Tag Archives: biodiversity

Does Forestry Make Money – Part 2

About 2 years ago I wrote a blog asking the simple question of whether the forest industry in British Columbia makes money or whether it is operational only because of subsidies and the failure to recognize that biodiversity and ecosystem services could be valuable. A recent report from the research group in the Fenner School of the Australian National University has put the spotlight on the mountain ash forests of the Central Highlands of Victoria to answer this question for one region of southern Australia. I summarize their findings from their report (Keith et al. 2016) that you can access from the web address given below.

The ANU research group chose the Central Highlands study area because it included areas with controversial land use activities. The study area of 7370 sq km contains a range of landscapes including human settlements, agricultural land, forests, and waterways, and is used for a variety of activities including timber production, agriculture, water supply and recreation. It is also home to a range of species, including the endemic and critically endangered Leadbeater’s Possum. These activities and their use of ecosystems can be either complementary or conflicting. Managing the various activities within the region is therefore complex and requires evaluation of the trade-offs between different land uses and users, an issue common to forestry areas around the world.

The accounting structure (System of Environmental-Economic Accounting) which is used by the United Nations is described in more detail in the report. Both economic and ecological data are needed to produce ecosystem accounts and these sources of data must be integrated to gain an overall picture of the system. This integration of ecosystem services with traditional cash crops is the key to evaluating an area for all of its values to humans. In this particular area the provisioning of water to cities is a key economic benefit provided by this particular area. The following table from their report puts all these accounts together for the Central Highlands of Victoria:

Table 5. Economic information for industries within the study region in 2013-14
Agriculture Native Forestry Water supply Tourism
Area of land used (ha) 96,041a 324,380b 115,149c 737,072d
Sale of products ($m) 474 49 911 485
Industry valued added ($m) 257 9 233 260
Ecosystem services ($m) 121 15 101 42
Sale of products ($ ha-1) 4918 151 7911 659
Industry value added ($ ha-1) 2667 29 2023 353
Ecosystem services ($ ha-1) 1255 46 877 57

a area of agricultural land use
b area of native forest timber production
c area of water catchments
d total area of study region

The key point in this table is that the value-added per ha of forestry is $29 per ha per year. The equivalent value for water is $2033 per ha per year – or 70 times more, and the value added for agriculture is about 90 time more than that of forestry. The value-added value for tourism is $350 per ha per year, about 12 times more than that of forestry. None of this takes into account any potential government subsidies to these industries, and none involves directly the endangered species in the landscape. Three main points emerge from this analysis:

  1. In 2013-14, the most valuable industries in the region were tourism ($260 million), agriculture ($257 million), water supply ($233 million) and forestry ($9 million). This is as measured by the estimated industry value added (the contribution to GDP).
  2. In 2013-14, the most valuable ecosystem services in the region were food provisioning ($121 million), water provisioning ($101 million), cultural and recreation services ($42 million).
  3. At a carbon price of $12.25 per ton (the average price paid by the Commonwealth in 2015), the potential ecosystem service of carbon sequestration ($20 million) was more valuable than the service of timber provisioning ($15 million).

The main implications from the report for this large geographical area are three:

  • The benefits from tourism, agriculture, and water supply are large, while those from forestry are comparatively small. There is a potential for income from carbon sequestration.
  • The activities of tourism, agricultural and water supply industries are complimentary and may be combined with biodiversity conservation and carbon sequestration.
  • Timber harvesting in native forests needs to better account for the occurrence of fires and can be incompatible with species requirements for conservation.

The recent global interest in both climate change and species conservation has pushed this type of analysis to uncover the complementary and conflicting activities of all major global industries. Replacing the conventional GDP of a country or a region with a measure that takes into account the changes in the natural capital including gains and losses is a necessary step for sustainability (Dasgupta 2015, Guerry et al. 2015). This report from Australia shows how this goal of replacing the current GDP calculation with a green GDP can be done in specific areas. Much of biodiversity conservation hinges on these developments.

Dasgupta, P. 2015. Disregarded capitals: what national accounting ignores. Accounting and Business Research 45(4): 447-464. doi: 10.1080/00014788.2015.1033851.

Guerry, A.D., et al. 2015. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences 112(24): 7348-7355. doi: 10.1073/pnas.1503751112.

