Tag Archives: long-term problems

The Meaningless of Random Sampling

Statisticians tell us that random sampling is necessary for making general inferences from the particular to the general. If field ecologists accept this dictum, we can only conclude that it is very difficult to nearly impossible to reach generality. We can reach conclusions about specific local areas, and that is valuable, but much of our current ecological wisdom on populations and communities relies on the faulty model of non-random sampling. We rarely try to define the statistical ‘population’ which we are studying and attempting to make inferences about with our data. Some examples might be useful to illustrate this problem.

Marine ecologists ae mostly agreed that sea surface temperature rise is destroying coral reef ecosystems. This is certainly true, but it camouflages the fact that very few square kilometres of coral reefs like the Great Barrier Reef have been comprehensively studied with a proper sampling design (e.g. Green 1979, Lewis 2004). When we analyse the details of coral reef declines, we find that many species are affected by rising sea temperatures, but some are not, and it is possible that some species will adapt by natural selection to the higher temperatures. So we quite rightly raise the alarm about the future of coral reefs. But in doing so we neglect in many cases to specify the statistical ‘population’ to which our conclusions apply.

Most people would agree that such an approach to generalizing ecological findings is tantamount to saying the problem is “how many angels can dance on the head of a pin”, and in practice we can ignore the problem and generalize from the studied reefs to all reefs. And scientists would point out that physics and chemistry seek generality and ignore this problem because one can do chemistry in Zurich or in Toronto and use the same laws that do not change with time or place. But the ecosystems of today are not going to be the ecosystems of tomorrow, so generality in time cannot be guaranteed, as paleoecologists have long ago pointed out.

It is the spatial problem of field studies that collides most strongly with the statistical rule to random sample. Consider a hypothetical example of a large national park that has recently been burned by this year’s fires in the Northern Hemisphere. If we wish to measure the recovery process of the vegetation, we need to set out plots to resample. We have two choices: (1) lay out as many plots as possible, and sample these for several years to plot recovery. Or (2) lay out plots at random each year, never repeating the same exact areas to satisfy the specifications of statisticians to “random sample” the recovery in the park. We typically would do (1) for two reasons. Setting up new plots each year as per (2) would greatly increase the initial field work of defining the random plots and would probably mean that travel time between the plots would be greatly increased. Using approach (1) we would probably set out plots with relatively easy access from roads or trails to minimize costs of sampling. We ignore the advice of statisticians because of our real-world constraints of time and money. And we hope to answer the initial questions about recovery with this simpler design.

I could find few papers in the ecological literature that discuss this general problem of inference from the particular to the general (Ives 2018, Hauss 2018) and only one that deals with a real-world situation (Ducatez 2019). I would be glad to be sent more references on this problem by readers.

The bottom line is that if your supervisor or research coordinator criticizes your field work because your study areas are not randomly placed or your replicate sites were not chosen at random, tell him or her politely that virtually no ecological research in the field is done by truly random sampling. Does this make our research less useful for achieving ecological understanding – probably not. And we might note that medical science works in exactly the same way field ecologists work, do what you can with the money and time you have. The law that scientific knowledge requires random sampling is often a pseudo-problem in my opinion.  

Ducatez, S. (2019) Which sharks attract research? Analyses of the distribution of research effort in sharks reveal significant non-random knowledge biases. Reviews in Fish Biology and Fisheries, 29, 355-367. doi. 10.1007/s11160-019-09556-0

Green, R.H. (1979) Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York. 257 pp.

Hauss, K. (2018) Statistical Inference from Non-Random Samples. Problems in Application and Possible Solutions in Evaluation Research. Zeitschrift fur Evaluation, 17, 219-240. doi.

Ives, A.R. (2018) Informative Irreproducibility and the Use of Experiments in Ecology. BioScience, 68, 746-747. doi. 10.1093/biosci/biy090

Lewis, J. (2004) Has random sampling been neglected in coral reef faunal surveys? Coral Reefs, 23, 192-194. doi: 10.1007/s00338-004-0377-y.

The Time Frame of Ecological Science

Ecological research differs from many branches of science in having a more convoluted time frame. Most of the sciences proceed along paths that are more often than not linear – results A → results B → results C and so on. Of course, these are never straight linear sequences and were described eloquently by Platt (1964) as strong inference:

“Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: 1) Devising alternative hypotheses; 2) Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly as possible, exclude one or more of the hypotheses; 3) Carrying out the experiment so as to get a clean result; “Recycling the procedure, making sequential hypotheses to refine the possibilities that remain; and so on. It is like climbing a tree.” (page 347 in Platt).

If there is one paper that I would recommend all ecologists read it is this paper which is old but really is timeless and critical in our scientific research. It should be a required discussion topic for every graduate student in ecology.

Some ecological science progresses as Platt (1964) suggests and makes good progress, but much of ecology is lost in a failure to specify alternative hypotheses, in changing questions, in abandoning topics because they are too difficult, and in a shortage of time. It is the time component of ecological research that I wish to discuss in this blog.

The idea of long-term studies has always been present in ecology but was perhaps brought to our focus by the compilation by Gene Likens in 1989 in a book of 14 chapters that are as vital now as they were 34 years ago. Many discussions of long-term studies are now available to examine this issue. Buma et al. (2019) for example discuss plant primary succession at Glacier Bay, Alaska which has 100 years of data, and which illustrates in a very slow ecosystem a test of conventional rules of community development. Cusser et al. (2021) follow this by asking a critical question of how long field experiments need to be. They restrict long-term to be > 10 years of study and used data from the USA LTER sites. This question depends very much on the community or ecosystem of study. Studies in areas with a stable climate produced results more quickly than those in highly seasonal environments, and plant studies needed to be longer term than animal studies to reach stable conclusions. Ten years may not be enough.

