Tag Archives: conservation

Biodiversity Conundrums

Conservation ecologists face a conundrum, as many have pointed out before. As scientists we do not make policy. Most conservation problems are essentially a moral issue of dealing with conflicts in goals and allowable actions. Both the United States and Canada have endangered species legislation in which action plans are written for species of concern. In the USA species of concern are allotted some funding and more legal protection than in Canada, where much good material is written but funding for action or research is typically absent. What is interesting from an ecological perspective is the list of species that are designated as endangered or threatened. Most of them can be described colloquially as the “charismatic megafauna”, species that are either large or beautiful or both. There are exceptions of course for some amphibians and rare plants, but by and large the list of species of concern is a completely non-random collection of organisms that people see in their environment. Birds and butterflies and large mammals are at the head of the list.

All of this is fine and useful because it is largely political ecology, but it raises the question of what will happen should these rescue plans for threatened or endangered species fail. This question lands ecologists in a rather murky area of ecosystem function, which leads to the key question: how is ecosystem function affected by the loss of species X? The answer to this question depends very much on how you define ecosystem function. If species X is a plant and the ecosystem function measured is the uptake of CO2 by the plant community, the answer could be a loss of function, no change, or indeed an increase in CO2 uptake if species X for example is replaced by a weed that is more productive that species X. The answer to this simple question is thus very complicated and requires much research. For a hypothetical example, plant X may be replaced by a weed that fixes more CO2, and thus ecosystem function is improved as measured by carbon uptake from the atmosphere. But the weed may deplete soil nitrogen which could adversely affect other plants and soil quality. Again more data are needed to decide this. If the effect size is small, much research could provide an ambiguous answer to the original question, since all measurement involves errors.

So now we are in a box, a biodiversity conundrum. The simplest escape is to say that all species loss is undesirable in any ecosystem, a pontification that is more political than scientific. And, for a contrary view, if the species lost is a disease organism, or an insect that spreads human diseases, we will not mourn its passing. In practice we seem to agree with the public that the species under concern are not all of equal value for conservation. The most serious outcome of this consideration is that where the money goes for conservation is highly idiosyncratic. There are two major calls for funding that perhaps should not be questioned: first, for land (and water) acquisition and protection, and second, for providing compensation for the people whose livelihoods are affected by protected areas with jobs and skills that improve their lives. The remaining funds need to be used for scientific research that will further the cause of conservation in the broad sense. The most useful principle at this stage is that all research has a clear objective and a clear list of what outcomes can be used to judge its success. For conservation outcomes this judgement should be clear cut. Currently they are not.

When Caughley (1994) described the declining population paradigm and the small population paradigm he clearly felt that the small population paradigm, while theoretically interesting, had little to contribute to most of the real world problems of biodiversity conservation. He could not have imagined at the time how genetics would develop into a powerful set of methods of analysis of genomes. But with a few exceptions the small population paradigm and all the elegant genetic work that has sprung from it has delivered a mountain of descriptive information with only a molehill of useful management options for real world problems. Many will disagree with my conclusion, and it is clear that conservation genetics is a major growth industry. That is all well and good but my question remains as to its influence on the solution of current conservation problems (Caro 2008; Hutchings 2015; Mattsson et al. 2008). Conservation genetic papers predicting extinctions in 100 years or more based on low levels of genetic variation are not scientifically testable and rely on a law of conservation genetics that is riddled with exceptions (Nathan et al. 2015; Robinson et al. 2016). Do we need more untestable hypotheses in conservation biology?

Caro, T. 2008. Decline of large mammals in the Katavi-Rukwa ecosystem of western Tanzania. African Zoology 43(1): 99-116. doi:10.3377/1562-7020(2008)43[99:dolmit]2.0.co;2.

Caughley, G. 1994. Directions in conservation biology. Journal of Animal Ecology 63: 215-244. doi: 10.2307/5542

Hutchings, J.A. 2015. Thresholds for impaired species recovery. Proceedings of the Royal Society. B, Biological sciences 282(1809): 20150654. doi:10.1098/rspb.2015.0654.

Mattsson, B.J., Mordecai, R.S., Conroy, M.J., Peterson, J.T., Cooper, R.J., and Christensen, H. 2008. Evaluating the small population paradigm for rare large-bodied woodpeckers, with Implications for the Ivory-billed Woodpecker. Avian Conservation and Ecology 3(2): 5. http://www.ace-eco.org/vol3/iss2/art5/

Nathan, H.W., Clout, M.N., MacKay, J.W.B., Murphy, E.C., and Russell, J.C. 2015. Experimental island invasion of house mice. Population Ecology 57(2): 363-371. doi:10.1007/s10144-015-0477-2.

Robinson, J.A., Ortega-Del Vecchyo, D., Fan, Z., Kim, B.Y., and vonHoldt, B.M. 2016. Genomic flatlining in the endangered Island Fox. Current Biology 26(9): 1183-1189. doi:10.1016/j.cub.2016.02.062.

What Can Ecologists Do?

For about 40 years many ecologists as well as other scientists have reported on the consequences of climate change. In recent years there has been more and more public awareness of the problems associated with changing climate. But there it all seems to stop. Jobs and dollars trump everything in the western world. I sit today listening to the Federal Government in Canada approving a very large export agreement for liquefied natural gas (LNG) on the central west coast of British Columbia. The gas will be largely obtained by fracking and in spite of the fact that the shipping point is near the mouth of one of the largest salmon rivers on the west coast, and requires a long pipeline to deliver the gas with all its problems, the report of the government states that this development will have no harmful effects on the environment. The perception that burning natural gas is somehow good for the environment boggles my mind. You have heard all of this kind of discussion many times before I am sure.