Keith, H., Vardon, M., Stein, J., Stein, J., and Lindenmayer, D. 2016. Exzperimental Ecosystem Accounts for the Central Highlands of Victoria. Australian National University, Fenner School of Environment and Society. 22 pp. Available from:
http://fennerschool-associated.anu.edu.au/documents/CLE/VCH_Accounts_Summary_FINAL_for_pdf_distribution.pdf

On Critical Questions in Biodiversity and Conservation Ecology

Biodiversity can be a vague concept with so many measurement variants to make one wonder what it is exactly, and how to incorporate ideas about biodiversity into scientific hypotheses. Even if we take the simplest concept of species richness as the operational measure, many questions arise about the importance of the rare species that make up most of the biodiversity but so little of the biomass. How can we proceed to a better understanding of this nebulous ecological concept that we continually put before the public as needing their attention?

Biodiversity conservation relies on community and ecosystem ecology for guidance on how to advance scientific understanding. A recent paper by Turkington and Harrower (2016) articulates this very clearly by laying out 7 general questions for analyzing community structure for conservation of biodiversity. As such these questions are a general model for community and ecosystem ecology approaches that are needed in this century. Thus it would pay to look at these 7 questions more closely and to read this new paper. Here is the list of 7 questions from the paper:

  1. How are natural communities structured?
  2. How does biodiversity determine the function of ecosystems?
  3. How does the loss of biodiversity alter the stability of ecosystems?
  4. How does the loss of biodiversity alter the integrity of ecosystems?
  5. Diversity and species composition
  6. How does the loss of species determine the ability of ecosystems to respond to disturbances?
  7. How does food web complexity and productivity influence the relative strength of trophic interactions and how do changes in trophic structure influence ecosystem function?

Turkington and Harrower (2016) note that each of these 7 questions can be asked in at least 5 different contexts in the biodiversity hotspots of China:

  1. How do the observed responses change across the 28 vegetation types in China?
  2. How do the observed responses change from the low productivity grasslands of the Qinghai Plateau to higher productivity grasslands in other parts of China?
  3. How do the observed responses change along a gradient in the intensity of human use or degradation?
  4. How long should an experiment be conducted given that the immediate results are seldom indicative of longer-term outcomes?
  5. How does the scale of the experiment influence treatment responses?

There are major problems in all of this as Turkington and Harrower (2016) and Bruelheide et al. (2014) have discussed. The first problem is to determine what the community is or what the bounds of an ecosystem are. This is a trivial issue according to community and ecosystem ecologists, and all one does is draw a circle around the particular area of interest for your study. But two points remain. Populations, communities, and ecosystems are open systems with no clear boundaries. In population ecology we can master this problem by analyses of movements and dispersal of individuals. On a short time scale plants in communities are fixed in position while their associated animals move on species-specific scales. Communities and ecosystems are not a unit but vary continuously in space and time, making their analysis difficult. The species present on 50 m2 are not the same as those on another plot 100 m or 1000 m away even if the vegetation types are labeled the same. So we replicate plots within what we define to be our community. If you are studying plant dynamics, you can experimentally place all plant species selected in defined plots in a pre-arranged configuration for your planting experiments, but you cannot do this with animals except in microcosms. All experiments are place specific, and if you consider climate change on a 100 year time scale, they are also time specific. We can hope that generality is strong and our conclusions will apply in 100 years but we do not know this now.

But we can do manipulative experiments, as these authors strongly recommend, and that brings a whole new set of problems, outlined for example in Bruelheide et al. (2014, Table 1, page 78) for a forestry experiment in southern China. Decisions about how many tree species to manipulate in what size of plots and what planting density to use are all potentially critical to the conclusions we reach. But it is the time frame of hypothesis testing that is the great unknown. All these studies must be long-term but whether this is 10 years or 50 years can only be found out in retrospect. Is it better to have, for example, forestry experiments around the world carried out with identical protocols, or to adopt a laissez faire approach with different designs since we have no idea yet of what design is best for answering these broad questions.