Reinke et al. (2019) reviewed 3 long term field studies and suggest that long-term studies can be useful to allow us to predict how ecosystems will change with time. All these studies lead to three unanswered questions that are critical for progress in ecology. The first question is how we decide as a community exactly which ecological system we should be studying long-term. No one knows how to answer this question, and a useful graduate seminar could debate the utility of what are now considered model long-term studies, such as the three highlighted in Reinke et al. (2019) or the Park Grass Experiment (Addy et al. 2022). At the moment these decisions are opportunistic, and we should debate how best to proceed. Clearly, we cannot do everything for every population and community of interest, so how do we choose? We need model systems that can be applied to a wide variety of environments across the globe and that ask questions of global significance. Many groups of ecologists are trying to do this, but a host of decisions about who to fund and support in what institution are vital to avoid long-term studies driven more by convenience than by ecological importance.

A second question involves the implied disagreement whether many important questions in ecology today could be answered by short-term studies, so we reach a position where there is competition between short- and long-term funding. These decisions about where to do what for how long are largely uncontrolled. One would prefer to see an articulated set of hypotheses and predictions to proceed with decision making, whether for short-term studies suitable for graduate students or particularly for long-term studies that exceed the life of individual researchers.

A third question is the most difficult one of the objectives of long-term research. Given climate change as it is moving today, the hope that long-term studies will give us reliable predictions of changes in communities and ecosystems is at risk, the same problem of extrapolating a regression line beyond the range of the data. Depending on the answer to this climate dilemma, we could drop back to the suggestion that because we have only a poor ability to predict ecological change, we should concentrate more on widespread monitoring programs and less on highly localized studies of a few sites that are of unknown generality. Testing models with long-term data is enriching the ecological literature (e.g. Addy et al 2022). But the challenge is whether our current understanding is sufficient to make predictions for future populations or communities. Should ecology adopt the paradigm of global weather stations?

Addy, J.W.G., Ellis, R.H., MacLaren, C., Macdonald, A.J., Semenov, M.A. & Mead, A. (2022) A heteroskedastic model of Park Grass spring hay yields in response to weather suggests continuing yield decline with climate change in future decades. Journal of the Royal Society Interface, 19, 20220361. doi: 10.1098/rsif.2022.0361.

Buma, B., Bisbing, S.M., Wiles, G. & Bidlack, A.L. (2019) 100 yr of primary succession highlights stochasticity and competition driving community establishment and stability. Ecology, 100, e02885. doi: 10.1002/ecy.2885.

Cusser, S., Helms IV, J., Bahlai, C.A. & Haddad, N.M. (2021) How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network. Ecology Letters, 24, 1103-1111. doi: 10.1111/ele.13710.

Hughes, B.B., Beas-Luna, R., Barner, A., et al. (2017) Long-term studies contribute disproportionately to ecology and policy. BioScience, 67, 271-281. doi: 10.1093/biosci/biw185.

Likens, G.E. (Editor, 1989) Long-term Studies in Ecology: Approaches and Alternatives. Springer Verlag, New York. 214 pp. ISBN: 0387967435.

Platt, J.R. (1964) Strong inference. Science, 146, 347-353. doi: 10.1126/science.146.3642.347.

Reinke, B.A., Miller, D.A.W. & Janzen, F.J. (2019) What have long-term field studies taught as about population dynamics? Annual Review of Ecology, Evolution, and Systematics, 50, 261-278. doi: 10.1146/annurev-ecolsys-110218-024717.

The Five Stages of Conservation

While listening to the reports on the COP 15 meeting in Montreal I began thinking that one way to look at conservation science and action is to think of it in 5 stages. So I decided to put out this discussion of how we might view all the conservation news.

Stage 1: Recognize the Issue

The most important issue is to make both scientists and the general public aware that there is a large problem with the conservation of the Earth’s biota. We start with having to convince all that biodiversity does not mean dangerous animals and plants. This stage would be simple for anyone who has taken a good biology course in school, but we still find that some people fear the “environment” because it is synonymous with spiders and alligators and bears and wolves. One might think that children’s books involving cute or anthropomorphised animals would make them less susceptible to this worry, but this does not work for all who have read “The Big Bad Wolf” and Little Red Riding Hood. So education about animals and plants should begin to point everyone toward conservation.

Stage 2: Become Concerned

People see that animals die from a great array of problems, and this connects to the human world where people get ill and pass away or become injured in a car accident. Depending on what their interest is, concern about this leads to interventions such as the feeding of birds and other wildlife on the assumption that they cannot take care of themselves. These worries generate a concern in many to protect wildlife on the unfounded assumption that without human interference, all would disappear.

Stage 3: Demand Action

By this stage wildlife and fishery scientists have begun doing many excellent studies on how some populations of wildlife are in serious trouble. The crux at this point is that often the origin of these problems are human actions in cutting down forests, clearing land for agriculture and housing, and polluting the general environment. The problem is people do things related to “progress” and then find it is killing wildlife. If you need an example, think DDT or seismic lines. The public grows more aware and demands conservation action. These demands are translated into small amounts of government action with large amounts of publicity.

Stage 4: Achieve Action

The consequences of the human exploitation of the earth’s resources begins to bite, largely driven by climate emergencies. Much pressure from NGOs and even business people starts to result in action. Wildlife and fisheries agencies make progress but almost always on the scale of single species management often constrained by state or provincial boundaries. Who is in charge of this mess? Biodiversity becomes the cry of the age, and even the New York Times begins to realize that the Earth consists of more than human beings. But while there is more talk, there is less understanding because of the shouting of people who know very little about these conservation issues and how tangled they are. It is important to appear to be on the side of the angels, so progress is slower than one would like.

