Tag Archives: conservation

In Honour of David Suzuki at his Retirement

David Suzuki is retiring from his media work this year at age 86. If you wish to have a model for a lifetime of work, he should be high on your list – scientist, environmentalist, broadcaster, writer. He has been a colleague of mine at the Department of Zoology, UBC from the time when I first came there in 1970. He was a geneticist doing imaginative and innovative research with his students on the humble fruit fly Drosophila melanogaster. The Department at that time was a beehive of research and teaching, and David was a geneticist breathing fire at the undergraduates taking the genetics course. Many a doctor would probably tell you now that Suzuki’s genetics course was the most challenging in their undergraduate education.

The hierarchy in the Department of Zoology was very clear in the 1970s. First came the physiologists, top of the pack and excellent scientists who turned the spotlight on the Department nationally and internationally. Second came the geneticists, with the DNA revolution full on. At the bottom of the pile were the ecologists causing nothing but trouble about fisheries and wildlife management problems, pointing out a rising tide of environmental problems including climate change. Contrary to what you might conclude from the media, environmental problems and climate change issues were very alive even in the 1970s. But somehow these problems did not get through to governments, and David has been a key person turning this around. In 1979 he began a natural history and science program on the CBC entitled “The Nature of Things” which he then hosted for 43 years. In doing so he began to fill an empty niche in Canadian news affairs between the environmental scientists who had data on what was going on in the environment and what needed attention. Environmental scientists were severely ignored both by industry and the governments of the day who operated on two premises – first, that the most critical issues for Canada were economics and economic growth, and second that environmental issues could largely be ignored or could be solved by promises but no action. Alas we are still inundated with the news that “growth is good”, and “more growth is better”.   

I had relatively little involvement in David’s increasing interest in environmental issues by 1979, but I had written 3 ecology textbooks by then, pushing some of the environmental issues that are still with us, and I became a friend of David’s in the Department. We ecologists could only admire his ability to speak so clearly on the environmental issues of our day and connect these issues with the many travesties of how First Nations people had been sidelined. He pointed out very forcefully the astonishing failure of governments to address these issues. The public which was much less aware of environmental issues in the 1980s is now highly mobilized thanks in great part to all the work David and his colleagues have done in the last 50 years. He has many friends now but still strong enemies who continue to think of the environment as a large garbage can for economic growth. And he, still in his retirement, having achieved so much from his environmental work, bemoans the slow pace of government actions on environmental problems, as does every ecologist I know. His Foundation continues to press for action on many conservation fronts. So, thank you David for all your work and your wisdom over all these many years. You have engineered a strong environmental movement among old and young and I thank you for all that.


On Climate Change Research Funding

I have grown weary of media and news statements that climate change research should be a priority. At the present time military spending, war, and oil and gas companies seem to be the priority spending of many governments. Climate change research seems to be more focused on the physical sciences in attempts to predict what changes in temperature, rainfall, and sea conditions can be expected if we continue at the present global rates of greenhouse gas emissions. This is all very good, and the IPCC reports are excellent. The people are listening and reacting to the bad news even if all the major western governments are close to ignoring the problem. So where does this leave ecological scientists?

Our first response is that we should mimic the climatologists in predicting what the ecological world will be like in 2050 or 2100. But there is a major problem with this centered around the fact that physics has a whole set of fixed laws that will not change in a thousand years, so that the physics of the atmosphere and the oceans is reasonably understood and by the application of the laws of physics, we can arrive at a reasonable prediction that should be constrained by physical laws. Ecological science is nowhere near that paradigm of predictability because it deals with organisms that can evolve and interactions that can change rapidly when an unexpected invasive species arrives on the scene or humans interfere with ecosystem services. Ecological changes are not driven solely by climate change, a fact it is easy to forget. One consequence of this limitation is that we cannot make any kind of reliable predictions about the state of our ecosystems and the state of the Earth’s biodiversity by 2050 or 2100. We can however, in contrast to the physical sciences, do something about ecological changes by finding the limiting factors for the species under concern, protecting these endangered species and setting aside natural areas protected from human depredation. While we can do this to some extent in rich countries, in poor countries, particularly tropical ones, we have a poor record of protecting the exploitation of national parks and reserves. Think Brazil or the Central African Republic.

But given this protection of areas and funding for threatened species, conservation ecologists still have some very difficult problems to face. First and foremost is the conservation of rare, endangered species. It is nearly impossible to study rare species to discover the limiting factors that are pushing them toward extinction. Second, if you have the information on limiting factors, it is difficult to reverse trends that are determined by climate change or by human disrespect for conservation values.

In spite of these problems, the ecological literature is full of papers claiming to solve these issues with various schemes that predict a brighter future sometime. But if we apply the same rigor to these papers as we do to other areas of ecology, we must treat them as a set of hypotheses that make specific predictions, and try to test them. If we have solutions that are feasible but will require 50 years to accomplish, we should be very clear that we are drawing a long bow. Some statement of goals for the next 5 years would be desirable so we can measure progress or lack of progress.