I suspect that this outline of the broad questions given in Turkington and Harrower (2016) is at least a 100 year agenda, and we need to be concerned how we can carry this forward in a world where funding of research questions has a 3 or 5 year time frame. The only possible way forward, until we win the Lottery, is for all researchers to carry out short term experiments on very specific hypotheses within this framework. So every graduate student thesis in experimental community and ecosystem ecology is important to achieving the goals outlined in these papers. Even if this 100 year time frame is optimistic and achievable, we can progress on a shorter time scale by a series of detailed experiments on small parts of the community or ecosystem at hand. I note that some of these broad questions listed above have been around for more than 50 years without being answered. If we redefine our objectives more precisely and do the kinds of experiments that these authors suggest we can move forward, not with the solution of grand ideas as much as with detailed experimental data on very precise questions about our chosen community. In this way we keep the long-range goal posts in view but concentrate on short-term manipulative experiments that are place and time specific.

This will not be easy. Birds are probably the best studied group of animals on Earth, and we now have many species that are changing in abundance dramatically over large spatial scales (e.g. http://www.stateofcanadasbirds.org/ ). I am sobered by asking avian ecologists why a particular species is declining or dramatically increasing. I never get a good answer, typically only a generally plausible idea, a hand waving explanation based on correlations that are not measured or well understood. Species recovery plans are often based on hunches rather than good data, with few of the key experiments of the type requested by Turkington and Harrower (2016). At the moment the world is changing rather faster than our understanding of these ecological interactions that tie species together in communities and ecosystems. We are walking when we need to be running, and even the Red Queen is not keeping up.

Bruelheide, H. et al. 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89. doi: 10.1111/2041-210X.12126

Turkington, R. & Harrower, W.L. 2016. An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China. Plant Diversity, 38, 1-10. Available at: http://journal.kib.ac.cn/EN/volumn/current.shtml

On Caribou and the Conservation Conundrum

The central conundrum of conservation is the conflict between industrial development and the protection of biodiversity. And the classic example of this in Canada is the conservation of caribou. Caribou in the millions have ranged over almost all of Canada in the past. They are now retreating in much of the southern part of their range, have nearly gone extinct in the High Arctic, and are extinct on Haida Gwaii (Queen Charlotte Islands). The majority of populations with adequate data are dropping in numbers rapidly. The causes of their demise point to human habitat destruction from forestry, mining, oil and gas developments and roads (Festa-Bianchet et al. 2011). We march on with economic development, and caribou are in the way of progress.

The nexus of interactions underlying this crisis is reasonably well understood for boreal caribou and there is an extensive literature on the topic (Bergerud et al. 2007; Hervieux et al. 2013; Hervieux et al. 2014; Schaefer and Mahoney 2013; Wittmer et al. 2007). Caribou avoid human constructions like pipelines, mines, forestry operations, and roads. Forestry in particular opens up habitat that tends to favor deer and moose. Climate change makes winters less severe for deer. More prey makes more predators, and caribou are typically accidental, secondary prey from wolves that live largely off moose and deer. The habitats that humans open up with roads, seismic lines, and wellheads provide superhighways for wolves and other predators, so that predator access is greatly improved. Such access roads also allow hunters to access ungulates and potentially increase the harvest rate.

If predators are the key immediate factor reducing caribou populations, there seem to be two general solutions. Killing wolves is the most obvious management action, and much of wildlife management in North America has historically been based on the simple paradigm: “killing wolves is the answer, now what is the question?” But two problems arise. There are more predators than wolves (e.g. bears) and secondly killing wolves does not work very well (Hayes 2010). At best it seems to slow down the caribou decline at great expense, and it has to be continuous year after year because killing wolves increases the reproductive rate of those left behind and migration of wolves into the “control” area is rapid. So this management action becomes too expensive in the long run to work well and most people don’t want to see bears killed wholesale either. So the next option is to use fencing to protect caribou from contact with all predators. These fences could be on small areas into which pregnant female caribou are put in the spring to have their calves, and then released when the calves are a few months old and have a better chance of avoiding predators. Or the ultimate fence would be around hundreds of square kilometers to enclose a permanent caribou population with all the predators removed inside the fenced area. This would require continuous maintenance and is very costly. It turns caribou into a zoo animal, albeit on a large scale.

There is one other solution and that is to set aside very large areas of habitat that are not invaded by the forestry, mining, and oil industries, and to monitor the dynamics of caribou in these large reserves. Manitoba is apparently doing this, with reported success in stopping caribou declines.