Stage 5: Understand the Problem

We have barely entered this stage. To be sure ecologists have been at this Stage for many years with reasonable understanding of how to ameliorate conservation problems, but still too few powers that be are convinced, so that we continue to provide subsidies to oil and gas companies that are busy destroying the earth. Subsidies can go in good or bad directions, but few of us can comprehend the volumes of money being committed to subsidies in all directions. We hear promises to achieve X by 2030, and Y by 2050, and still we believe these when we can just look up and see that few of the promises of the last 30 years have been achieved. Few beyond ecologists understand that it is communities and ecosystems that must be protected but almost all our conservation efforts now operate on single species of ecological beauty. Think rhinos.

One hopes for Stage 6 to come to be, but only a small sign of that progress is so far in sight. If only we could convince everyone that conservation issues ought to be treated with the urgency and the funding that COVID has obtained, we could press ahead with more serious conservation objectives. But it is more than declaring that we should protect 30% of our wild areas. Even if we can achieve the 30% goal in the next 8 years, it is but a start toward understanding the stewardship of the Earth if we do not know how the machinery of nature works. Alas, it is a long road ahead being driven by humans who are short-sighted. Can we avoid Plus ça change?

On Conservation Complexities

It is too often the case that biodiversity problems are managed by single species solutions. If you have too many deer in your parks or conservation areas, start a culling program. If your salmon fishing stocks are declining, cull seals and sea lions. The overall issue confounding these kinds of ‘solutions’ are now being recognized as a failure to appreciate the food web of the community and ecosystem in which the problem is embedded. Much of conservation action is directed at heading back to the “good old days” without very much data about what the ecosystem was like in the “good old days”.

Problems with introduced species top the list of conservation dilemmas, and nowhere are these problems more clearly illustrated than by the conservation dilemmas of New Zealand and Australia. If we concentrate our management efforts on introduced predators or herbivores, we face a large set of conservation issues, well-illustrated by the current New Zealand situation (Leathwick and Byrom 2023, Parkes and Murphy 2003).

New Zealand is a particularly strong case history because we have a good knowledge of its indigenous biodiversity from the time that people colonized these islands, as well as reasonable information about how things have changed since Europeans colonized the country (Thomson 1922). It is in some respects the classic case of biodiversity impacts from introduced species. The introduced species list is large and I can talk only about part of these species introduced mostly in the late 1800s. Seven species of deer were released in New Zealand, along with chamois, hares, rabbits, cats, hedgehogs, three mustelid species, brushtail possums, rats, house mice, along with all the usual farm animals like cattle, horses, and dogs (King & Forsyth 2021). The first concerns began about 100 years ago over ungulate browsing in forests and grasslands. Deer control began about 1930, and over 3 million deer were shot between 1932 and 1954. Caughley (1983) showed that this amount of control did not reduce the impact of browsing and grazing by ungulates in native ecosystems. Control and harvesting efforts decreased in recent years partly from a lack of government funding with the result that deer numbers have rebounded. The recognition of the impact of other pests like rabbits, weasels, and rats led to a focus on poison campaigns. Brushtail possum control with poisons was started to reduce tree browsing damage by the 1970s and gradually increased to reduce TB transmission to domestic livestock by the 1990s. Large scale predator control began in the late 1990s with a focus on rats, stoats (weasels, Mustela erminea), and possums with good success in preventing declines in threatened bird species. All this history is covered in detail in Leathwick and Byrom (2023).

These efforts led to a declaration in 2016 of “Predator Free New Zealand 2050” (PF2050) a compelling promise that would alleviate biodiversity problems by making New Zealand free of possums, mustelids, and rats by 2050, and predator control has thus became the focus of recent conservation action. The 2050 part of the promise was always a worry, since governments in general promise much in advances by that year, but the optimistic view is that predator control will achieve this objective if careful planning is made, adequate funding is available (c.f. Department of Conservation 2021), and well-articulated guidelines for eradication of invasive species are followed (Bomford & O’Brien 1995). The message is that biodiversity goals can be achieved if we move from single species management to a stable system of ecosystem management in the broad sense, including strong research, good public participation and support toward these goals, and that biodiversity conservation will be greatly boosted by thorough consultation with (if not leadership by) the indigenous groups involved.

The New Zealand specific situation cannot be applied directly to all biodiversity concerns, but the New Zealand conservation story and the 12 recommendations given in Leathwick and Byrom (2023) show the necessity of goal definition and coordination between the public, government, and private foundations if we are to maximize the effectiveness of our approach to the biodiversity crisis. Not every conservation issue involves introduced species, but the principle must be: What do we want to achieve, and how are we going to get there?

Bomford, M, & O’Brien, P 1995. Eradication or control for vertebrate pests? Wildlife Society Bulletin 23, 249–255.

Caughley, G. (1983) The Deer Wars: The Story of Deer in New Zealand. Heinemann, Auckland. ISBN: 0868633895.

Department of Conservation (2020). Annual Report. Available at: https://www.doc.govt. nz/nature/pests-and-threats/predator-free-2050/goal-tactics-and-new-technology/tools-to-market/.    See also: PF2050-Limited-Annual-Report-2022.pdf

King, C.M. & Forsyth, D.M. (2021). eds. The Handbook of New Zealand Mammals. 3rd edition. CSIRO Publishing, Canberra. ISBN 978-1988592589.

Leathwick, J.R. & Byrom, A.E. (2023) The rise and rise of predator control: a panacea, or a distraction from conservation goals? New Zealand Journal of Ecology, 47, 3515. doi: 10.20417/nzjecol.47.3515.

Parkes, J. & Murphy, E. (2003) Management of introduced mammals in New Zealand. New Zealand Journal of Zoology, 30, 335-359. doi:10.1080/03014223.2003.9518346.

Thomson, G.M. (1922) The Naturalisation of Animals and Plants in New Zealand. The University Press, Cambridge, England. doi: 10.5962/bhl.title.28093.

Should Empirical Ecology be all Long-term?