Yet as far as we can tell these are not evil people who are approving these developments but their decisions are so far away from scientific reality that one can only wonder what drives this current economic system. There are several competing hypotheses. (1) Climate change is not a problem and is not caused by human actions releasing greenhouse gases. This is not believable if scientific evidence is given any credibility. So we need a better excuse for our current myopia. (2) The problems of climate change are so uncertain and far into the distant future so that it is not our job to be concerned about action now. (3) We should take action now but if we do it will disrupt the global economy too much to contemplate. Taxes will have to increase. (4) Much money can be made by these enterprises and this will allow western countries to develop technologies that will remove carbon from the atmosphere, so all will be well in the future. (5) A price can be set on carbon so that business as usual under a carbon price will take care of the problem. The market will take care of us.

Take your pick on these last 4 excuses, but as an ecologist I cannot buy any of them. Clearly I am not a social scientist or an economist, and consequently have little understanding of how all of this proceeds and how the continued nonsense of business as usual is reported on much of the media as though this is the only way forward. The disconnect between what the educated public believes and what the government and business economists push has never been more serious. Perhaps the dominant view of many people is that we have always managed to muddle through in the past, and so this is a minor issue that we will overcome as usual by some kind of technological fix. And it is a long term problem, and I will not be here in the long term.

What can we ecologists do? Teach, report, communicate to the wider public via social media or traditional media, and hope that progress in understanding will finally take hold. Set an example, and hope that we can turn this juggernaut around. David Suzuki and Bill McKibben and many others are doing this. As an army dedicated to peace we can move forward and hope for wisdom to prevail.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences 280(1754): 20122845. doi: 10.1098/rspb.2012.2845.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Future collapse: how optimistic should we be? Proceedings of the Royal Society B: Biological Sciences 280(1767): 20131373. doi: 10.1098/rspb.2013.1373.

Kelly, M.J. 2013. Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich. Proceedings of the Royal Society B: Biological Sciences 280(1767). doi: 10.1098/rspb.2013.1193.

McKibben, B. 2013. Oil and Honey: The Education of an Unlikely Activist. Henry Holt and Company, New York. 257 pp.  ISBN: 978-08050-9284-4

Does Forestry Make Money – Part 2

About 2 years ago I wrote a blog asking the simple question of whether the forest industry in British Columbia makes money or whether it is operational only because of subsidies and the failure to recognize that biodiversity and ecosystem services could be valuable. A recent report from the research group in the Fenner School of the Australian National University has put the spotlight on the mountain ash forests of the Central Highlands of Victoria to answer this question for one region of southern Australia. I summarize their findings from their report (Keith et al. 2016) that you can access from the web address given below.

The ANU research group chose the Central Highlands study area because it included areas with controversial land use activities. The study area of 7370 sq km contains a range of landscapes including human settlements, agricultural land, forests, and waterways, and is used for a variety of activities including timber production, agriculture, water supply and recreation. It is also home to a range of species, including the endemic and critically endangered Leadbeater’s Possum. These activities and their use of ecosystems can be either complementary or conflicting. Managing the various activities within the region is therefore complex and requires evaluation of the trade-offs between different land uses and users, an issue common to forestry areas around the world.

The accounting structure (System of Environmental-Economic Accounting) which is used by the United Nations is described in more detail in the report. Both economic and ecological data are needed to produce ecosystem accounts and these sources of data must be integrated to gain an overall picture of the system. This integration of ecosystem services with traditional cash crops is the key to evaluating an area for all of its values to humans. In this particular area the provisioning of water to cities is a key economic benefit provided by this particular area. The following table from their report puts all these accounts together for the Central Highlands of Victoria:

Table 5. Economic information for industries within the study region in 2013-14
Agriculture Native Forestry Water supply Tourism
Area of land used (ha) 96,041a 324,380b 115,149c 737,072d
Sale of products ($m) 474 49 911 485
Industry valued added ($m) 257 9 233 260
Ecosystem services ($m) 121 15 101 42
Sale of products ($ ha-1) 4918 151 7911 659
Industry value added ($ ha-1) 2667 29 2023 353
Ecosystem services ($ ha-1) 1255 46 877 57

a area of agricultural land use
b area of native forest timber production
c area of water catchments
d total area of study region

The key point in this table is that the value-added per ha of forestry is $29 per ha per year. The equivalent value for water is $2033 per ha per year – or 70 times more, and the value added for agriculture is about 90 time more than that of forestry. The value-added value for tourism is $350 per ha per year, about 12 times more than that of forestry. None of this takes into account any potential government subsidies to these industries, and none involves directly the endangered species in the landscape. Three main points emerge from this analysis:

  1. In 2013-14, the most valuable industries in the region were tourism ($260 million), agriculture ($257 million), water supply ($233 million) and forestry ($9 million). This is as measured by the estimated industry value added (the contribution to GDP).
  2. In 2013-14, the most valuable ecosystem services in the region were food provisioning ($121 million), water provisioning ($101 million), cultural and recreation services ($42 million).
  3. At a carbon price of $12.25 per ton (the average price paid by the Commonwealth in 2015), the potential ecosystem service of carbon sequestration ($20 million) was more valuable than the service of timber provisioning ($15 million).

The main implications from the report for this large geographical area are three:

  • The benefits from tourism, agriculture, and water supply are large, while those from forestry are comparatively small. There is a potential for income from carbon sequestration.
  • The activities of tourism, agricultural and water supply industries are complimentary and may be combined with biodiversity conservation and carbon sequestration.
  • Timber harvesting in native forests needs to better account for the occurrence of fires and can be incompatible with species requirements for conservation.