Beyond these southern populations of caribou in the boreal forest zone, the problems of caribou population trends on the tundra are difficult to unravel, partly because of a lack of data arising from a shortage of funds (Gunn et al. 2011). Climate change is happening and the exact effects on tundra populations is unclear. Many barren-ground caribou herds show fluctuations in abundance with a period of about 50 years. Food supply exhaustion may be one factor in the fluctuations but harvesting is also involved. Local harvest data are often not recorded and with poor population data and poor harvest data we can rarely determine the trajectories of the herds or explain why they are changing in abundance. Peary caribou in the far north are suffering from climate change, rain events in winter that freezes their food supply of lichens under ice so they starve. No one knows how to alleviate the weather, and we only add to the problem with our greenhouse gas emissions. Peary caribou now survive in very low numbers but we cannot be sure that will continue.

All in all, we work hard to conserve large mammal ecosystems in tropical countries but seem far too unconcerned about our Canadian caribou heritage. To inform conservation actions, serious long-term population studies are sorely needed, including more frequent aerial census estimates for all the caribou herds, radio-collaring individuals for demographic data and movements, and complete harvesting data from all sources.

 

Bergerud, A.T., Dalton, W.J., Butler, H., Camps, L., and Ferguson, R. 2007. Woodland caribou persistence and extirpation in relic populations on Lake Superior. Rangifer 27(4): 57-78 (Special Issue No. 17). doi: http://dx.doi.org/10.7557/2.27.4.321

Festa-Bianchet, M., Ray, J.C., Boutin, S., Côté, S.D., and Gunn, A. 2011. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Canadian Journal of Zoology 89(5): 419-434. doi:10.1139/z11-025 .

Gunn, A., Russell, D., and Eamer, J. 2011. Northern caribou population trends in Canada. Canadian Biodiversity: Ecosystem Status and Trends 2010, Technical Thematic Report No. 10. Canadian Councils of Resource Ministers. Ottawa, ON. iv + 71 p. http://www.biodivcanada.ca/default.asp?lang=En&n=137E1147-1

Hayes, B. (2010) Wolves of the Yukon. Wolves of the Yukon Publishing, Smithers, B.C. ISBN: 978-1-4566-1047-0

Hervieux, D., Hebblewhite, M., DeCesare, N.J., Russell, M., Smith, K., Robertson, S., and Boutin, S. 2013. Widespread declines in woodland caribou (Rangifer tarandus caribou) continue in Alberta. Canadian Journal of Zoology 91(12): 872-882. doi:10.1139/cjz-2013-0123.

Hervieux, D., Hebblewhite, M., Stepnisky, D., Bacon, M., and Boutin, S. 2014. Managing wolves (Canis lupus) to recover threatened woodland caribou (Rangifer tarandus caribou) in Alberta. Canadian Journal of Zoology 92(12): 1029-1037. doi:10.1139/cjz-2014-0142 .

Schaefer, J.A., and Mahoney, S.P. 2013. Spatial dynamics of the rise and fall of caribou (Rangifer tarandus) in Newfoundland. Canadian Journal of Zoology 91(11): 767-774. doi:10.1139/cjz-2013-0132 .

Wittmer, H.U., McLennan, B.N., Serrouya, R., and Apps, C.D. 2007. Changes in landscape composition influence the decline of a threatened caribou population. Journal of Animal Ecology 76: 568-579. doi: 10.1111/j.1365-2656.2007.01220.x

On Gravity Waves and the 1%

The news this week has been all about the discovery of gravity waves and the great triumphs of modern physics to understand the origin of the universe. There is rather less news on the critical ecological problems of the Earth – of agricultural sustainability, biodiversity collapse, pollution, climate change – not to mention the long recognized economic problems of poverty and inequality, globally and within our own countries. All of these issues converge to the questions of resource allocations by our governments that have failed to assess priorities on many fronts. Many see this but have little power to change the system that is continually moving to save and improve the fortunes of the 1% to the detriment of most people.

In scientific funding there has always been a large bias in favor of the physical sciences, as I have commented on previously, and the question is how this might be publicized to produce  a better world. I suggest a few rules for scientific funding decisions both by governments and by private investors.