The screams of practitioners go up – we have no time to test hypotheses, we need action! If we have clear-cut a forest site, or bulldozed shrub habitats, we may have a good idea of how to proceed to restoration. But with a long term view, restoration itself in highly contestable. In particular with climate change we have even less ability to predict with knowledge based on the last 50 year or so. So if you are in a predictive mode about conservation issues, have multiple working hypotheses about what to do, rather than one certain view of what will solve the problem.

This is not a cry to give up on conservation, but rather to trim our certainty about future states of ecosystems. Trying to predict what will happen under climate change is important for the Earth but we must always keep in mind the other critical factors affecting biodiversity, from predators to parasites and diseases, and the potential for evolution. Human destruction of habitats is a key issue we do not control well enough, and yet it may be the most important short term threat to conservation.

All of this leads into the fact that to achieve anything we need resources –people and money. The problem at present is where can we get the money? Governments in general place a low value on conservation and the environment in general in the quest for money and economic growth. Rich philanthropists are useful but few, and perhaps too often they have a distorted view of what to invest in. Improving the human condition of the poor is vital; medical research is vital, but if the environment suffers losses as it is at present, we need to balance or reverse our priorities of where to put our money. I do not know how to accomplish this goal. The search for politicians who have even a grade 1 understanding of environmental problems is not going well. Read Boris Johnson and Vladimir Putin. What is being accomplished now is more to the credit of private philanthropy which has clear goals but may pull in diverse directions. I submit that to date we have not been successful in this pursuit of environmental harmony, but it is a goal we must keep pushing for. E.O. Wilson once said that there was more money spent in New York City on a Friday night on beer than was devoted to biodiversity conservation for the entire world for the year.  This should hardly be a good epitaph for our century.

Our World View and Conservation

Recent events have large implications for conservation science. Behind these events – Covid, climate change, wars – lies a fundamental dichotomy of views about humanity’s place in the world today. At the most basic level there are those who view humans as the end-all-and-be-all of importance so that the remainder of the environment and all other species are far down the list of importance when it comes to decision making. The other view is that humans are the custodians of the Earth and all its ecosystems, so that humans are an important part of our policy decisions but not the only part or even the most important part. Between these extreme views there is not a normal distribution but a strongly bimodal one. We see this very clearly with respect to the climate emergency. If you explain the greenhouse dilemma to anyone, you can see the first reaction is that this does not apply to me, so I can do whatever I want versus the reaction of others that I should do something to reduce this problem now. It is the me-here-and-now view of our lives in contrast to the concern we should have about future generations.

Our hope lies in the expectation that things are improving, strongly in young people, more slowly in older people, and negligibly in our politicians. We must achieve sustainability professed by the Greta Thunberg’s of the world, and yet recognize that the action needed is promised by our policy makers only for 2050 or 2100. There is hope that the captains of industry will move toward sustainability goals, but this will be achieved only by rising public and economic pressure. We are beset by wars that make achieving any sustainability goals more difficult. In Western countries blessed with superabundant wealth we can be easily blinded by promises of the future like electricity from nuclear fusion at little cost, or carbon-capture to remove greenhouse gases from the atmosphere. If things get impossibly bad, we are told we can all go to Mars. Or at least the selected elite can.

Conservation gets lost in this current world, and pleas to set aside 30% or 40% of the Earth for biosphere conservation are rarely even heard about on the evening news. The requests for funds for conservation projects are continually cut when there are more important goals for economic growth. Even research funding through our first-class universities and government laboratories is falling, and I would wager without the data that less than 20% of funding for basic research goes to investigating environmental problems or conservation priorities. In my province in Canada a large section of this year’s budget labelled “Addressing Climate Change” is to be spent on repairing the highways from last year’s floods and trying to restore the large areas affected by fires in the previous dry summer.  

What is the solution to this rather depressing situation? Two things must happen soon. First, we the public must hold the government to account for sustainability. Funding oil companies, building pipelines, building highways through Class A farmland, and waging wars will not bring us closer to having a sustainable earth for our grandchildren. Second, we must encourage private industries and wealthy philanthropists to invest in sustainability research. Conservation cannot ever be achieved without setting aside large, protected areas. The list of species that are in decline around the Earth is growing, yet for the vast number of these we have no clear idea why they are declining or what can be done about it. We need funding for science and action, both in short supply in the world today. And some wisdom thrown in.   

On How Genomics will not solve Ecological Problems

I am responding to this statement in an article in the Conversation by Anne Murgai on April 19, 2022 (https://phys.org/news/2022-04-african-scientists-genes-species.html#google_vignette) : The opening sentence of her article on genomics encapsulates one of the problems of conservation biology today:

“DNA is the blueprint of life. All the information that an organism needs to survive, reproduce, adapt to environments or survive a disease is in its DNA. That is why genomics is so important.”

If this is literally correct, almost all of ecological science should disappear, and our efforts to analyse changes in geographic distributions, abundance, survival and reproductive rates, competition with other organisms, wildlife diseases, conservation of rare species and all things that we discuss in our ecology journals are epiphenomena, and thus our slow progress in sorting out these ecological issues is solely because we have not yet sequenced all our species to find the answers to everything in their DNA.