The recent global interest in both climate change and species conservation has pushed this type of analysis to uncover the complementary and conflicting activities of all major global industries. Replacing the conventional GDP of a country or a region with a measure that takes into account the changes in the natural capital including gains and losses is a necessary step for sustainability (Dasgupta 2015, Guerry et al. 2015). This report from Australia shows how this goal of replacing the current GDP calculation with a green GDP can be done in specific areas. Much of biodiversity conservation hinges on these developments.

Dasgupta, P. 2015. Disregarded capitals: what national accounting ignores. Accounting and Business Research 45(4): 447-464. doi: 10.1080/00014788.2015.1033851.

Guerry, A.D., et al. 2015. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences 112(24): 7348-7355. doi: 10.1073/pnas.1503751112.

Keith, H., Vardon, M., Stein, J., Stein, J., and Lindenmayer, D. 2016. Exzperimental Ecosystem Accounts for the Central Highlands of Victoria. Australian National University, Fenner School of Environment and Society. 22 pp. Available from:
http://fennerschool-associated.anu.edu.au/documents/CLE/VCH_Accounts_Summary_FINAL_for_pdf_distribution.pdf

On Critical Questions in Biodiversity and Conservation Ecology

Biodiversity can be a vague concept with so many measurement variants to make one wonder what it is exactly, and how to incorporate ideas about biodiversity into scientific hypotheses. Even if we take the simplest concept of species richness as the operational measure, many questions arise about the importance of the rare species that make up most of the biodiversity but so little of the biomass. How can we proceed to a better understanding of this nebulous ecological concept that we continually put before the public as needing their attention?

Biodiversity conservation relies on community and ecosystem ecology for guidance on how to advance scientific understanding. A recent paper by Turkington and Harrower (2016) articulates this very clearly by laying out 7 general questions for analyzing community structure for conservation of biodiversity. As such these questions are a general model for community and ecosystem ecology approaches that are needed in this century. Thus it would pay to look at these 7 questions more closely and to read this new paper. Here is the list of 7 questions from the paper:

  1. How are natural communities structured?
  2. How does biodiversity determine the function of ecosystems?
  3. How does the loss of biodiversity alter the stability of ecosystems?
  4. How does the loss of biodiversity alter the integrity of ecosystems?
  5. Diversity and species composition
  6. How does the loss of species determine the ability of ecosystems to respond to disturbances?
  7. How does food web complexity and productivity influence the relative strength of trophic interactions and how do changes in trophic structure influence ecosystem function?

Turkington and Harrower (2016) note that each of these 7 questions can be asked in at least 5 different contexts in the biodiversity hotspots of China:

  1. How do the observed responses change across the 28 vegetation types in China?
  2. How do the observed responses change from the low productivity grasslands of the Qinghai Plateau to higher productivity grasslands in other parts of China?
  3. How do the observed responses change along a gradient in the intensity of human use or degradation?
  4. How long should an experiment be conducted given that the immediate results are seldom indicative of longer-term outcomes?
  5. How does the scale of the experiment influence treatment responses?

There are major problems in all of this as Turkington and Harrower (2016) and Bruelheide et al. (2014) have discussed. The first problem is to determine what the community is or what the bounds of an ecosystem are. This is a trivial issue according to community and ecosystem ecologists, and all one does is draw a circle around the particular area of interest for your study. But two points remain. Populations, communities, and ecosystems are open systems with no clear boundaries. In population ecology we can master this problem by analyses of movements and dispersal of individuals. On a short time scale plants in communities are fixed in position while their associated animals move on species-specific scales. Communities and ecosystems are not a unit but vary continuously in space and time, making their analysis difficult. The species present on 50 m2 are not the same as those on another plot 100 m or 1000 m away even if the vegetation types are labeled the same. So we replicate plots within what we define to be our community. If you are studying plant dynamics, you can experimentally place all plant species selected in defined plots in a pre-arranged configuration for your planting experiments, but you cannot do this with animals except in microcosms. All experiments are place specific, and if you consider climate change on a 100 year time scale, they are also time specific. We can hope that generality is strong and our conclusions will apply in 100 years but we do not know this now.

But we can do manipulative experiments, as these authors strongly recommend, and that brings a whole new set of problems, outlined for example in Bruelheide et al. (2014, Table 1, page 78) for a forestry experiment in southern China. Decisions about how many tree species to manipulate in what size of plots and what planting density to use are all potentially critical to the conclusions we reach. But it is the time frame of hypothesis testing that is the great unknown. All these studies must be long-term but whether this is 10 years or 50 years can only be found out in retrospect. Is it better to have, for example, forestry experiments around the world carried out with identical protocols, or to adopt a laissez faire approach with different designs since we have no idea yet of what design is best for answering these broad questions.

I suspect that this outline of the broad questions given in Turkington and Harrower (2016) is at least a 100 year agenda, and we need to be concerned how we can carry this forward in a world where funding of research questions has a 3 or 5 year time frame. The only possible way forward, until we win the Lottery, is for all researchers to carry out short term experiments on very specific hypotheses within this framework. So every graduate student thesis in experimental community and ecosystem ecology is important to achieving the goals outlined in these papers. Even if this 100 year time frame is optimistic and achievable, we can progress on a shorter time scale by a series of detailed experiments on small parts of the community or ecosystem at hand. I note that some of these broad questions listed above have been around for more than 50 years without being answered. If we redefine our objectives more precisely and do the kinds of experiments that these authors suggest we can move forward, not with the solution of grand ideas as much as with detailed experimental data on very precise questions about our chosen community. In this way we keep the long-range goal posts in view but concentrate on short-term manipulative experiments that are place and time specific.