Rule 1: For maximizing scientific utility for the biosphere including humans, we require a mix of basic and applied science in every field. Whether this mix should be 50:50, 30:70, or 70:30 should be an item for extended discussion with the implicit assumption that it could differ in different areas of science.

Rule 2: Each major area of science should articulate its most important issues that must be addressed in the short term and the long term (>50 years). For biodiversity, as an example, the most important short term problem is to minimize extinctions while the most important long term problem might be to maintain genetic variability in populations.

Rule 3: The next step is most critical and perhaps most controversial: What are the consequences for the Earth and its human population if the most important issue in any particular science is not solved or achieved? If the required experiments or observations can be delayed for 30 (or 50) years, what will it matter?

If we could begin to lay out this agenda for science, we could start a process of ranking the importance of each of the sciences for funding in the present and in the long term. At the present time this ranking process is partly historical and partly based on extreme promises of future scenarios or products that are of dubious validity. There is no need to assume that all will agree, and I am sure that several steps would have to be designated to involve not only young and older scientists but also members of the business community and the public at large.

If this agenda works, I doubt that we would spend quite so much money on nuclear physics and astronomy and we might spend more money on ocean science, carbon budgets, and sustainable agricultural research. This agenda would mean that powerful people could not push their point of view in science funding quite so freely without being asked for justification. And perhaps when budgets are tight for governments and businesses, the first people on the firing line for redundancy will not be environmental scientists trying their best to maintain the health of the Earth for future generations.

So I end with 2 simple questions: Could gravity waves have waited another 100 years for discovery? What is there that cannot wait?

(Finally, an apology. I failed to notice that on a number of recent blogs the LEAVE A REPLY option was not available to the reader. This was inadvertent and somehow got deleted with a new version of the software. I should have noticed it and it is now corrected on all blogs.)

On Philanthropic Investment in Conservation – Part 2

Here is an optimistic thought for the day. After writing my previous blog on philanthropy and conservation, it occurred to me that a single scenario might focus the mind of ecologists and conservation biologists as we think about relevant research:

Suppose you are sitting in your office and someone comes in and tells you that they wish to donate one billion dollars to your research in ecology. What would you tell them you would like to do?

This is of course ridiculous but let us be optimistic and think it may happen. There are a lot of very rich people around the world and they will have to do something with all their money. Some of it will be wasted but some could do much good for the development of strong science. So let us pretend for the moment that this will happen sometime in the future.

We need to think clearly what this money entails. First, if we want to live off the interest and we expect 5% return on investment, we end up with $ 50 million to spend per year. What are we going to do with all this money? The two options would seem to be to buy land and maintain it for conservation, or to set up a foundation for conservation that would support graduate student and postdoctoral fellows. Let us check these options out with a broad brush.

The first option is based on the belief that habitat loss is the key process driving biodiversity decline so we should use part of the money for land purchase or marine rights to areas. But we note that land purchases are not very useful if the land is not managed and protected so that some group of people need to be in charge. So suppose we spend half immediately on land acquisition, and land costs are $100 per ha, we could purchase about 50,000 km2, an area approximately the size of Denmark, slightly smaller than Scotland, and about the size of West Virginia. Then we can employ about 250 people full time to do research or manage the protected landscape at an overall cost of $100 K per scientist including salary and operating research costs. This is an attractive option and the decision that would need to be made is what areas are most important to purchase for conservation in what part of the world.

The second option is to establish a permanent foundation for conservation that would be devoted to supporting graduates and postdoctoral fellows worldwide. I am not clear on the costs for a foundation to operate but let us assume $ 2 million a year for staff and operating costs. This would leave $ 48 million for operating costs, supporting 480 students or postdocs at $100,000 each per year or 320 students if you wished to give each an average $150,000 per year for research and salary. If these were spread out over the 196 countries on Earth, clearly there would be about 2 scientists per country. If we spread them out evenly over the 148 million km2 of land area over the whole Earth, we would require each student or scientist to be in charge of about 300,000 km2, an area about the size of Norway, or Poland or the Philippines. Clearly one would not operate in such a fashion, and would concentrate person-power in the areas of greatest need.

There is considerable literature discussing the issue of how philanthropy can augment conservation in the most effective manner, and a few papers are given here that further the discussion.