This is of course not correct, and the statement quoted above is a great exaggeration. But, if it is believed to be correct, it has some important consequences for scientific funding. I will confine my remarks to the fields of conservation and ecology. The first and most important is that belief in this view of genetic determinism is having large effects on where conservation funding is going. Genomics has been a rising star in biological science for the past 2 decades because of technological advances in sequencing DNA. As such, given a fixed budget, it is taking money away from the more traditional approaches to conservation such as setting up protected areas and understanding the demography of declining populations. Hausdorf (2021) explores these conflicting problems in an excellent review, and he concludes that often more cost-effective methods of conservation should be prioritized over genomic analyses. Examples abound of conservation problems that are immediate and typically underfunded (e.g., Turner et al. 2021, Silva et al, 2021).   

What is the resolution of these issues? I can recommend only that those in charge of dispensing funding for conservation science examine the hypotheses being tested and avoid endless funding for descriptive genomics that claim to have a potential and immediate outcome that will forward the main objectives of conservation. Certainly, some genomic projects will fit into this desirable science category, but many will not, and the money should be directed elsewhere.  

The Genomics Paradigm listed above is used in the literature on medicine and social science, and a good critique of this view from a human perspective is given in a review by Feldman and Riskin (2022). Scientists dealing with human breast cancer or schizophrenia show the partial but limited importance of DNA in determining the cause or onset of these complex conditions (e.g., Hilker et al 2018, Manobharathi et al. 2021). Conservation problems are equally complex, and in the climate emergency have a short time frame for action. I suspect that genomics for all its strengths will have only a minor part to play in the resolution of ecological problems and conservation crises in the coming years.

Feldman, Marcus W. and Riskin, Jessica (2022). Why Biology is not Destiny. The New York Review of Books 69 (April 21, 2022), 43-46.

Hausdorf, Bernhard (2021). A holistic perspective on species conservation. Biological Conservation 264, 109375. doi: 10.1016/j.biocon.2021.109375.

Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T.M., Nordentoft, M., and Glenthøj, B. (2018). Heritability of Schizophrenia and Schizophrenia Spectrum based on the Nationwide Danish Twin Register. Biological Psychiatry 83, 492-498. doi: 10.1016/j.biopsych.2017.08.017.

Manobharathi, V., Kalaiyarasi, D., and Mirunalini, S. (2021). A concise critique on breast cancer: A historical and scientific perspective. Research Journal of Biotechnology 16, 220-230.

Samuel, G. N. and Farsides, B. (2018). Public trust and ‘ethics review’ as a commodity: the case of Genomics England Limited and the UK’s 100,000 genomes project. Medicine, Health Care, and Philosophy 21, 159-168. doi: 10.1007/s11019-017-9810-1.

Silva, F., Kalapothakis, E., Silva, L., and Pelicice, F. (2021). The sum of multiple human stressors and weak management as a threat for migratory fish. Biological Conservation 264, 109392. doi: 10.1016/j.biocon.2021.109392.

Turner, A., Wassens, S., and Heard, G. (2021). Chytrid infection dynamics in frog populations from climatically disparate regions. Biological Conservation 264, 109391. doi: 10.1016/j.biocon.2021.109391.

More on Old Growth Forests and Conservation

This is a short blog to alert you to a well written plea for saving old growth forests in British Columbia by Karen Price. Karen works with Dave Daust and Rachel Holt, three of our ecological heroes pushing the provincial government to recognize the value of old growth forests. This problem is world-wide but the scientific data alone will not capture the general public as much as this article might.


These ecologists have reported their detailed analysis in a report that you can access through the Sierra Club of BC if you want more information on the struggle here in Canada (https://sierraclub.bc.ca/laststand/ ). At present there is nothing but denial from the government and from the industry that there is a problem – the forestry industry is not overharvesting or if it is, we need the jobs. As one person told me, it is not a problem “because we plant one tree seedling for every thousand-year-old tree that we log”.

So please keep up the pressure on governments around the world. Scientists have pushed a strong agenda on sustainable logging for many years with success now looking possible because ordinary citizens demand a change, understanding that forests are more than wood. We must continue the push for sustainable forestry and old growth forest protection.

Lindenmayer, D.B., Kooyman, R.M., Taylor, C., Ward, M., and Watson, J.E.M. (2020). Recent Australian wildfires made worse by logging and associated forest management. Nature Ecology & Evolution 4, 898-900. doi: 10.1038/s41559-020-1195-5.

Price, Karen, Holt, Rachel F., and Daust, Dave (2021). Conflicting portrayals of remaining old growth: the British Columbia case. Canadian Journal of Forest Research 51, 1-11. doi: 10.1139/cjfr-2020-0453.

On the Canadian Biodiversity Observation Network (CAN BON)

I have been reading the report of an exploratory workshop from July 2021 on designing a biodiversity monitoring network across Canada to address priority monitoring gaps and engage Indigenous people across Canada. The 34 pages of their workshop report can be accessed here, and I recommend you might read it before reading my comments on the report:


I have a few comments on this report that are my opinion only. I think the Report on this workshop outlines a plan so grand and misguided that it could not be achieved in this century, even with a military budget. The report is a statement of wisdom put together with platitudes. Why is this and what are the details that I believe to be unachievable?