This will not be easy. Birds are probably the best studied group of animals on Earth, and we now have many species that are changing in abundance dramatically over large spatial scales (e.g. http://www.stateofcanadasbirds.org/ ). I am sobered by asking avian ecologists why a particular species is declining or dramatically increasing. I never get a good answer, typically only a generally plausible idea, a hand waving explanation based on correlations that are not measured or well understood. Species recovery plans are often based on hunches rather than good data, with few of the key experiments of the type requested by Turkington and Harrower (2016). At the moment the world is changing rather faster than our understanding of these ecological interactions that tie species together in communities and ecosystems. We are walking when we need to be running, and even the Red Queen is not keeping up.

Bruelheide, H. et al. 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89. doi: 10.1111/2041-210X.12126

Turkington, R. & Harrower, W.L. 2016. An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China. Plant Diversity, 38, 1-10. Available at: http://journal.kib.ac.cn/EN/volumn/current.shtml

On Caribou and the Conservation Conundrum

The central conundrum of conservation is the conflict between industrial development and the protection of biodiversity. And the classic example of this in Canada is the conservation of caribou. Caribou in the millions have ranged over almost all of Canada in the past. They are now retreating in much of the southern part of their range, have nearly gone extinct in the High Arctic, and are extinct on Haida Gwaii (Queen Charlotte Islands). The majority of populations with adequate data are dropping in numbers rapidly. The causes of their demise point to human habitat destruction from forestry, mining, oil and gas developments and roads (Festa-Bianchet et al. 2011). We march on with economic development, and caribou are in the way of progress.

The nexus of interactions underlying this crisis is reasonably well understood for boreal caribou and there is an extensive literature on the topic (Bergerud et al. 2007; Hervieux et al. 2013; Hervieux et al. 2014; Schaefer and Mahoney 2013; Wittmer et al. 2007). Caribou avoid human constructions like pipelines, mines, forestry operations, and roads. Forestry in particular opens up habitat that tends to favor deer and moose. Climate change makes winters less severe for deer. More prey makes more predators, and caribou are typically accidental, secondary prey from wolves that live largely off moose and deer. The habitats that humans open up with roads, seismic lines, and wellheads provide superhighways for wolves and other predators, so that predator access is greatly improved. Such access roads also allow hunters to access ungulates and potentially increase the harvest rate.

If predators are the key immediate factor reducing caribou populations, there seem to be two general solutions. Killing wolves is the most obvious management action, and much of wildlife management in North America has historically been based on the simple paradigm: “killing wolves is the answer, now what is the question?” But two problems arise. There are more predators than wolves (e.g. bears) and secondly killing wolves does not work very well (Hayes 2010). At best it seems to slow down the caribou decline at great expense, and it has to be continuous year after year because killing wolves increases the reproductive rate of those left behind and migration of wolves into the “control” area is rapid. So this management action becomes too expensive in the long run to work well and most people don’t want to see bears killed wholesale either. So the next option is to use fencing to protect caribou from contact with all predators. These fences could be on small areas into which pregnant female caribou are put in the spring to have their calves, and then released when the calves are a few months old and have a better chance of avoiding predators. Or the ultimate fence would be around hundreds of square kilometers to enclose a permanent caribou population with all the predators removed inside the fenced area. This would require continuous maintenance and is very costly. It turns caribou into a zoo animal, albeit on a large scale.

There is one other solution and that is to set aside very large areas of habitat that are not invaded by the forestry, mining, and oil industries, and to monitor the dynamics of caribou in these large reserves. Manitoba is apparently doing this, with reported success in stopping caribou declines.

Beyond these southern populations of caribou in the boreal forest zone, the problems of caribou population trends on the tundra are difficult to unravel, partly because of a lack of data arising from a shortage of funds (Gunn et al. 2011). Climate change is happening and the exact effects on tundra populations is unclear. Many barren-ground caribou herds show fluctuations in abundance with a period of about 50 years. Food supply exhaustion may be one factor in the fluctuations but harvesting is also involved. Local harvest data are often not recorded and with poor population data and poor harvest data we can rarely determine the trajectories of the herds or explain why they are changing in abundance. Peary caribou in the far north are suffering from climate change, rain events in winter that freezes their food supply of lichens under ice so they starve. No one knows how to alleviate the weather, and we only add to the problem with our greenhouse gas emissions. Peary caribou now survive in very low numbers but we cannot be sure that will continue.

All in all, we work hard to conserve large mammal ecosystems in tropical countries but seem far too unconcerned about our Canadian caribou heritage. To inform conservation actions, serious long-term population studies are sorely needed, including more frequent aerial census estimates for all the caribou herds, radio-collaring individuals for demographic data and movements, and complete harvesting data from all sources.

 

Bergerud, A.T., Dalton, W.J., Butler, H., Camps, L., and Ferguson, R. 2007. Woodland caribou persistence and extirpation in relic populations on Lake Superior. Rangifer 27(4): 57-78 (Special Issue No. 17). doi: http://dx.doi.org/10.7557/2.27.4.321

Festa-Bianchet, M., Ray, J.C., Boutin, S., Côté, S.D., and Gunn, A. 2011. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Canadian Journal of Zoology 89(5): 419-434. doi:10.1139/z11-025 .

Gunn, A., Russell, D., and Eamer, J. 2011. Northern caribou population trends in Canada. Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No. 10. Canadian Councils of Resource Ministers. Ottawa, ON. iv + 71 p. http://www.biodivcanada.ca/default.asp?lang=En&n=137E1147-1

Hayes, B. (2010) Wolves of the Yukon. Wolves of the Yukon Publishing, Smithers, B.C. ISBN: 978-1-4566-1047-0

Hervieux, D., Hebblewhite, M., DeCesare, N.J., Russell, M., Smith, K., Robertson, S., and Boutin, S. 2013. Widespread declines in woodland caribou (Rangifer tarandus caribou) continue in Alberta. Canadian Journal of Zoology 91(12): 872-882. doi:10.1139/cjz-2013-0123.