The majority of empirical ecology research published in our journals is short-term with the time span dictated by the need for 1–2-year Master’s degree studies and 3-4-year PhD research. This has been an excellent model when there was little of a framework for researching the critical questions ecologists ought to answer. Much of ecology in the good old days was based on equilibrium models of populations, communities, and ecosystems, an assumption we know to be irrelevant to a world with a changing climate. Perhaps we should have listened to the paleoecologists who kept reminding us that there was monumental change going on in the eras of glaciation and much earlier in the time of continental drift (Birks 2019). All of this argues that we need to change direction from short-term studies to long-term studies and long-term thinking.

There are many short-term ecological studies that are useful and should be done. It is necessary for management agencies to know if the spraying of forest insect pests this year reduces damage next year, and many similar problems exist that can be used for student projects. But the big issues of our day are long term problems, defined in the first place by longer than the research lifespan of the average ecologist, about 40 years. These big issues are insufficiently studied for two reasons. First, there is little funding for long term research. We can find a few exemptions to this statement, but they are few and many of them are flawed. Second, we as research scientists want to do something new that no one has done before. This approach leads to individual fame and sometimes fortune and is the social model behind many of the research prizes that we hear about in the media, the Nobel Prize, the MacArthur Awards, the National Medal of Science, the Kyoto Prize and many more. The point here is not that we should stop giving these awards (because they are socially useful), but that we should take a broader perspective on how research really works. Many have recognized that scientific advances are made by groups of scientists standing on the shoulders of an earlier generation. Perhaps some of the awards in medicine recognize this more frequently than other areas of science. My point is that large problems in ecology require a group effort by scientists that is too often unrecognized in favour of the individual fame model of science prizes.

A few examples may exemplify the need in ecology to support group studies of long-term problems. The simplest cases are in the media every day. The overharvesting of trees continues with little research into the long-term recovery of the harvested area and exactly how the forest community changes as it recovers. We mine areas for minerals and drill and mine tar sands for oil and gas with little long-term view of the recovery path which may stretch to hundreds or thousands of years while our current research program is long-term if it goes for 10 years. Canada has enough of these disturbance problems to fill the leger. The Giant Gold Mine in the Northwest Territories of Canada mined 220,000 kg of gold from 1948 to 2004 when it closed. It left 237 tonnes of arsenic trioxide dust, a by-product for extracting gold. The long-term ecosystem problems from this toxic compound will last for centuries but you might expect it will be much sooner forgotten than subjected to long-term study.

So where are we ecologists with respect to these large problems? We bewail biodiversity loss and when you look at the available data and the long-term studies you would expect to measure biodiversity and, if possible, manage this biodiversity loss. But you will find only piecemeal short-term studies of populations, communities, and ecosystems that are affected. We tolerate this unsatisfactory scientific situation even for ecosystems as iconic as the Great Barrier Reef of eastern Australia where we have a small number of scientists monitoring the collapse of the reef from climate change. The only justification we can give is that “Mother Nature will heal itself” or in the scientific lingo, “the organisms involved will adapt to environmental change”. All the earth’s ecosystems have been filtered through a million years of geological change, so we should not worry, and all will be well for the future, or so the story goes.

I think few ecologists would agree with such nonsense as the statements above, but what can we do about it? My main emphasis here is long-term monitoring. No matter what you do, this should be part of your research program. If possible, do not count birds on a plot for 3 years and then stop. Do not live trap mice for one season and think you are done. If you have any control over funding recommendations, think continuity of monitoring. Long-term monitoring is a necessary but not a sufficient condition for managing biodiversity change.

There are many obstacles interfering with achieving this goal. Money is clearly one. If your research council requests innovation in all research proposals, they are probably driven by Apple iPhone producers who want a new model every year. For the past 50 years we have been able to fund monitoring in our Yukon studies without ever using the forbidden word monitor because it was not considered science by the government granting agencies. In one sense it is not whether you consider science = innovation or not, but part of the discussion about long term studies might be shifted to consider the model of weather stations, and to discuss why we continue to report temperatures and CO2 levels daily when we have so much past data. No one would dream of shutting down weather monitoring now after the near fiasco around whether or not to measure CO2 in the atmosphere (Harris, 2010, Marx et al. 2017).

Another obstacle has been the destruction of research sites by human developments. Anyone with a long history of doing field research can tell you of past study areas that have been destroyed by fire or are now parking lots, or roads, or suburbia. This problem could be partly alleviated by the current proposals to maintain 30% of the landscape in protected areas. We should however avoid designating areas like the toxic waste site of the Giant Gold Mine as a “protected area” for ecological research.

Where does this all lead? Consider long-term monitoring if you can do the research as part of your overall program. Read the recent contributions of Hjeljord, and Loe (2022) and Wegge et al. (2022) as indicators of the direction in which we need to move, and if you need more inspiration about monitoring read Lindenmayer (2018).

Birks, H.J.B. (2019) Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecology & Diversity, 12, 189-385.doi: 10.1080/17550874.2019.1646831.

Harris, D.C. (2010) Charles David Keeling and the story of atmospheric CO2 measurements. Analytical Chemistry, 82, 7865-7870.doi: 10.1021/ac1001492.

Hjeljord, O. & Loe, L.E. (2022) The roles of climate and alternative prey in explaining 142 years of declining willow ptarmigan hunting yield. Wildlife Biology, 2022, e01058.doi: 10.1002/wlb3.01058.

Lindenmayer, D. (2018) Why is long-term ecological research and monitoring so hard to do? (And what can be done about it). Australian Zoologist, 39, 576-580.doi: 10.7882/az.2017.018.

Marx, W., Haunschild, R., French, B. & Bornmann, L. (2017) Slow reception and under-citedness in climate change research: A case study of Charles David Keeling, discoverer of the risk of global warming. Scientometrics, 112, 1079-1092.doi: 10.1007/s11192-017-2405-z.