The major goal of the proposed network is to bring together everyone to improve biodiversity monitoring and address the highest priority gaps to support biodiversity conservation. I think most of the people of Canada would support these objectives, but what does it mean? Let us do a thought experiment. Suppose at this instant in time we knew the distribution and the exact abundance of every species in Canada. What would we know, what could we manage, what good would all these data be except as a list taking up terabytes of data? If we had these data for several years and the numbers or biomass were changing, what could we do? Is all well in our ecosystems or not? What are we trying to maximize when we have no idea of the mechanisms of change? Contrast these concerns about biodiversity with the energy and resources applied in medicine to the mortality of humans infected with Covid viruses in the last 3 years. A monumental effort to examine the mechanisms of infection and ways of preventing illness, with a clear goal and clear measures of progress toward that goal.

There is no difficulty in putting out “dream” reports, and biologists as well as physicists and astronomers, and social scientists have been doing this for years. But in my opinion this report is a dream too far and I give you a few reasons why.

First, we have no clear definition of biodiversity except that it includes everything living, so if we are going to monitor biodiversity what exactly should we do? For some of us monitoring caribou and wolves would be a sufficient program, or whales in the arctic, or plant species in peat bogs. So, to begin with we have to say what operationally we would define as the biodiversity we wish to monitor. We could put all our energy into a single group of species like birds and claim that these are the signal species to monitor for ecosystem integrity. Or should we consider only the COSEWIC list of Threatened or Endangered Species in Canada as our major monitoring concern? So, the first job of CAN BON must be to make a list of what the observation network is supposed to observe (Lindenmayer 2018). There is absolutely no agreement on that simple question within Canada now, and without it we cannot move forward to make an effective network.

The second issue that I take with the existing report is that the emphasis is on observations, and then the question is what problems will be solved by observation alone. The advance of ecological science has been based on observation and experiment directed to specific questions either of ecological interest or of economic interest. In the Pacific salmon fishery for example the objective of observation is to predict escapement and thus allowable harvest quotas. Despite years of high-quality observations and experiments, we are still a long way from understanding the ecosystem dynamics that drive Pacific salmon reproduction and survival.

Contrast the salmon problem with the caribou problem. We have a reasonably good understanding of why caribou populations are declining or not, based on many studies of predator-prey dynamics, harvesting, and habitat management. At present the southern populations of caribou are disappearing because of a loss of habitat because of land use for forestry and mining, and the interacting nexus of factors is well understood. What we do not do as a society is put these ideas into practice for conservation; for example, forestry must have priority over land use for economic reasons and the caribou populations at risk suffer. Once ecological knowledge is well defined, it does not lead automatically to action that biodiversity scientists would like. Climate change is the elephant in the room for many of our ecological problems but it is simultaneously easy to blame and yet uneven in its effects.

The third problem is funding, and this overwhelms the objectives of the Network. Ecological funding in general in Canada is a disgrace, yet we achieve much with little money. If this ever changes it will require major public input and changed governmental objectives, neither is under our immediate control. One way to press this objective forward is to produce a list of the most serious biodiversity problems facing Canada now along with suggestions for their resolution. There is no simple way to develop this list. A by-product of the current funding system in Canada is the shelling out of peanuts in funding to a wide range of investigators whose main job becomes how to jockey for the limited funds by overpromising results. Coordination is rare partly because funding is low. So (for example) I can work only on the tree ecology of the boreal forest because I am not able to expand my studies to include the shrubs, the ground vegetation, the herbivores, and the insect pests, not to mention the moose and the caribou.  

For these reasons and many more that could be addressed from the CAN BON report, I would suggest that to proceed further here is a plan:

  1. Make a list of the 10 or 15 most important questions for biodiversity science in Canada. This alone would be a major achievement.
  2. Establish subgroups organized around each of these questions who can then self-organize to discuss plans for observations and experiments designed to answer the question. Vague objectives are not sufficient. An established measure of progress is essential.
  3. Request a realistic budget and a time frame for achieving these goals from each group.  Find out what the physicists, astronomers, and medical programs deem to be suitable budgets for achieving their goals.
  4. Organize a second CAN BON conference of a small number of scientists to discuss these specific proposals. Any subgroup can participate at this level, but some decisions must be made for the overall objectives of biodiversity conservation in Canada.

These general ideas are not particularly new (Likens 1989, Lindenmayer et al. 2018). They have evolved from the setting up of the LTER Program in the USA (Hobbie 2003), and they are standard operating procedures for astronomers who need to come together with big ideas asking for big money. None of this will be easy to achieve for biodiversity conservation because it requires the wisdom of Solomon and the determination of Vladimir Putin.

Hobbie, J.E., Carpenter, S.R., Grimm, N.B., Gosz, J.R., and Seastedt, T.R. (2003). The US Long Term Ecological Research Program. BioScience 53, 21-32. doi: 10.1016/j.oneear.2021.12.008

Likens, G. E. (Ed.) (1989). ‘Long-term Studies in Ecology: Approaches and Alternatives.’ (Springer Verlag: New York.) ISBN: 0387967435

Lindenmayer, D. (2018). Why is long-term ecological research and monitoring so hard to do? (And what can be done about it). Australian Zoologist 39, 576-580. doi: 10.7882/az.2017.018.

Lindenmayer, D.B., Likens, G.E., and Franklin, J.F. (2018). Earth Observation Networks (EONs): Finding the Right Balance. Trends in Ecology & Evolution 33, 1-3. doi: 10.1016/j.tree.2017.10.008.