Hervieux, D., Hebblewhite, M., Stepnisky, D., Bacon, M., and Boutin, S. 2014. Managing wolves (Canis lupus) to recover threatened woodland caribou (Rangifer tarandus caribou) in Alberta. Canadian Journal of Zoology 92(12): 1029-1037. doi:10.1139/cjz-2014-0142 .

Schaefer, J.A., and Mahoney, S.P. 2013. Spatial dynamics of the rise and fall of caribou (Rangifer tarandus) in Newfoundland. Canadian Journal of Zoology 91(11): 767-774. doi:10.1139/cjz-2013-0132 .

Wittmer, H.U., McLennan, B.N., Serrouya, R., and Apps, C.D. 2007. Changes in landscape composition influence the decline of a threatened caribou population. Journal of Animal Ecology 76: 568-579. doi: 10.1111/j.1365-2656.2007.01220.x

On Conservation Dilemmas

Conservation is a strange mix of science and politics. What exactly the fraction of the mix is I would not hazard a guess, but probably the science of conservation biology is a small part of the total. That is not an excuse for anyone not to go into conservation as a career but you need to realize what you are walking into.

Many people have written about this but the latest radio announcements about wolf killing in western Canada got me thinking again about the problem of killing one native species to possibly protect another native species. Wolves eat caribou, mountain caribou are endangered, wolves are not (at the moment) endangered, therefore a simple solution: shoot A to save B. But think about this a bit and first of all realize that this is certainly not a scientific decision. Science tests hypotheses but it does not decree policies of action. The scientific issue buried in this controversy is whether or not shooting wolves will save the mountain caribou. How far, as a conservation scientist, do you trace the causality of a problem like this? Wolves eat a lot of moose as well as caribou. Oil and gas companies make roads to their wells and gas fields, paving the way for easy wolf dispersal to catch more moose or caribou. Moose love successional landscapes, and forestry companies love to make moonscapes by logging, generating successional landscapes. Deer also love farmland and successional landscapes, and mountain lions increase when deer increase. Mountain lions also take the occasional jogger. Where do we stop the causal chain?

If causality stops at the farm gate, wolves eat caribou therefore shoot them, life is simple. But to an ecologist this is missing the elephant in the room, our human use of landscapes. We make landscapes better for some species and worse for others, but we typically refuse to bear any responsibility for these landscape changes. How many logging companies or oil companies have been prosecuted for making wolves more abundant? So we go back to the farm gate and argue that killing wolves will have no effect on dwindling caribou because there are other predators out there – bears for example – that also eat caribou. And an honoured law of conservation biology is that once you get to a low population for the most part you are doomed no matter what happens. You cannot in a limiting case save a caribou herd of n = 1. But let us be optimistic as ecologists and argue that killing wolves will save the caribou. We have to add “this year” to that statement because, as Bob Hayes (2010) so elegantly argued in his book, once you start killing wolves you can never stop if that is your management solution. Caribou are caught in a nexus of wolves, bears, moose, deer, and elk in parts of western North America, and there is as yet no clear way of analyzing this nexus in a predictive manner. Killing wolves is the answer, but what is the question?

Money for management is yet another matter that enters the picture. Dollars spent on helicopter gunships cannot be spent on habitat improvements for other less charismatic species. So one needs value judgements here also, and this is not a scientific question but a policy one.

I think these conservation dilemmas are a general problem, and no doubt much is written about them. Do we kill an introduced species to save a native one? Do we forget about an introduced pest because a threatened bird species feeds on the pest? Do we get rid of an introduced weed that is poisonous to cattle but provides nectar for bees? Or in the present case do we kill one native species to potentially save another native species? Few of these questions are scientific questions and few can ever be sorted out by getting more data. So this is the problem I am not sure how to face. We go into conservation ecology to do science, but in the end we become a policy advisor that can be easily dismissed for political, social, or budget reasons. There is no way around this as far as I can see. If you think wolves are a valuable part of biodiversity, agitate not to kill them. If you think caribou will be preserved by killing wolves, go for the guns. All the arguments about the role of top predators in ecosystems (Ordiz et al. 2013, Ripple et al. 2014) can fall on deaf ears if society has a different value system than conservation biologists have.

Hayes, B. (2010) Wolves of the Yukon. Wolves of the Yukon Publishing, Smithers, B.C.

Ordiz, A., Bischof, R. & Swenson, J.E. (2013) Saving large carnivores, but losing the apex predator? Biological Conservation, 168, 128-133. doi: 10.1016/j.biocon.2013.09.024

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wallach, A.D. & Wirsing, A.J. (2014) Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484. doi: 10.1126/science.1241484

 

On Philanthropic Investment in Biodiversity Conservation

In the holiday season there is much talk and recommendations about donations to worthy causes, and this raises an interesting conundrum in biodiversity conservation. The question is relatively simple to answer if you have little money, but any reading of the business pages of our newspapers or a walk around the shopping centers of our large cities makes you realize that there are a great many people with more than a little money. What should you do with your excess cash?

Some people (but not all) will want to ‘make a difference’ with their accumulated wealth, at least until medical science can overcome the universal belief that “you can’t take it with you”. Peter Singer (2015) has addressed this question of how to spend your money most effectively when you donate. It comes down in the first instance of your time frame. If you wish to make a difference in the short term of a few years, your choices may differ fundamentally from those taken to make a difference in the long term of 100-500 years. The bulk of philanthropic donations now are in the short-term camp. We have poor people living on the street in most of our cities, people with curable diseases in less developed countries but no medical aid, and victims of wars, earthquakes and tsunamis who must rebuild their lives. So we must start with what I think is the biggest decision regarding philanthropy – do we worry only about people, or do we worry about the biological world as well? Most donations are directly related to improving the human condition, locally or globally.