Wegge, P., Moss, R. & Rolstad, J. (2022) Annual variation in breeding success in boreal forest grouse: Four decades of monitoring reveals bottom-up drivers to be more important than predation. Ecology and Evolution.12, e9327. doi: 10.1002/ece3.9327.

Alas Biodiversity

One would have to be on another planet not to have heard of the current COP 15 meeting in Montreal, the Convention on Biological Diversity. Negotiators have recently finalised an agreement on what the signatory nations will do in the next 5 years or so. I do not wish to challenge the view that these large meetings achieve much discussion and suggestions for action on conservation of biodiversity. I do wish to address, from a scientific viewpoint, issues around the “loss of biodiversity” and in particular some of the claims that are being made about this problem.

The first elephant in the room which must not be ignored is human population growth. At a best guess there are perhaps three times as many people now on earth as the earth can support. So the background for all biodiversity action is human population size and the accompanying resource demands. Too few wish to discuss this elephant.

The second elephant is the vagueness of the concept of biodiversity. If we take its simple meaning to be ‘all life on Earth’, we must face the fact that we are not even close to having a complete catalogue of life on earth. To be sure we know most of the species of birds and mammals, a lot of the fish and the reptiles, so we have made a start. But look at the insects and you will find guesses of several million species that are undescribed. And we have hardly begun to look at the bacteria, fungi, and viruses.

The consequence of this is loose speech. When we say we wish to ‘protect biodiversity’ what exactly do we wish to protect? Only the birds but not all of them, only the ones we like? Or only the large mammals like the polar bears, the African lion, and the panda? Typically, conservation of biodiversity focuses on one charismatic species and hopes for spill over to others, applying the well-known principles of population ecology to the immediate threat. But ecologists talk about ecological communities and ecosystems, so this raises another issue of how to define these entities and how protecting biodiversity can be applied to them.

Now the third elephant comes into play, climate change. To appreciate this, we need to talk to paleoecologists. If you were fortunate to live in central Alaska or the Yukon 30,000 years ago and you formed a society for the conservation of biodiversity, you would face a vegetation community that was destined to disappear or change dramatically, not to mention species like the mammoths and saber-toothed tigers that no longer exist but we love to see in museums. So there is a time scale as well as a spatial scale to biodiversity that is easily forgotten. Small national parks and reserves may not be a solution to the issue.

So whither biodiversity science? If we are serious about biodiversity change, we must lay out more specific questions as a start. Exactly what species are we measuring and for how long and with what precision? We need to concentrate on areas that are protected from human exploitation, one of the main reasons for biodiversity losses, the loss of habitat due to agriculture, mining, forestry, human housing, roads, invasive pests, the list goes on. We need groups of ecologists to concentrate on the key areas we define, on the key threats affecting each area, how we might mitigate these effects, and once these questions are decided we need to direct funding to these groups. Biodiversity funding is all over the map and often wasted on trivial problems. Biodiversity issues are at their core problems in community and ecosystem ecology, and yet we typically treat them as single species problems. We need to study communities and ecosystems. To say that we as ecologists do not know how to study community and ecosystem ecology would be a start. Studying one fish species extensively will not protect the community and ecosystem it requires for survival. If you need a concrete example, consider Pacific salmon on the west coast of North America and the ecosystems they inhabit. This is not a single species problem. In some river systems stocks are doing well, while in other rivers salmon are disappearing. Why? If we know that at least part of the answer to this question lies in ecosystem management and yet no action is undertaken, is this because it costs too much or what? Why can we spend a billion dollars going to the moon and not spend this money on serious ecological problems subject to biodiversity increases or declines? Perhaps part of the problem is that to get to the moon we do not give money to 10 different agencies that do not talk or coordinate with one another. Part of the answer is that governments do not see biodiversity loss or gain as an important problem, and it is easier to talk vaguely about it and do little in the hope that Nature will rectify the problems.

So, we continue in the Era of Biodiversity without knowing what this means and too often without having any plan to see if biodiversity is increasing or declining in any particular habitat or region, and then devising a plan to ameliorate the situation as required. This is not a 5 year or a 10-year plan, so it requires a long-term commitment of public support, scientific expertise, and government agencies to address. For the moment we get an A+ grade for talking and an F- grade for action.

Dupont-Doaré, C. & Alagador, D. (2021) Overlooked effects of temporal resolution choice on climate-proof spatial conservation plans for biodiversity. Biological Conservation, 263, 109330.doi: 10.1016/j.biocon.2021.109330.

Fitzgerald, N., Binny, R.N., Innes, J., Pech, R., James, A., Price, R., Gillies, C. & Byrom, A.E. (2021) Long-Term Biodiversity Benefits from Invasive Mammalian Pest Control in Ecological Restorations. Bulletin of the Ecological Society of America, 102, e01843.doi: 10.1002/bes2.1843.

Moussy, C., Burfield, I.J., Stephenson, P.J., Newton, A.F.E., Butchart, S.H.M., Sutherland, W.J., Gregory, R.D., McRae, L., Bubb, P., Roesler, I., Ursino, C., Wu, Y., Retief, E.F., Udin, J.S., Urazaliyev, R., Sánchez-Clavijo, L.M., Lartey, E. & Donald, P.F. (2022) A quantitative global review of species population monitoring. Conservation Biology, 36, e13721.doi. 10.1111/cobi.13721.

Price, K., Holt, R.F. & Daust, D. (2021) Conflicting portrayals of remaining old growth: the British Columbia case. Canadian Journal of Forest Research, 51, 1-11.doi: 10.1139/cjfr-2020-04530.

Shutt, J.D. & Lees, A.C. (2021) Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biological Conservation, 261, 109295.doi: 10.1016/j.biocon.2021.109295.