On Cats and Birds and Policy Gaps

Many people in western societies like to keep cats as pets, and with that simple observation we run into two problems that require resolution. First, cats are killers of wildlife, particularly birds but also an array of other small prey. Most people do not believe this, because cats are adored and make good, if somewhat disinterested pets. So, my first point might be that if you think cats are not killers, I invite you to keep another cat like a mountain lion for a pet. But we need some data on the kill rate of cats. Before we begin this search, we should note that cats can be kept inside dwellings or in cat runs with no access to birds or other prey. If this is the case, no problem exists for wildlife, and you can skip to the bottom of this blog for one other issue to recognize.

How much mortality can be traced to cats roaming out of doors? This will include normal house cats let out to roam at night, as well as wild cats that have been discarded by their owners into the wild. There is extensive literature on cats killing birds. If you want a brief introduction Greenwall et al. (2019) discuss a nesting colony of Fairy Terns, a threatened species of Australian seabird, along a beach in southwestern Australia. With detailed observations and photographic data, they recorded the complete failure of all 111 nests in this colony with the loss of all tern chicks in the early summer of 2018. The predator was a single desexed feral cat. Many local governments allow the capture of feral cats with the protocol that they are desexed and then released back into the environment. Clearly desexing and release does not remove the problem.

The domestic cat has been spread world-wide, so that the cat problem is not a local one. Li et al. (2021) completed a survey of feral cat kill rates in the eastern part of China and found that the minimum annual loss of wildlife to feral cats was in the range of 2.7-5.5 billion birds, and 3.6-9.8 billion mammals, as well as large numbers of amphibians, reptiles, and fish. In gardens in Western Europe cat predation on ringed birds studied with precise data showed that up to 25% of dead birds were killed by cats, but these data varied greatly among species (Pavisse et al. 2019). For the European Robin which often feeds on the ground 40% of all ringed birds were killed by cats, for the European Greenfinch the figure was 56% of ringed birds killed. These are just two examples of an extensive literature on cat kills going back many years (Calvert et al. 2013).

What can we do about this predation? As with too many conservation issues the answer is simple but difficult to implement: Ban all cats from free-ranging unless they are on a leash and under control. Keep cats in the house or in special cat runs that are confined outdoors. Ban completely stupid programs of catching feral cats, sterilizing them, and releasing them back to the wild to continue their killing. Cats may make marvellous pets but need to be kept indoors. Many people would support these measures but many cat owners would disagree about such measures. Some progress is being made in urban environments in which some suburbs do not permit cats to roam freely.

Feral cats are a serious issue in Australia because they attack many threatened birds and reptiles (Doherty et al. 2019). In this case a federal environmental policy to kill 2 million cats is popular but from a conservation viewpoint still a poor policy. We do not know if killing 2 million cats is too much or too few, and without specific goals for conservation and careful monitoring of bird populations widespread killing my not achieve the goal of protection for threatened species. Eradications of cats on islands is often feasible, but no mainland eradication is currently possible.

As conservation biologists know too well, when humans are the problem, wise policies may not be implemented. So, the second issue and the bottom line might be to consider the human costs of cat ownership. Adhikari et al. (2020) report a highly significant association between the risk of dying from colon cancer and cat ownership. These results are not confounded by sedentary lifestyle, cigarette smoking or socio-economic status. In a similar study Adhikari et al. (2019) found that living with a cat significantly increased the death rate from lung cancer among women. The cause of these associations cannot yet be deciphered but are postulated to result from mycotoxins, toxic secondary metabolites produced by fungi (moulds) in cereal crops used in cat food. Aflatoxin is a mycotoxin that produces well-known chemicals that are seriously toxic to animals and humans.

These kinds of studies of associations arising from surveys can be tossed off by the typical comments ‘these-things-do-not-concern-my cats’ or ‘that there is no proof of the exact cause’ so if you are concerned you might investigate the literature on both mycotoxins and the diseases that cats carry.

It is up to humans to solve human problems, but up to conservation biologists to point out the detrimental effects of household pets and their feral cousins on wildlife. The present situation is a complete policy failure by governments at all levels. Good science is relatively easy, good policy is very difficult.

Adhikari, Atin, Adhikari, A., Jacob, N. K., and Zhang, J. (2019). Pet ownership and the risk of dying from lung cancer, findings from an 18 year follow-up of a US national cohort. Environmental Research 173, 379-386. doi: 10.1016/j.envres.2019.01.037.

Adhikari, Atin, Adhikari, A., Wei, Y. D., and Zhang, J. (2020). Association between pet ownership and the risk of dying from colorectal cancer: an 18-year follow-up of a national cohort. Journal of Public Health 28, 555-562. doi: 10.1007/s10389-019-01069-1.

Calvert, A.M., Bishop, C.A., Elliot, R.D., Krebs, E.A., Kydd, T.M., Machtans, C.S., Robertson, G.J., 2013. A synthesis of human-related avian mortality in Canada. Avian Conservation and Ecology 8: 11. doi 10.5751/ACE-00581-080211.