Where does this theoretical exercise leave us? Clearly there would be many other ways to utilize these hypothetical funds for conservation, but the point that shows clearly is that the funds needed to achieve conservation on a global scale are very large, and even a billion dollars disappears very quickly if we are attempting to achieve solid conservation outcomes. The costs of conservation are large and there is the need to recognize that government funding is critical, so that an additional billion dollars from a philanthropist will only add icing on the cake and not the whole cake.

Not that anyone I know would turn down a billion-dollar donation as too little.

Adams, W., and J. Hutton. 2007. People, parks and poverty: Political ecology and biodiversity conservation. Conservation and Society 5:147-183.

Diallo, R. 2015. Conservation philanthropy and the shadow of state power in Gorongosa National Park, Mozambique. Conservation and Society 13:119-128. doi: 10.4103/0972-4923.164188

Ferraro, P. J., and S. K. Pattanayak. 2006. Money for Nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biology 4:e105.
doi: 10.1371/journal.pbio.0040105

Jones, C. 2012. Ecophilanthropy, neoliberal conservation, and the transformation of Chilean Patagonia’s Chacabuco Valley. Oceania 82:250-263.
doi: 10.1002/j.1834-4461.2012.tb00132.x

 

On Philanthropic Investment in Biodiversity Conservation

In the holiday season there is much talk and recommendations about donations to worthy causes, and this raises an interesting conundrum in biodiversity conservation. The question is relatively simple to answer if you have little money, but any reading of the business pages of our newspapers or a walk around the shopping centers of our large cities makes you realize that there are a great many people with more than a little money. What should you do with your excess cash?

Some people (but not all) will want to ‘make a difference’ with their accumulated wealth, at least until medical science can overcome the universal belief that “you can’t take it with you”. Peter Singer (2015) has addressed this question of how to spend your money most effectively when you donate. It comes down in the first instance of your time frame. If you wish to make a difference in the short term of a few years, your choices may differ fundamentally from those taken to make a difference in the long term of 100-500 years. The bulk of philanthropic donations now are in the short-term camp. We have poor people living on the street in most of our cities, people with curable diseases in less developed countries but no medical aid, and victims of wars, earthquakes and tsunamis who must rebuild their lives. So we must start with what I think is the biggest decision regarding philanthropy – do we worry only about people, or do we worry about the biological world as well? Most donations are directly related to improving the human condition, locally or globally.

But there is hope because more and more people are realizing that we cannot separate people from biodiversity because of ecosystem services. Without well-functioning ecosystems on Earth, all the medical advances of our time are for naught. This is an important message to convey to potential donors.

Conservation philanthropy is a curious mix of short term and long term goals. Many endangered species need action now to survive. But ecologists typically look at both the shorter and the longer term goals of conservation. The simplest goal is to set aside land for protection. Without habitat all is lost. But this goal must be paired with long term funding to hire rangers to protect the area from poachers and to monitor the status of the species within the protected zone. Relying on the government to do this by itself is not adequate and never has been. But beyond this primary goal of land protection, the conservation movement fractionates. There are arguments that without effective human population stabilization biodiversity loss must continue. So does this mean that effective donations should be earmarked for agencies that empower women and offer reproductive services? But this points out that we must not fall into the trap of thinking we can do only one thing at a time. Pandas or population – why not “both and”? Climate change is a similar ‘elephant in the room’ problem.

What are the long-term goals of conservation biology that would benefit from philanthropic investment? Start with pest control. Biological control of pests is a long-term issue par excellence (Goldson et al. 2015, Myers et al. 2009, Wyckhuys et al. 2013). But biological control programs are underfunded by governments and obtain little private philanthropy. Weed control, insect pest control, vertebrate pest control all fit in the same problem basket – long term problem supported only by short term funding. Invasive pest eradication on islands is one area of pest control in which both governments and private funding have been joining forces (http://www.islandconservation.org/ ) with good results.