On Ecological Climate Change Research

The media world is awash in climate change articles and warnings. When your town is faced with the fourth one-in-100-year-flood or your favourite highway has been washed away, you should perhaps become aware that something is changing rapidly. Ecologists are aware of the problems that climate change is producing, and the question I want to raise here is what kind of research is needed to outline current and future problems and suggest possible solutions. This fact of current climate change means that each of us has something important to do at the individual level to reduce the impacts of climate change, like taking the bus or bicycling. But that is another whole set of social issues that I cannot cover here.

The first thing most scientific organizations want to do when faced with a big problem is to have endless meetings about the problem. This unfortunately eats up much money and produces little understanding except that the problem is complicated and multidimensional. Ecological research on climate change must begin with the axiom that climate change is happening rapidly, and that we as ecological scientists can do nothing about this at the level of climate physics. Given this, what are we to do? The first approach we could take is to ignore climate change and carry on with normal research agendas. This works very well for short term problems on the time scale of 20-30 years. Since this is the research lifespan of most ecological scientists, it is not an unreasonable approach. But it does not help solve the earth’s future problems, and this is not a desirable path to take in science.

There are three broad problems that accompany climate change for ecological science. First, geographical ranges of species will shift. We have from paleoecology much information on some of these changes since the last Ice Age. Data from palaeontology is less useful to planning, given that we have enough problems trying to forecast the next 100 years of change. So, we have major ecological question #1 – what limits the geographical distributions of species? This relatively simple question is greatly confounded by human activities. If we send oil and other chemical pollution out onto a coastal coral reef, we should not be surprised if the local distribution of sea life is affected. For ecologists this class of problems of distribution changes caused by human activities is a very important focus of research. If you doubt this, read about Covid viruses. But there is also a large area of research needed to estimate the possible changes in geographic distributions of organisms that are not immediately affected by human activities. How fast will tree species colonize up-slope in mountains around the globe, and how will this affect the bird and mammals that depend on trees or the vegetation types the trees displace? These changes are local and complex, and we can begin by describing them, but to understand the limiting factors involved in changes in geographical distributions is not easy.

Population ecology addresses the second central question of ecology: what causes changes in the abundance of particular species? While we need answers to this simple question for our conservation and management issues, population ecology is an even bigger minefield for research on the effects of climate change. There is no doubt that climate in general can affect the abundance and changes in abundance of organisms, but the complications lie in determining the detailed mechanisms of explaining these changes in abundance. Large scale climate indicators like ENSO sometimes correlate positively with animal population increases, sometimes negatively, and sometimes not at all in different populations (Wan et al. 2022). Consequently, a changing climate may not have a universal effect on biodiversity. This means we must dive into details of how climate affects our specific population, is it via maximum temperatures?, minimum temperatures?, dry season rainfall?, wet season rainfall? etc., and each of these aspects of weather have many subcomponents – March temperatures, April temperatures, etc. and the search for an explanation can thus become infinite. The problem is that the number of possible explanatory variables in weather dwarfs the number of years of observations of our study species (c.f. Ginzburg and Jensen 4004, Loken and Gelman 2017). The result is that some of the strongest papers with conclusions about the impact of climatic change on animals can be in error (Daskalova. Phillimore, and Myers-Smith 2021). The statistical pitfalls have been discussed for many years (e.g., Underwood and Chapman 2003) but are still commonly seen in the ecological literature today.

A third central question is that each population is embedded in a community of other species which may interact so that we must analyse the changes occurring community and ecosystem dynamics. Changes in biological communities and ecosystems are subject to complications arising from climate change and more because of species interactions which are not easy to measure. These difficulties do not mean that we should stop trying to explain population and community changes that might be related to climate change. What it does mean is that we should not jump to strong conclusions without considering all the alternate possible agents that are changing the earth’s biomes. The irony is that the human caused shifts are easy to diagnose but difficult to fix because of economics, while the pure climate caused shifts in ecosystems are difficult to diagnose and to validate the exact mechanisms involved. We need both strong involvement in diagnosing the major ecological problems associated with climate change, but this must be coupled with modesty in our suggested conclusions and explanations. There is much to be done.

Daskalova, Gergana N., Phillimore, Albert B., and Myers-Smith, Isla H. (2021). Accounting for year effects and sampling error in temporal analyses of invertebrate population and biodiversity change: a comment on Seibold et al. 2019. Insect Conservation and Diversity 14, 149-154. doi: 10.1111/icad.12468.

Ginzburg, L. R. and Jensen, C. X. J. (2004). Rules of thumb for judging ecological theories. Trends in Ecology and Evolution 19, 121-126. doi: 10.1016/j.tree.2003.11.004.

Loken, Eric and Gelman, Andrew (2017). Measurement error and the replication crisis. Science 355, 584. doi: 10.1126/science.aal3618.

Underwood, A. J. and Chapman, M. G. (2003). Power, precaution, Type II error and sampling design in assessment of environmental impacts. Journal of Experimental Marine Biology and Ecology 296, 49-70. doi: 10.1016/s0022-0981(03)00304-6.

Wan, Xinru, Holyoak, Marcel, Yan, Chuan, Maho, Yvon Le, Dirzo, Rodolfo, et al. (2022). Broad-scale climate variation drives the dynamics of animal populations: A global multi-taxa analysis. Biological Reviews 97. (in press).

Five Stages of Ecological Research

Ecological research falls into five broad classes or stages. Each stage has its strengths and its limitations, and it is important to recognize these since no one stage is more or less important than any other. I suggest a classification of these five stages as follows:

  1. Natural History
  2. Behavioural Ecology
  3. Applied Ecology
  4. Conservation Ecology
  5. Ecosystem Ecology

The Natural History stage is the most popular with the public and in some sense the simplest type of ecological research while at the same time the critical foundation of all subsequent research. Both Bartholomew (1986) and Dayton (2003) made impassioned pleas for the study of natural history as a basis of understanding all the biological sciences. In some sense this stage of biological science has now come into its own in popularity, partly because of influential TV shows like those of David Attenborough but also because of the ability of talented wildlife photographers to capture amazing moments of animals in the natural world. Many scientists still look upon natural history as “stamp-collecting” unworthy of a serious ecologist, but this stage is the foundational element of all ecological research.