Doherty, T.S., Driscoll, D.A., Nimmo, D.G., Ritchie, E.G., and Spencer, R. (2019). Conservation or politics? Australia’s target to kill 2 million cats. Conservation Letters 12, e12633. doi: 10.1111/conl.12633.

Li, Yuhang, Wan, Yue, Shen, Hua, Loss, S.R., Marra, P.P., and Li, Zhongqiu (2021). Estimates of wildlife killed by free-ranging cats in China. Biological Conservation 253, 108929. doi: 10.1016/j.biocon.2020.108929.

Greenwell, C.N., Calver, M.C., and Loneragan, N.R. (2019). Cat Gets Its Tern: A Case Study of Predation on a Threatened Coastal Seabird. Animals 9, 445. doi: 10.3390/ani9070445.

Pavisse, R., Vangeluwe, D., and Clergeau, P. (2019). Domestic Cat Predation on Garden Birds: An Analysis from European Ringing Programmes. Ardea 107, 103-109. doi: 10.5253/arde.v107i1.a6.

On Biodiversity Science

With David Attenborough and all the amazing picture books on biodiversity there can be few people in the world who have not been alerted to the array of beautiful and interesting species on Earth. Until recently the subject of biodiversity, known to First Nations since long, long ago, had not entered the western world of automobiles, industry, farming, fishing, music, theatres, and movies. Biodiversity is now greatly appreciated by most people, but perhaps more as entertainment for western societies and more for subsistence food in less wealthy parts of our world.

There are many different measures of ‘biodiversity’ and when discussing how we should protect biodiversity we should be careful about exactly how this word is being used. The number of different species in an area is one simple measure of biodiversity. But often the types of organisms being considered are less well defined. Forest ecologists attempt to protect forest biodiversity, but logging companies are more concerned only with trees and tree size for commercial use. Bird watchers are concerned with birds and have developed much citizen science in counting birds. Mushroom connoisseurs may worry about what edible mushrooms will be available this summer. But in many cases biodiversity scientists recognize that the community of organisms and the ecosystem that contains them would be a more appropriate unit of analysis. But as the number of species in an ecosystem increases, the complexity of the ecosystem becomes unmanageable. A single ecosystem may have hundreds to thousands of species, and we are in the infant stage of trying to determine how to study these biological systems.

One result is that, given that there are perhaps 10 million species on Earth and only perhaps 10,000 biologists who study biodiversity, where do we begin? The first and most popular way to answer this question is to pick a single species and concentrate on understanding its ecology. This makes are researcher’s life fairly simple. If elephants in Africa are under threat, find out all about the ecology of elephants. If a particular butterfly in England is very rare, try to find out why and how to protect them. This kind of research is very valuable for conservation because it provides a detailed background for understanding the requirements of each species. But the single species approaches lead into at least two quagmires. First, all species exist in a web of other species and understanding this web greatly expands the problem. It is possible in many cases to decipher the effects other species have on our elephants or butterflies, but this requires many more scientists to assist in analysing the species’ food chain, its diseases, its predators and parasites, and that is only a start. The second quagmire is that one of the general rules of ecology is that most species on Earth are rare, and few are common. So that we must concentrate our person-power on the common species because they are easier to find and study. But it is often the rare species that are of conservation concern, and so we should focus on them rather than the common species. In particular, given that only about 10% of the species on Earth have been described scientifically, we may often be assigned a species that does not have any information on its food habits or habitat requirements, its distribution, and how its abundance might be changing over time, a lifetime research program.

The result of this general overview is that the mantra of our day – Protect Biodiversity – begins as a compelling slogan and ends in enormous scientific complexity. As such it falls into the category of slogans like ‘Reduce Poverty’ and ‘Peace on Earth’, something we can all agree on, but the devil is in the details of how to achieve that particular goal.

One way to avoid all these pitfalls has been to jump over the problems of individual species and analyse communities of species or entire ecosystems. The result of this approach is to boil down all the species in the community to a number that estimates “biodiversity” and then use that number in relating ‘biodiversity’ to community attributes like ‘productivity’ or ‘stability’. This approach leads to testing hypotheses like ‘Higher biodiversity leads to greater stability’. There are serious problems with this approach if it is used to test any such hypothesis. First, biodiversity in this example must be rigorously defined as well as stability. The fact that higher biodiversity of butterflies in a particular region is associated with a more stable abundance of these butterflies over time is worthy of note but not of generalization to global communities or ecosystems. And as in all ecological studies we do not know if this is a generalization applicable to all butterfly populations everywhere until many more studies have been done.

A second problem is that this community or ecosystem approach to address ecological questions about biodiversity is not very useful in promoting conservation which boils down to particular species in particular environments. It should force us back to looking at the population ecology of species that are of conservation concern. It is population ecologists who must push forward the main goals of the conservation of the Earth’s biota, as Caughley (1994) recognized long ago.

The practical goals of conservation have always been local, and this constraint is mostly ignored in papers that demand some global research priorities and global ecological rules. The broad problem is that the conservation of biodiversity is a gigantic scientific and political problem that is currently underfunded and in its scientific infancy. At the present too much biodiversity research is short-term and not structured in a comprehensive framework that identifies critical problems and concentrates research efforts on these problems (Nichols et al. 2019, Sutherland et al. 2018). One more important issue for a seminar discussion group. 

