Tag Archives: environmental science

On Research Grant Funding

All ecologists except for Charles Darwin have had to apply for funding to carry out their research. I am mainly familiar with how this is done in Canada and the United States, with a little experience in Australia. So, depending on where you live, these comments may or may not apply. I would expect the European Union, the United States, and Britain to have the best funding processes since they lead the developed world in research funding. But I stand to be corrected in all this discussion and in my evaluations which are largely focussed on ecological research.

Ecological research is funded largely from government funding and paid for by the taxpayer. There is relatively little private funding available for ecology and this could be because few think ecological science matters to the world, or because private funding goes mainly to medical research. Government funding is pulled in many diverse directions, as anyone who follows the news knows. Governments devoted to exponential growth are wary of ecological work because it does not usually contribute to GDP and ecologists are very wary of exponential growth. But changes in public expectations can influence how governments view environmental work. The continued concern about climate change and a growing interest in biodiversity in general is pushing governments ever so slowly in the direction of environmental science.

But despite this apparent positive trend we are going backwards. The fraction of money going into environmental work is going down once you correct for inflation. The funding of universities is also going down with more student debt so that as the population grows and more jobs in environmental work ought to occur, it is not happening. This situation is most apparent in funding universities for research and for training research students. The amount of money per capita is falling and this leads to two problems in research funding. The first is that governments in general have adopted what I call the “Oxford and Cambridge Paradigm” of research funding. This paradigm in its simple form argues that all the important and innovative research comes from Oxford and Cambridge, or the equivalent universities in your country, and so most of the government research funding must go to these places. But the minor research players in the smaller universities cannot be ignored so they are given a pittance to do some research to keep them quiet. The same strategy can be applied to the funding of graduate students and research assistants. A simple result is that this works well in part but produces clear cases of amazing researchers in a minor university being underfunded while a mediocre researcher at “Oxford” is rolling in money. One consequence of this general pattern is that the major universities reach out and hire the amazing researchers from the smaller universities at a high salary and substantial amounts of funding, so the pattern tends to stabilize rather than evolve into a better system.

The second problem is that competition increases if funding per capita is falling, so that excellent young scientists cannot be employed in their chosen field. The politicians will argue that young people should choose profitable areas in which to study, and perhaps university advisors should tell budding ecologists to go to business schools. Competition rarely leads to useful outcomes in human society, despite the economic gospels we are inundated with. Competition in research can lead to useful liaisons of many scientists working on the same problem, but this happens less frequently than seems desirable. The Holy Grail for competition is the Nobel Prize which goes to one or two scientists in a field despite the common knowledge that they achieved their goals with the help of dozens to hundreds of colleagues.

This problem has not gone unnoticed of course but few provide formal analysis of the details of funding and how funding is dispersed (Aagaard et al. 2020, Scholten et al. 2021). Murray et al. (2016) showed at least for Canada smaller universities were being research funded less well per capita than larger ones, and both Ferreira et al (2016) and De Peuter and Conix (2021) have discussed peer reviews as a major problem in the current funding situation. The problem of bias in review panels is well recognized. If the main objective is to fund excellence, the problem has become more difficult because of social considerations of sexism and racism added to the demand for excellence. This is a minefield I do not wish to enter here.

The existing situation cries out for answers as to how funding decisions are made at both lower and higher levels. In particular as a Canadian example, we might ask why fundamental science total funding in the Canadian Natural Science and Engineering Research Council (NSERC) has not changed since 2007 (https://can-acn.org/science-funding-in-canada-statistics/). The average research grant in Canada in the NSERC Ecology and Evolution Panel was $39K in 2016 and $37K in 2021. Lest we ecologists feel persecuted, in the Canadian Institutes of Health Research (CIHR) funding for basic biomedical research has not changed since 2006. The trends in these numbers are important because someone at the higher levels of making decisions on funding basic science at least in Canada has decided that basic science is not “important”, so that even though we are moving into catastrophic global predictions from climate change and biodiversity loss, basic science funding does not increase in real dollars. I am not sure whether other countries have a similar issue, but the same problem can be seen in many governments in decisions about funding for the basic sciences.

The bottom line is that there are continuing important issues in funding basic science, from biases at the committee level in evaluating individual research grants all the way to the much larger issue of who at the top of the decision pile allocates funds for national and local scientific priorities. If scientific research is about excellence, we have much left to do to achieve appropriate funding in Canada and elsewhere.

Aagaard, K., Kladakis, A., and Nielsen, M.W. (2020). Concentration or dispersal of research funding? Quantitative Science Studies 1, 117-149. doi: 10.1162/qss_a_00002.

De Peuter, S. and Conix, S. (2021). The modified lottery: Formalizing the intrinsic randomness of research funding. Accountability in Research 1-22. doi: 10.1080/08989621.2021.1927727

Ferreira, C. et al. (2016). The evolution of peer review as a basis for scientific publication: directional selection towards a robust discipline? Biological Reviews 91, 597-610. doi: 10.1111/brv.12185

Murray, D.L., Morris, D., Lavoie, C., Leavitt, P.R., and MacIsaac, H. (2016). Bias in research grant evaluation has dire consequences for small universities. PLoS ONE 11, e0155876. doi: 10.1371/journal.pone.0155876.

Why The Environmental Sciences Always Lose Out

One of the basic observations of our time in almost all countries is that some sciences are held in high esteem while others are not popular. Science is often confused with technology, so positive marks are typically given for new types of cell phones, tablets and computers, and the sciences that give rise to these technological advances like physics, chemistry, and engineering are viewed as gold stars. Medical advances are also highly regarded out of self-interest and most medical science from basic to applied is given high support in our society. At the other end of the ranking is ecology and in general environmental science. These are viewed poorly by many, so that action on climate-change and biodiversity conservation are supported by a dwindling few. Why are some sciences highly praised and others damned?

Part, but only part, of the explanation lies in religious beliefs. I do not know of any major religious group that condemns Iphones and computers, or medical advances, or even space research. But many people seem to have objections to biological concepts like evolution and question the role of humans in affecting the earth’s ecosystems. Possibly a larger part of this rejection of environmental science is explained by the fact that environmental scientists bring mostly bad news to the social table, while physicists promise infinite free energy and medical scientists promise cures for diseases. We prefer good news to bad.

The most prominent bad news story currently is climate change and the role of humans in causing these changes. Climate change science is easy to deny. The data are always variable, sometimes it still snows in the wrong month of the year or the summer is particularly cool. But most importantly the problem is slow moving, and humans are not very good at assessing slow moving catastrophes. Few of us will be alive when the climate problems get so serious only a fool would deny them, and our penchant for demanding fast solutions to problems will not work when the reversal of the cause (e.g. CO2 enrichment of the air) takes 100-200 years. So it is better to put our head in the sand and deny everything.

The problem with conservation ecology and biodiversity loss is similarly long-term and slow. To solve these problems we have to do something and we are all in favour of doing something if it does not reduce economic growth. So population growth is favoured since exponential growth is the new God pushing economic growth, and biodiversity loss does not seem to impact on most of us living in large cities. Sustainability thus becomes a meaningless word in both politics and business, talk much and do little. If there is an apparent conflict between economics and the environment guess who wins. Convincing people that economics cannot exist without the environment is the challenge of our time. We could start by electing governments that cultivate environmental concerns on an equal basis with economic concerns.

Oreskes, N. and E. M. Conway. 2010. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. Bloomsbury Press, New York. 365 pp.
Washington, H. 2013. Human Dependence on Nature. Routledge.144 pp.