But there is hope because more and more people are realizing that we cannot separate people from biodiversity because of ecosystem services. Without well-functioning ecosystems on Earth, all the medical advances of our time are for naught. This is an important message to convey to potential donors.

Conservation philanthropy is a curious mix of short term and long term goals. Many endangered species need action now to survive. But ecologists typically look at both the shorter and the longer term goals of conservation. The simplest goal is to set aside land for protection. Without habitat all is lost. But this goal must be paired with long term funding to hire rangers to protect the area from poachers and to monitor the status of the species within the protected zone. Relying on the government to do this by itself is not adequate and never has been. But beyond this primary goal of land protection, the conservation movement fractionates. There are arguments that without effective human population stabilization biodiversity loss must continue. So does this mean that effective donations should be earmarked for agencies that empower women and offer reproductive services? But this points out that we must not fall into the trap of thinking we can do only one thing at a time. Pandas or population – why not “both and”? Climate change is a similar ‘elephant in the room’ problem.

What are the long-term goals of conservation biology that would benefit from philanthropic investment? Start with pest control. Biological control of pests is a long-term issue par excellence (Goldson et al. 2015, Myers et al. 2009, Wyckhuys et al. 2013). But biological control programs are underfunded by governments and obtain little private philanthropy. Weed control, insect pest control, vertebrate pest control all fit in the same problem basket – long term problem supported only by short term funding. Invasive pest eradication on islands is one area of pest control in which both governments and private funding have been joining forces (http://www.islandconservation.org/ ) with good results.

Two other areas of conservation biology that are classically underfunded are taxonomy and monitoring. In many taxonomic groups the majority of the species on Earth are not yet identified and described with a scientific name. The nearest analogy would be having a bank with tons of coins of different sizes and shapes, but only a few of which had any engraving on them. Taxonomy which is so vital to biology suffers because physical scientists consider it “stamp collecting” and unworthy of scientific funding. Monitoring of ecological communities faces the same problem. Monitoring ecological communities is similar to monitoring weather, yet we support meteorological stations around the world but provide little support for ecological monitoring. At present ecological monitoring is done ad hoc by dedicated people but with little systematic organization. Monitoring of changes in the arctic is being coordinated globally (http://www.amap.no/ ) and specific programs have been outlined for example for northern Canada (https://www.ec.gc.ca/faunescience-wildlifescience/, but the funding levels are low considering the size of the areas under consideration. Tropical ecosystem monitoring is even less well funded, yet that is where much of global biodiversity is located (c.f. for example, Cardoso et al. 2011, Burton 2012).

So what can you do about this? Talk up the necessity and the advantages of conservation biodiversity. Imagine what would happen to any of these biodiversity problems if a foundation the size of the Bill & Melinda Gates Foundation devoted a large amount of its donations to conservation. Environmental stewardship is the key to the Earth’s survival, and a combination of problem solving of current biodiversity problems combined with a strong research component on how species interact and ecosystems operate to sustain themselves would be a legacy for future generations and a flagship for the next 100 years.

Burton, A.C. (2012) Critical evaluation of a long-term, locally-based wildlife monitoring program in West Africa. Biodiversity and Conservation, 21, 3079-3094. doi: 10.1007/s10531-012-0355-6

Cardoso, P., Erwin, T.L., Borges, P.A.V. & New, T.R. (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647-2655. doi: 10.1016/j.biocon.2011.07.024

Glen, A.S., Atkinson, R., Campbell, K.J., Hagen, E., Holmes, N.D., Keitt, B.S., Parkes, J.P., Saunders, A., Sawyer, J. & Torres, H. (2013) Eradicating multiple invasive species on inhabited islands: the next big step in island restoration? Biological Invasions, 15, 2589-2603. doi: 10.1007/s10530-013-0495-y

Goldson, S.L., Bourdôt, G.W., Brockerhoff, E.G., Byrom, A.E., Clout, M.N., McGlone, M.S., Nelson, W.A., Popay, A.J., Suckling, D.M. & Templeton, M.D. (2015) New Zealand pest management: current and future challenges. Journal of the Royal Society of New Zealand, 45, 31-58. doi: 10.1080/03036758.2014.1000343

Myers, J.H., Jackson, C., Quinn, H., White, S.R. & Cory, J.S. (2009) Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biological Control, 50, 66-72. doi: 10.1016/j.biocontrol.2009.02.008

Singer, P. (2015) The Most Good You Can Do. Yale University Press, New Haven. ISBN: 978-0-300-18027-5

Wyckhuys, K.A.G., Lu, Y., Morales, H., Vazquez, L.L., Legaspi, J.C., Eliopoulos, P.A. & Hernandez, L.M. (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biological Control, 65, 152-167. doi: 10.1016/j.biocontrol.2012.11.010 http://www.islandconservation.org/where-we-work/

 

Is Conservation Ecology a Science?

Now this is certainly a silly question. To be sure conservation ecologists collect much data, use rigorous statistical models, and do their best to achieve the general goal of protecting the Earth’s biodiversity, so clearly what they do must be the foundations of a science. But a look through some of the recent literature could give you second thoughts.

Consider for example – what are the hallmarks of science? Collecting data is one hallmark of science but is clearly not a distinguishing feature. Collecting data on the prices of breakfast cereals in several supermarkets may be useful for some purposes but it would not be confused with science. The newspapers are full of economic statistics about this and that and again no one would confuse that with science. We commonly remark that ‘this is a good scientific way to go about doing things” without thinking too much about what this means.