Behavioural ecology became popular as one of the early outcomes of natural history observations within the broad framework of asking questions about how individuals in a population behave, and what the ecological and evolutionary consequences of these behaviours are to adaptation and possible future evolution. One great advantage of studying behavioural ecology has been that it is quick, perfectly suited to asking simple questions, devising experimental tests, and then being able to write a report, or a thesis on these results (Davies et al. 2012). Behavioural ecology is one of the strongest research areas of ecological science and provides entertainment for students of natural history and excellent science to understand individual behaviour and how it fits into population studies. It is perhaps the strongest of the ecological approaches for drawing the public into an interest in biodiversity.

Applied ecology is one of the oldest fields of ecology since it arose more than 100 years ago from local problems of how organisms affected human livelihoods. It has subdivided into three important sub-fields – pest management, wildlife management, and fisheries management. Applied ecology relies heavily on the principles of population ecology, one level above the individual studies of behavioural and natural history research. These fields are concerned with population changes, whether to reduce populations to stop damage to crops, or to understand why some species populations become pests. All applied ecology heavily interreacts with human usage of the environment and the economics of farming, fisheries, and wildlife harvesting. In a general sense applied ecology is a step more difficult than behavioural ecology because answering the applied problems or management has a longer time frame than the typical three-year thesis project. Applied ecology has a broad interface with evolutionary ecology because human actions can disrupt natural selection and pest evolution can complicate every management problem.

Conservation ecology is the new kid on the block. It was part of wildlife and fisheries management until about 1985 when it was clear to all that some populations were endangered by human changes to the ecosystems of fisheries, forestry, and agriculture. The essential problems of conservation ecology were described elegantly by Caughley (1994). Conservation issues are the most visible of all issues in population and community ecology, and they are often the most difficult to resolve when science dictates one conservation solution that interferes with the dominant economic view of human society. If species of interest are rare the problem is further confounded by the difficulty of studying rare species in the field. What will become of the earth’s ecosystems in the future depends in large part as to how these conservation conflicts can be resolved.

Ecosystem ecology and community ecology are the important focus at present but are hampered by a lack of a clear vision of what needs to be done and what can be done. The problem is partly that there is much poor theory, coupled with much poor data. The critical questions in ecosystem ecology are currently too vague to be studied in a realistic time period of less than 50 years. Climate change is impacting all our current ideas about community stability and resilience, and what predictions we can make for whole ecosystems in the light of a poor database. Ironically experimental manipulations are being done by companies with an economic focus such as forestry but there are few funds to make use of these large-scale landscape changes. In the long term, ecosystem ecology is the most significant aspect of ecology for humans, but it is the weakest in terms of understanding ecosystem processes. We can all see the negative effects of human changes on landscapes, but we have little in the way of scientific guidance to predict the long-term consequences of these changes and how they can be successfully ameliorated.

All of this is distressing to practical ecologists who wish to make a difference and be able to counteract undesirable changes in populations and ecosystems. It is important for all of us not to give up on reversing negative trends in conservation and land management and we need to do all we can to influence the public in general and politicians in particular to change negative trends to positive ones in our world. An array of good books points this out very forcefully (e.g., Monbiot 2018, Klein 2021). It is the job of every ecologist to gather the data and present ecological science to the community at large so we can contribute to decision making about the future of the Earth.

Bartholomew, G. A. (1986). The role of natural history in contemporary biology. BioScience 36, 324-329. doi: 10.2307/1310237

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Davies, N.B., Krebs, J.R., and West, S.A. (2012) ‘An Introduction to Behavioural Ecology.‘ 4th edn. (Wiley-Blackwell: Oxford.). 520 pp.

Dayton, P.K. (2003). The importance of the natural sciences to conservation. American Naturalist 162, 1-13. doi: 10.1086/376572

Klein, Naomi (2021) ‘How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other ‘ (Simon and Schuster: New York.) 336 pp. ISBN: 978-1534474529

Monbiot, George. (2018) ‘Out of the Wreckage: A New Politics for an Age of Crisis.’ (Verso.). 224 pp. ISBN: 1786632896

What Can You Do About the Climate Emergency?

It is very easy to do little in the climate emergency because it is a long-term problem, and many of us will be gone by 2050 when Shell Oil and our government promise Net Zero emissions. Possibly the first thing you should do is find out what “net zero” really means. “Net zero emissions” refers to achieving an overall balance between greenhouse gas emissions produced by us and greenhouse gas emissions taken out of the atmosphere. So clearly it does not mean zero emissions so pollution will still be with us, and all it promises is equality between what goes in and what comes out. If you believe that net-zero will happen, you are living in la-la land, but consider it a scientific hypothesis and if you are young and live to 2050, check the numbers. It means that all the greenhouse gases that are here today will remain and all the problems on our doorstep today will continue – floods, fires, drought, sea level rise, agricultural changes, temperature increases – and if you think none of this will bother you, you can probably buy an inexpensive house in New Mexico and avoid shopping for groceries.