Two other areas of conservation biology that are classically underfunded are taxonomy and monitoring. In many taxonomic groups the majority of the species on Earth are not yet identified and described with a scientific name. The nearest analogy would be having a bank with tons of coins of different sizes and shapes, but only a few of which had any engraving on them. Taxonomy which is so vital to biology suffers because physical scientists consider it “stamp collecting” and unworthy of scientific funding. Monitoring of ecological communities faces the same problem. Monitoring ecological communities is similar to monitoring weather, yet we support meteorological stations around the world but provide little support for ecological monitoring. At present ecological monitoring is done ad hoc by dedicated people but with little systematic organization. Monitoring of changes in the arctic is being coordinated globally (http://www.amap.no/ ) and specific programs have been outlined for example for northern Canada (https://www.ec.gc.ca/faunescience-wildlifescience/, but the funding levels are low considering the size of the areas under consideration. Tropical ecosystem monitoring is even less well funded, yet that is where much of global biodiversity is located (c.f. for example, Cardoso et al. 2011, Burton 2012).

So what can you do about this? Talk up the necessity and the advantages of conservation biodiversity. Imagine what would happen to any of these biodiversity problems if a foundation the size of the Bill & Melinda Gates Foundation devoted a large amount of its donations to conservation. Environmental stewardship is the key to the Earth’s survival, and a combination of problem solving of current biodiversity problems combined with a strong research component on how species interact and ecosystems operate to sustain themselves would be a legacy for future generations and a flagship for the next 100 years.

Burton, A.C. (2012) Critical evaluation of a long-term, locally-based wildlife monitoring program in West Africa. Biodiversity and Conservation, 21, 3079-3094. doi: 10.1007/s10531-012-0355-6

Cardoso, P., Erwin, T.L., Borges, P.A.V. & New, T.R. (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144, 2647-2655. doi: 10.1016/j.biocon.2011.07.024

Glen, A.S., Atkinson, R., Campbell, K.J., Hagen, E., Holmes, N.D., Keitt, B.S., Parkes, J.P., Saunders, A., Sawyer, J. & Torres, H. (2013) Eradicating multiple invasive species on inhabited islands: the next big step in island restoration? Biological Invasions, 15, 2589-2603. doi: 10.1007/s10530-013-0495-y

Goldson, S.L., Bourdôt, G.W., Brockerhoff, E.G., Byrom, A.E., Clout, M.N., McGlone, M.S., Nelson, W.A., Popay, A.J., Suckling, D.M. & Templeton, M.D. (2015) New Zealand pest management: current and future challenges. Journal of the Royal Society of New Zealand, 45, 31-58. doi: 10.1080/03036758.2014.1000343

Myers, J.H., Jackson, C., Quinn, H., White, S.R. & Cory, J.S. (2009) Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biological Control, 50, 66-72. doi: 10.1016/j.biocontrol.2009.02.008

Singer, P. (2015) The Most Good You Can Do. Yale University Press, New Haven. ISBN: 978-0-300-18027-5

Wyckhuys, K.A.G., Lu, Y., Morales, H., Vazquez, L.L., Legaspi, J.C., Eliopoulos, P.A. & Hernandez, L.M. (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biological Control, 65, 152-167. doi: 10.1016/j.biocontrol.2012.11.010 http://www.islandconservation.org/where-we-work/

 

On Funding for Agricultural Research

One of the most important problems of our day is the interaction between human population growth and the maintenance of sustainable agriculture in the face of climate change. I am currently sitting at the International Rice Research Institute (IRRI) near Manila where I am told they are responding to a 15-20% reduction in funding for their work. I have found this funding situation to be so ridiculous that I have decided to write this blog. Please stop reading if you think agricultural research already has too much funding, or that climate change and sustainable agriculture are not very important issues in comparison to our need for economic growth and increased wealth.

The critical issues here in Southeast Asia are the increasing human population and the productivity of rice agriculture. IRRI has done and is doing outstanding research to raise production of rice with new varieties and to control pests of rice with clever techniques that minimize the spreading of poisons, which everyone agrees must be minimized to protect agricultural and natural ecosystems. Present research concentrates on the ‘yield gap’, the difference between the actual production from farmer’s fields and the maximum possible yield that can be achieved with the best farm practices. The yield gap can be closed with more research by both social and natural scientists, but that is what is under stress now. IRRI operates with funding from a variety of governments and from private donors. Research funds are now being reduced from many of these sources, and the usual explanation is the faltering global economy combined with the severe refugee problems in the Middle East.