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Nichols, J.D., Kendall, W.L., and Boomer, G.S. (2019). Accumulating evidence in ecology: Once is not enough. Ecology and Evolution 9, 13991-14004. doi: 10.1002/ece3.5836.

Sutherland, W.J., Butchart, Stuart H.M., Connor, B., Culshaw, C., Dicks, L.V., et al. (2018). A 2018 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity. Trends in Ecology & Evolution 33, 47-58. doi: 10.1016/j.tree.2017.11.006.

Have We Lost the Plot?

The decisions we make as a society depend directly on what knowledge we have achieved through our educational system. Two major problems the Earth faces occupy the day – the Covid epidemic and climate change. In both major emergencies, a significant fraction of humanity seems to have completely missed the plot and I would like to ask a few simple questions about why this might be.

The Covid epidemic is indeed a global emergency, and if you do not recognize this you should stop reading here. We have had major human epidemics in the last 1000 years so we might start by asking what knowledge we have garnered from past events. Epidemics occur because a particular disease is transmissible among people, and the three most obvious observations that could be made from previous epidemics are that large groups of people should not congregate, travel should be restricted, and that people should always wear a mask, a point made very clearly in the 1918 flu epidemic. More recent medical studies since the 1940s have shown conclusively that immunity to any particular disease can be achieved by vaccination programs, and many people have been vaccinated over their lifespan to reduce greatly the chance of infection. So, to make the point simple, many people are alive today because of the vaccinations they have received over time.

Vaccine hesitancy at this time with respect to the Covid epidemic has been decreasing, and as more of the population becomes vaccinated, disease incidence should decline. My question is how did many people become educated in our schools about these general points and then join the anti-vaxxers? I do not know the answer to this, but at least part of the answer might be a failure of our education systems.

A second emergency over climate change will probably be with us for a much longer time than the Covid pandemic, so we need to think very clearly about it. The problem in part is that climate change is long term (10-100+ years) and it is difficult to change human behaviour in a short time. Consequently, advances like renewable energy, solar panels on roofs, electric cars, and good insulation in houses need to be pushed by government policies. Since governments are too often concerned only about the next 4 years, and all the good policies will result in rising taxes, there is much talking but little action. Longer term issues like population control are too often swept under the table as too hot to handle. News outlets push panic buttons over reduced birth rates in the world today and translate this into immediate population collapse. Elementary issues of human demography that ought to be part of any curriculum are not understood, and the failure to appreciate the consequences of continued growth seem lost on much of the population. Consequently, part of our current problems involving action on the climate emergency must be laid to poor education about these simple matters.

We have gone through a long period when economics triumphed over ecology and sustainability, but that problem is rapidly being rectified. More people are recognizing that a single country cannot ignore global problems, conservation is strong on the agenda of many governments, although again these issues emit more talk than actions.

I certainly do not know the solution to these current issues but the polarization in the world today is strong enough to prohibit many policies being achieved that would improve and overcome our present emergencies. Unless we can achieve agreement on sustainable goals for all of society these emergencies will continue to build. Thinking that I could fly to Mars and get away from these problems is something even the British royalty recognize as ridiculous.

A few possible ideas:

  1. Call out and protest as much as you can about uninformed pseudo-scientific comments on ecology, economics, medical science, and sustainability. Demand political action on these two global emergencies now.
  2. Improve our education systems to demand a curriculum that addresses current problems of climate change and agriculture, population growth, medical history, disease, and the history of the biosphere.
  3. Get accurate data on global change and Covid from reliable sources.
  4. Never give up. Present scientific truth to counteract nonsense.
  5. And use social media effectively to improve communication of the science that speaks to the solution of these major problems.

Kolata, Gina B. (2019) Flu: The Story of the Great Influenza Pandemic of 1918 and the Search for the Virus that caused it.’ Atria Books: New York. 352 pp. ISBN: 978-0743203982

MacKenzie, Debora (2020) COVID-19: The Pandemic that Never Should Have Happened and How to Stop the Next One. Hachette Books: New York. 304 pp. IBN: 978-0306924248  (Published in North America in 2021 as Stopping the Next Pandemic, 339 pp. ISBN 978-036924224.)

Piketty, Thomas (2021). Time for Socialism: Dispatches from a World on Fire, 2016-2021
Yale University Press: New Haven, Connecticut. 360 pp. ISBN: 978-0300259667

Salamon, Margaret Klein (2020). Facing the Climate Emergency: How to Transform Yourself with Climate Truth. New Society Publishers: Gabriola Island, B.C. Canada. 160 pp. ISBN: 978-0865719415

Blaming Climate Change for Ecological Changes

The buzz word for all ecological applications for funding and for many submitted papers is climate change. Since the rate of climate change is not something ecologists can control, there are only two reasons to cite climate change as a reason to fund current ecological research. First, since change is continuous in communities and ecosystems, it would be desirable to determine how many of the observed changes might be caused by climate change. Second, it might be desirable to measure the rate of change in ecosystems, correlate these changes to some climate variable, and then use these data as a political and social tool to stimulate politicians to do something about greenhouse gas emissions. The second approach is that taken by climatologists who blame hurricanes and tornadoes on global warming. There is no experimental way to trace any particular hurricane to particular amounts of global warming, so it is easy for critics to say these are just examples of weather variation of which we have measured much over the last 150 years and paleo-ecologists have traced over tens of thousands of years using proxies from tree rings and sediment cores. If we are to use the statistical approach we need a large enough sample to argue that extreme events are becoming more frequent, and that might take 50 years by which time the argument would be made too late to request proper action.