But do not throw your hands up since there are many small things all of us can do to minimize these problems. Here is a partial list:

  1. Drive less, fly less, walk more, get an electric car if you can. Try a bicycle.
  2. Avoid coal, gasoline, and natural gas implements. Sit in the sun, not under a propane heater on the deck.
  3. Put solar panels on your roof if you can. In addition to your windmill generating power.
  4. Put your retirement funds into renewable energy funds, not into oil companies.
  5. Educate yourself and ignore all the dangerous nonsense about climate change that is provided in advertisements, radio, TV, and social media.
  6. Protest against climate nonsense by writing letters, using social media, phoning the stations that allow nonsense to be perpetrated. Your one letter may have minimal effect, but if a million people do the same, someone might listen.
  7. Demand that politicians actually answer questions about climate change action plans. And as they say in Chicago, vote early and vote often.
  8. Nominate Greta Thunberg again for the Nobel Prize. If she does not receive it, request that the Nobel Committee be disbanded and replaced by young people.
  9. Relax and enjoy your life while keeping a lid on your carbon budget.

The climate emergency is not difficult to comprehend. Help the world survive it for your grandchildren.

On Rewilding and Conservation

Rewilding is the latest rage in conservation biology, and it is useful to have a discussion of how it might work and what might go wrong. I am reminded of a comment made many years ago by Buzz Holling at UBC in which he said, “do not take any action that cannot be undone”. The examples are classic – do not introduce rabbits to Australia if you can not reverse the process, do not introduce weasels and stoats to New Zealand if you cannot remove them later if they become pests, do not introduce cheatgrass to western USA grasslands and allow it to become an extremely invasive species. There are too many examples that you can find for every country on Earth. But now we approach the converse problem of re-introducing animals and plants that have gone extinct back into their original geographic range, the original notion of rewilding (Schulte to Bühne et al. 2022).

The first question could be to determine what ‘rewilding’ means, since it is a concept used in so many ways. As a general concept it can be thought of as repairing the Earth from the ravages imposed by humans over the last thousands of years. It appeals to our general belief that things were better in the ‘good old days’ with respect to conservation, and that all we have seen are losses of iconic species and the introduction of pests to new locations. But we need to approach rewilding with the principle that “the devil is in the details”, and the problems are triply difficult because they must engage support from ecologists over the science and the public over policies that affect different social groups like farmers and hunters. Rewilding may range from initiatives that range from “full rewilding” to ‘minimal rewilding’ (Pedersen et al. 2020). Rewilding has been focused to a large extent on large-bodied animals and particularly those species of herbivores and predators that are high in the food chain, typified by the reintroduction of wood bison back into the Yukon after they went extinct about 800 years ago (Boonstra et al. 2018). So the first problem is that the term “rewilding” can mean many different things.

Two major issues must be considered by conservation ecologists before a rewilding project is initiated. First, there should be a comprehensive understanding of the food web of the ecosystem that is to be changed. This is a non-trivial matter in that our understanding of the food webs of what we describe as our best-known ecosystems are woefully incomplete. At best we can do a boxes and arrows diagram without understanding the strength of the connections and the essential nature of many of the known linkages. The second major issue is how rewilding will deal with climate change (Bakker and Svenning, 2018). There is now an extensive literature on paleoecology, particularly in Europe and North America. The changes in climate and species distributions that flowed from the retreat of the glaciers some 10,000 years ago are documented as a reminder to all ecologists that ecosystems and communities are not permanent in time. Rewilding at the present has a time frame with less than necessary thought to future changes in climate. We make the gigantic assumption that we can recreate an ecosystem that existed sometime in the past, and without being very specific about how we might measure success or failure in restoring ecological integrity. 

Pedersen et al. (2020) recognize 5 levels of rewilding of which the simplest is called “minimal rewilding” and the measure of success at this level is the “Potential of animal species to advance self-regulating biodiverse ecosystems” which I suggest to you is an impossible task to achieve in any feasible time frame less than 50-100 years, which is exactly the time scale the IPCC suggests for maximum climatic emergencies. We do not know what a ‘biodiverse ecosystem’ is since we do not know the boundaries of ecosystems under climate change, and we cannot measure what “natural population dynamics” is because we have so few long-term studies. Finally, at the best level for rewilding we cannot measure “natural species interaction networks” without much arm waving.

Where does this leave the empirical conservation ecologist (Hayward et al. 2019)? Rewilding appears to be more a public relations science than an empirical one. Conservation issues are immediate, and a full effort is needed to protect species and diagnose conservation problems of the day. Goshawks are declining in a large part of the boreal forest of North America, and no one knows exactly why. Caribou are a conservation issue of the first order in Canada, and they continue to decline despite good ecological understanding of the causes. The remedy of some conservation dilemmas like the caribou are clear, but the political and economic forces deny their implementation. As conservation biologists we are ever limited by public and governmental policies that favour exploitation of the land and jobs and money as the only things that matter. Simple rewilding on a small scale may be useful, but the losses we face are a whole Earth issue, and we need to address these more with traditional conservation actions and an increase in research to find out why many elements in our natural communities are declining with little or no understanding of the cause.

Bakker, E.S. and Svenning, J.-C. (2018). Trophic rewilding: impact on ecosystems under global change. Philosophical Transaction of the Royal Society B 373, 20170432. doi: 10.1098/rstb.2017.0432.

Boonstra, R., et al. (2018). Impact of rewilding, species introductions and climate change on the structure and function of the Yukon boreal forest ecosystem. Integrative Zoology 13, 123-138. doi: 10.1111/1749-4877.12288.

Hayward, M.W., et al. (2019). Reintroducing rewilding to restoration – Rejecting the search for novelty. Biological Conservation 233, 255-259. doi: 10.1016/j.biocon.2019.03.011.

Pedersen, P.B.M., Ejrnæs, R., Sandel, B., and Svenning, J.-C. (2020). Trophic rewilding advancement in Anthropogenically Impacted Landscapes (TRAAIL): A framework to link conventional conservation management and rewilding. Ambio 49, 231-244. doi: 10.1007/s13280-019-01192-z.

Schulte to Bühne, H., Pettorelli, N., and Hoffmann, M. (2022). The policy consequences of defining rewilding. Ambio 51, 93-102. doi: 10.1007/s13280-021-01560-8.