Back to basics. Science is a way of knowing, of accumulating knowledge to answer questions or problems in an independently verifiable way. Science deals with questions or problems that require some explanation, and the explanation is a hypothesis that needs to be tested. If the test is retrospective, the explanation may be useful for understanding the past. But science at its best is predictive about what will happen in the future, given a set of assumptions. And science always has alternative explanations or hypotheses in case the first one fails. So much everyone knows.

Conservation ecology is akin to history in having a great deal of information about the past but wishing to use that information to inform the future. In a certain sense it has a lot of the problems of history. History, according to many historians (Spinney 2012) is “just one damn thing after another”, so that there can be no science of history. But Turchin disagrees (2003, 2012) and claims that general laws can be recognized in history and general mathematical models developed. He predicts from these historical models that unrest will break out in the USA around 2020 as cycles of violence have broken out in the past every 30-50 years in this country (Spinney 2012). This is a testable prediction in a reasonable time frame.

If we look at the literature of conservation ecology and conservation genetics, we can find many observations of species declines, of geographical range shifts, and many predictions of general deterioration in the Earth’s biota. Virtually all of these predictions are not testable in any realistic time frame. We can extrapolate linear trends in population size to zero but there are so many assumptions that have to be incorporated to make these predictions, few would put money on them. For the most part the concern is rather to do something now to prevent these losses and that is very useful research. But since the major drivers of potential extinctions are habitat loss and climate change, two forces that conservation biologists have no direct control over, it is not at all clear how optimistic or pessimistic we should be when we see negative trends. Are we becoming biological historians?

There are unfortunately too few general ‘laws’ in conservation ecology to make specific predictions about the protection of biodiversity. Every one of the “ecological theory predicts…” statements I have seen in conservation papers refer to theory with so many exceptions that it ought not to be called theory at all. There are some certain predictions – if we eliminate all the habitat a species occupies, it will certainly go extinct. But exactly how much can we get rid of is an open question that there are no general rules about. “Protect genetic diversity” is another general rule of conservation biology, but the consequences of the loss of genetic diversity cannot be estimated except for controlled laboratory populations that bear little relationship to the real world.

The problems of conservation genetics are even more severe. I am amazed that conservation geneticists think they can decide what species are most ‘important’ for future evolution so that we should protect certain clades (Vane-Wright et al. 1991, Redding et al. 2014 and much additional literature). Again this is largely a guess based on so many assumptions that who knows what we would have chosen if we were in the time of the dinosaurs. The overarching problem of conservation biology is the temptation to play God. We should do this, we should do that. Who will be around to pick up the pieces when the assumptions are all wrong? Who should play God?

Redding, D.W., Mazel, F. & Mooers, A.Ø. (2014) Measuring evolutionary isolation for conservation. PLoS ONE, 9, e113490.

Spinney, L. (2012) History as science. Nature, 488, 24-26.

Turchin, P. (2003) Historical dynamics : why states rise and fall. Princeton University Press, Princeton, New Jersey.

Turchin, P. (2012) Dynamics of political instability in the United States, 1780–2010. Journal of Peace Research, 49, 577-591.

Vane-Wright, R.I., Humphries, C.J. & Williams, P.H. (1991) What to protect?—Systematics and the agony of choice. Biological Conservation, 55, 235-254.

Why Do Physical Scientists Run Off with the Budget Pie?

Take any developed country on Earth and analyse their science budget. Break it down into the amounts governments devote to physical science, biological science, and social science to keep the categories simple. You will find that the physical sciences gather the largest fraction of the budget-for-science pie, the biological sciences much less, and the social sciences even less. We can take Canada as an example. From the data released by the research councils, it is difficult to construct an exact comparison but within the Natural Sciences and Engineering Research Council of Canada the average research grant in Chemistry and Physics is 70% larger than the average in Ecology and Evolution, and this does not include supplementary funding for various infrastructure. By contrast the Social Sciences and Humanities Research Council reports research grants that appear to be approximately one-half those of Ecology and Evolution, on average. It seems clear in science in developed countries that the rank order is physical sciences > biological sciences > social sciences.

We might take two messages from this analysis. If you listen to the news or read the newspapers you will note that most of the problems discussed are social problems. Then you might wonder why social science funding is so low on our funding agenda in science. You might also note that environmental problems are growing in importance and yet funding for environmental research is also at the low end of our spending priority.

The second message you may wish to ask is: why should this be? In particular, why do physical scientists run off with the funding pie while ecologists and environmental scientists scratch through the crumbs? I do not know the answer to this question. I do know that it has been this way for at least the last 50 years, so it is not a recent trend. I can suggest several partial answers to this question.

  1. Physical scientists produce along with engineers the materials for war in splendid guns and aircraft and submarines that our governments believe will keep us safe.
  2. Physical scientists produce economic growth by their research so clearly they should be more important.
  3. Physical sciences produce scientific progress on a time scale of months while ecologists and environmental scientists produce research progress on a time scale of years and decades.
  4. Physical scientists do the research that produce good things like iPhones and computers while ecologists and environmental scientists produce mostly bad news about the deterioration in the earth’s ecosystem services.
  5. Physical scientists and engineers run the government and all the major corporations so they propagate the present system.

Clearly there are specific issues that are lost in this general analysis. Medical science produces progress in diagnosis and treatment as a result of the research of biochemists, molecular biologists, and engineers. Pharmaceutical companies produce compounds to control diseases with the help of molecular biologists and physiologists. So research in these specific areas must be supported well because they affect humans directly. Medical sciences are the recipient of much private money in the quest to avoid illness.

