little new science gets done. Instead, double-down on strategic fields of research where the progress is clear and Canada can have an impact.“ Fortin and Currie (2013) show that spreading the money around is exactly the way to go since less gets wasted and no one can predict where the “breakthroughs” will happen.  This point also rests on one’s view of the world of the future and what “breakthroughs” will contribute to the sustainability of the earth.

  1. Empower ambitious, risk-taking young scientists.

Give them independence and the resources they need to develop their own ideas and directions. Postdocs are young leaders with their own ideas and research programs”. This is an excellent recommendation, but it does conflict with the recommendation of many universities around the world of bringing in old scientists to establish institutes and giving incentives for established senior scientists.

  1. Embrace diversity.

Target women and visible minorities. Let us build a Canadian scientific community that looks like Canada.” All agreed on this one.

  1. Speak the truth.

“Allow no proxies for success, no partial credit for “progress” that leaves unsolved problems unsolved. Don’t count publications or citations, count discoveries that have increased our knowledge about nature. We do research because we don’t know the answer; don’t force us to write grant proposals in which we have to pretend we do.” This confounds the scientists’ code of ethics with the requirements of bureaucracies like NSERC for accounting for the taxpayers’ dollars. Surely publications record the increased knowledge about nature recommended by Professor Smolin.

  1. Consider the way funding agencies do business.

“We scientists know that panels can discourage risk-taking, encourage me-too and catch-up science, and reinforce longstanding entitlements and legacies. Such a system may incentivize low-risk, incremental work and limit the kind of out-of-the-box ideas that….leads to real breakthroughs. So create ambitious programs, empower the program officers to pick out and incubate the brightest and most ambitious risk-takers, and reward them when the scientists they invest in make real discoveries.” What is the evidence that program officers in NSERC or NSF have the vision to pick winners? This is difficult advice for ecologists who are asked for opinions on support for research projects in fields that require long-term studies to produce increases in ecological understanding or better management of biodiversity. It does seem like a recipe for scientific charlatans.

The bottom line: We think that the good ideas in this article are overwhelmed by poor suggestions with regards to ecological research. We come from an ecological world faced with three critical problems that will determine the fate of the Earth – food security, biodiversity loss, and overpopulation. While we all like ‘breakthroughs’ that give us an IPhone 6S or an electric car, few of the discoveries that have increased our knowledge about nature would be considered a breakthrough. So do we say goodbye to taxonomic research, biodiversity monitoring, investigating climate change impacts on Canadian ecosystems, or investing in biological control of pests? Perhaps we can add the provocative word “breakthrough” to our ecological papers and media reports more frequently but our real goal is to acquire greater insights into achieving a sustainable world.

As a footnote to this discussion, Dev (2015) raises the issue of the unsolved major problems in biology. None of them involve environmental or ecological issues.

Dev, S.B. (2015) Unsolved problems in biology—The state of current thinking. Progress in Biophysics and Molecular Biology, 117, 232-239.

Fortin, J.-M. & Currie, D.J. (2013) Big science vs. little science: How scientific impact scales with funding. PLoS ONE, 8, e65263.

Prasad, V. (2015) The folly of big science. New York Times. October 2, 2015 (http://www.nytimes.com/2015/10/03/opinion/the-folly-of-big-science-awards.html?_r=0 )

Henson, S.A. (2014) Slow science: the value of long ocean biogeochemistry records. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2025). doi: 10.1098/rsta.2013.0334.

 

On Funding for Agricultural Research

One of the most important problems of our day is the interaction between human population growth and the maintenance of sustainable agriculture in the face of climate change. I am currently sitting at the International Rice Research Institute (IRRI) near Manila where I am told they are responding to a 15-20% reduction in funding for their work. I have found this funding situation to be so ridiculous that I have decided to write this blog. Please stop reading if you think agricultural research already has too much funding, or that climate change and sustainable agriculture are not very important issues in comparison to our need for economic growth and increased wealth.

The critical issues here in Southeast Asia are the increasing human population and the productivity of rice agriculture. IRRI has done and is doing outstanding research to raise production of rice with new varieties and to control pests of rice with clever techniques that minimize the spreading of poisons, which everyone agrees must be minimized to protect agricultural and natural ecosystems. Present research concentrates on the ‘yield gap’, the difference between the actual production from farmer’s fields and the maximum possible yield that can be achieved with the best farm practices. The yield gap can be closed with more research by both social and natural scientists, but that is what is under stress now. IRRI operates with funding from a variety of governments and from private donors. Research funds are now being reduced from many of these sources, and the usual explanation is the faltering global economy combined with the severe refugee problems in the Middle East.

Consequently we now do not have enough money to support the most important research on a crop – rice – that is the essential food of half of the Earth’s human population. And it is not just research on rice that is being reduced, but that on corn, wheat, and any other crop you wish to name. Governments of developed countries like Canada, Australia and the USA are reducing their funding of agricultural research. Anyone who likes to eat might think this is the most ridiculous decision of all because agricultural research is an essential part of poverty reduction in the world and overall human welfare. So I ask a simple question – Why? How is it that you can visit any city in a developed country and see obscene excesses of wealth defined in any way you wish? Yet our governments continue to tell us that we are taxed too much, and we cannot afford more foreign aid, and that if we raised the taxation rate to help the poor of the Earth, our countries would all collapse economically. Yet historically taxes have often been raised during World Wars with general agreement that we needed to do so to achieve society’s goals. The goal now must be poverty reduction and sustainability in agriculture as well as in population. Important efforts are being done on these fronts by many people, but we can and must do more if we wish to leave a suitable Earth for future generations.

At the same time this shortage of funding should not all be laid at the feet of governments. Private wealth continues to increase in the world, and private gifts to research agencies like IRRI and to universities are substantial. But if we believe Piketty (2014), the rich will only get richer in the present economic climate and perhaps the message needs to be sent that donations are long overdue from the wealthy to establish foundations devoted to the problems of sustainability in agriculture, population, and society, as well as the protection of biodiversity. The inactions of people and governments in the past are well documented in books like Diamond (2005). Many scientific papers are mapping and have mapped the way forward to achieve a sustainable society (e.g. Cunningham et al. 2013). To make effective progress we must begin reinvestment in agriculture while not neglecting the human tragedies of our time. It can be both-and rather than either-or.

Cunningham, S.A., et al. (2013) To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agriculture, Ecosystems & Environment, 173, 20-27. doi 10.1016/j.agee.2013.04.007

Diamond, J. (2005) Collapse: How Societies Choose to Fail or Succeed. Viking, New York. 575 pp. ISBN: 0670033375

Piketty, T. (2014) Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006