The second approach to prediction in ecology is fraught with problems, as outlined in Berteaux et al. (2006) and Dietze (2017). The first approach has many statistical problems as well in selecting a biologically coherent model that can be tested by in a standard scientific manner. Since there are a very large number of climate variables, the possibility of spurious correlations is excessive, and the only way to avoid these kinds of results is to be predictive and to have a biological causal chain that is testable. Myers (1998) reviewed all the fishery data for predictive models of juvenile recruitment that used environmental variables as predictors and data was subsequently collected and tested with the published model. The vast majority of these aquatic models failed when retested but a few were very successful. The general problem is that model failures or successes might not be published so even this approach can be biased if only a literature survey is undertaken. The take home message from Myers (1998) was that almost none of the recruitment-environment correlations were being used in actual fishery management.

How much would this conclusion about the failure of environmental models in fishery management apply to other areas in ecology? Mouquet et al. (2014) pointed out that predictions could be classified as ‘explanatory’ or ‘anticipatory’ and that “While explanatory predictions are necessarily testable, anticipatory predictions need not be…….In summary, anticipatory predictions differ from explanatory predictions in that they do not aim at testing models and theory. They rely on the assumption that underlying hypotheses are valid while explanatory predictions are based on hypotheses to be tested. Anticipatory predictions are also not necessarily supposed to be true.” (page 1296). If we accept these distinctions, we have (I think) a major problem in that many of the predictive models put forward in the ecological literature are anticipatory, so they would be of little use to a natural resource manager who requires an explanatory model.

If we ignore this problem with anticipatory predictions, we can concentrate on explanatory predictions that are useful to managers. One major set of explanatory predictions in ecology are those associated with range changes in relation to climate change. Cahill et al. (2014) examined the conventional hypothesis that warm-edge range limits are set by biotic interactions rather than abiotic interactions. Contrary to expectations, they found in 125 studies that abiotic factors were more frequently supported as setting warm-edge range limits. Clearly a major paradigm about warm-edge range limits is of limited utility.

Explanatory predictions are not always explicit. Mauck et al. (2018) for example developed a climate model to predict reproductive success in Leach’s storm petrel on an island off New Brunswick in eastern Canada. From 56 years of hatching success they concluded that annual global mean temperature during the spring breeding season was the single most important predictor of breeding success. They considered only a few measures of temperature as predictor variables and found that a quadratic form of annual global mean temperature was the best variable to describe the changes in breeding success. The paper speculates about how global or regional mean temperature could possibly be an ecological predictor of breeding success, and no mechanisms are specified. The actual data on breeding success are not provided in the paper, even as a temporal plot. Since global temperatures were rising steadily from 1955 to 2010, any temporal trend in any population parameter that is rising would correlate with temperature records. The critical quadratic relationship in their analysis suggests that a tipping point was reached in 1988 when hatching success began to decline. Whether or not this is a biologically correct explanatory model can be determined by additional data gathered in future years. But it would be more useful to find out what the exact ecological mechanisms are.

If the ecological world is going to hell in a handbasket, and temperatures however measured are going up, we can certainly construct a plethora of models to describe the collapse of many species and the rise of others. But this is hardly progress and would appear to be anticipatory predictions of little use to advancing ecological science, as Guthery et al. (2005) pointed out long ago. Someone ought to review and evaluate the utility of AIC methods as they are currently being used in ecological and conservation science for predictions.

Berteaux, D., Humphries, M.M., Krebs, C.J., Lima, M., McAdam, A.G., Pettorelli, N., Reale, D., Saitoh, T., Tkadlec, E., Weladji, R.B., and Stenseth, N.C. (2006). Constraints to projecting the effects of climate change on mammals. Climate Research 32, 151-158. doi: 10.3354/cr032151.

Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., and Karanewsky, C.J. (2014). Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. Journal of Biogeography 41, 429-442. doi: 10.1111/jbi.12231.

Dietze, M.C. (2017). Prediction in ecology: a first-principles framework. Ecological Applications 27, 2048-2060. doi: 10.1002/eap.1589.

Guthery, F.S., Brennan, L.A., Peterson, M.J., and Lusk, J.J. (2005). Information theory in wildlife science: Critique and viewpoint. Journal of Wildlife Management 69, 457-465. doi: 10.1890/04-0645.

Mauck, R.A., Dearborn, D.C., and Huntington, C.E. (2018). Annual global mean temperature explains reproductive success in a marine vertebrate from 1955 to 2010. Global Change Biology 24, 1599-1613. doi: 10.1111/gcb.13982.

Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., and Duputie, A. (2015). Predictive ecology in a changing world. Journal of Applied Ecology 52, 1293-1310. doi: 10.1111/1365-2664.12482.

Myers, R.A. (1998). When do environment-recruitment correlations work? Reviews in Fish Biology and Fisheries 8, 285-305. doi: 10.1023/A:1008828730759.