Lost in this are a whole other set of lessons. Why were multi-billions of dollars devoted to the Large Hadron Collider Project which had no practical value at all and has only led to the need for a Very Large Hadron Collider in future to waste even more money? The answer seems to lie somewhere in the interface of three points of view – it may be needed for military purposes, it is a technological marvel, and it is part of physics which is the only science that is important. The same kind of thinking seems to apply to space research which is wildly successful burning up large amounts of money while generating more military competition via satellites and in addition providing good movie images for the taxpayers.

While many people now support efforts on the conservation of biodiversity and the need for action on climate change, the funding is not given to achieve these goals either from public or private sources. One explanation is that these are long-term problems and so are difficult to get excited about when the lifespan of the people in power will not extend long enough to face the consequences of current decision making. Finally, many people are convinced that technological fixes will solve all environmental problems so that the problems environmental scientists worry about are trivial (National Research Council 2015, 2015a). Physics will fix climate change by putting chemicals into the stratosphere, endangered species will be resurrected by DNA, and fossil fuels will never run out. And as a bonus Canada and Scandinavia will be warmer and what is wrong with that?

An important adjunct to this discussion is the question of why economics has risen to the top of the heap along with physical sciences. As such the close triumvirate of physical sciences-engineering-economics seems to run the world. We should keep trying to change that if we have concern for the generations that follow.

 

National Research Council. 2015. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration. The National Academies Press, Washington, DC. 140 pp. ISBN: 978-0-309-36818-6.

National Research Council. 2015a. Climate Intervention: Reflecting Sunlight to Cool Earth. The National Academies Press, Washington, DC. 234 pp. ISBN: 978-0-309-36821-6.

Are Birds of Any Consequence?

We all love birds. They are colourful, interesting creatures and they entice many people to a love of nature and then hopefully the conservation of biodiversity. Thus we do not want to get rid of them. A great deal of effort goes into censusing birds and they are often thought of as indicator species of ecosystem health. No one is in favour of ‘Silent Spring’. But let us do a thought experiment.

The question I wish to ask is somewhat different than the important issue of bird conservation: are birds of any consequence to the operational integrity of communities and ecosystems? In the simplest case what would happen, say, to the eastern deciduous forest or the tall grass prairie or the arctic tundra if all the birds in those ecosystems went extinct? Predators that specialize on birds would clearly disappear but I do not know how many bird specialist predators exist. At the same time the parasites of these birds would be gone. But what about the integrity of existing ecosystems?

Can we dismiss the oceans because birds have a negligible effect on oceanic food webs and energy flow? I do not know the answer to this. In forests birds are often thought to keep insect pests of trees under control, but this seems to be unlikely in many systems in which defoliating insects damage trees of many sorts. Perhaps insect outbreaks would increase in frequency if there were no birds. I come away with the image that birds are for the most part of little consequence for terrestrial ecosystems because they are consumers operating at a very low quantitative level. An exception might be tropical forests in which birds are essential pollinators and seed dispersers, but again I am not sure how often they are necessary pollinators or seed dispersers.

All of this speculation is pretty useless, one might argue, because birds are not going to disappear. They may well be reduced in abundance if habitat is lost and habitat loss seems to be a global problem. But there are two aspects of current ecological research that these idle speculations touch on. First, are birds very good model systems for conservation biology? The answer the ecological world seems to have decided is that they are and very much research must be done on birds for this reason. If research time and money is limited, more research on birds means less on other aspects of community and ecosystem dynamics. Should we be concerned about this? Bird research is convenient and sexy, at least in university settings, but is it more of “Nero fiddling while Rome is burning”? One might in fact argue that many birds are the worst possible model system for understanding conservation problems except for those specific to birds. When I was producing a textbook section on population dynamics I tried to find a good solid example of a supposed decline in bird abundance for any species in which the mechanisms of decline were understood. While there are many data on declines, and much hand wringing, there were virtually no examples with hard data on mechanisms except for the vague idea of habitat loss. Maybe mechanisms are unimportant in conservation biology but it seems unlikely that they are superfluous to understanding the larger issues of population dynamics.

The second general question is the converse one of what kinds of organisms should ecologists be concentrating on if we are to make convincing arguments about biodiversity conservation? If changes in community and ecosystem dynamics are looming, so that the future will not look like the past, where should we put our energies to prevent ecosystem collapse? Are insects and invertebrates in general of greater importance that birds or mammals?

Hurlbert (1971, 1997) raised the question of how to determine the general functional importance of a species to a community, and he concluded that the only measure that has been put forward is ‘the sum over all species, of the changes in productivity which would occur on removal of the particular species from the community’. He pointed out that this definition of importance is clear and specific but could never be measured for even a single species in a community for practical reasons. Hurlbert (1997) also recognized that ‘importance’ had now morphed into ‘keystone’ for much of ecology (e.g. Daily et al. 1993), with all the problems associated with the keystone idea. He suggested, as did Walker (1992) that most species are redundant and of little consequence to ecosystem functioning. Much discussion has occurred since these papers and some has morphed into discussions of ‘functional groups’ instead of species. But plant ecologists have in general not addressed the challenges that Hurlbert (1999) asked, and we are far from being able to answer even the hypothetical question in the title of this blog.

Daily, G.C., Ehrlich, P.R., and Haddad, N.M. 1993. Double keystone bird in a keystone species complex. Proceedings of the National Academy of Sciences USA 90(2): 592-594. doi:10.2307/2361101.

Hurlbert, S.H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology 52: 577-586.

Hurlbert, S.H. 1997. Functional importance vs. keystoneness: Reformulating some questions in theoretical biocenology. Australian Journal of Ecology 22(4): 369-382.

Walker, B.H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6: 18-23.