Consequently we now do not have enough money to support the most important research on a crop – rice – that is the essential food of half of the Earth’s human population. And it is not just research on rice that is being reduced, but that on corn, wheat, and any other crop you wish to name. Governments of developed countries like Canada, Australia and the USA are reducing their funding of agricultural research. Anyone who likes to eat might think this is the most ridiculous decision of all because agricultural research is an essential part of poverty reduction in the world and overall human welfare. So I ask a simple question – Why? How is it that you can visit any city in a developed country and see obscene excesses of wealth defined in any way you wish? Yet our governments continue to tell us that we are taxed too much, and we cannot afford more foreign aid, and that if we raised the taxation rate to help the poor of the Earth, our countries would all collapse economically. Yet historically taxes have often been raised during World Wars with general agreement that we needed to do so to achieve society’s goals. The goal now must be poverty reduction and sustainability in agriculture as well as in population. Important efforts are being done on these fronts by many people, but we can and must do more if we wish to leave a suitable Earth for future generations.

At the same time this shortage of funding should not all be laid at the feet of governments. Private wealth continues to increase in the world, and private gifts to research agencies like IRRI and to universities are substantial. But if we believe Piketty (2014), the rich will only get richer in the present economic climate and perhaps the message needs to be sent that donations are long overdue from the wealthy to establish foundations devoted to the problems of sustainability in agriculture, population, and society, as well as the protection of biodiversity. The inactions of people and governments in the past are well documented in books like Diamond (2005). Many scientific papers are mapping and have mapped the way forward to achieve a sustainable society (e.g. Cunningham et al. 2013). To make effective progress we must begin reinvestment in agriculture while not neglecting the human tragedies of our time. It can be both-and rather than either-or.

Cunningham, S.A., et al. (2013) To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agriculture, Ecosystems & Environment, 173, 20-27. doi 10.1016/j.agee.2013.04.007

Diamond, J. (2005) Collapse: How Societies Choose to Fail or Succeed. Viking, New York. 575 pp. ISBN: 0670033375

Piketty, T. (2014) Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006

In Praise of Long Term Studies

I have been fortunate this week to have had a tour of the Konza Prairie Long Term Ecological Research (LTER) site in central Kansas. Kansas State University has run this LTER site for about the last 30 years with support from the National Science Foundation (NSF) of the USA. Whoever set up this program in NSF so many years ago deserves the praise of all ecologists for their foresight, and the staff of KSU who have managed the Konza site should be given our highest congratulations for their research plan and their hard work.

The tall grass prairie used to occupy much of the central part of the temperate zone of North America from Canada to Texas. There is almost none of it left, in Kansas about 1% of the original area with the rest given over to agriculture and grazing. The practical person sees this as progress through the lens of dollar bills, the ecologist sees it as a biodiversity catastrophe. The big questions for the tall-grass prairie are clear and apply to many ecosystems: What keeps this community going? Is it fire or grazing or both in some combination? If fire is too frequent, what are the consequences for the plant community of tall-grass prairie, not to mention the aquatic community of fishes in the streams and rivers? How can shrub and tree encroachment be prevented? All of these questions are under investigation, and the answers are clear in general but uncertain in many details about effects on particular species of birds or forbs.

It strikes me that ecology very much needs more LTER programs. To my knowledge Canada and Australia have nothing like this LTER program that NSF funds. We need to ask why this is, and whether this money could be used much better for other kinds of ecological research. To my mind ecology is unique among the hard sciences in requiring long term studies, and this is because the ecological world is not an equilibrial system in the way we thought 50 years ago. Environments change, species geographical ranges change, climate varies, and all of this on top of the major human impacts on the Earth. So we need to ask questions like why is the tall grass prairie so susceptible to shrub and tree encroachment now when it apparently was not this way 200 years ago? Or why are polar bears now threatened in Hudson’s Bay when they thrived there for the last 1000 or more years? The simple answer is that the ecosystem has changed, but the ecologist wants to know how and why, so that we have some idea if these changes can be managed.

By contrast with ecological systems, physics and chemistry deal with equilibrial systems. So nobody now would investigate whether the laws of gravitation have changed in the last 30 years, and you would be laughed out of the room by physical scientists for even asking such a question and trying to get a research grant to answer this question. Continuous system change is what makes ecology among the most difficult of the hard sciences. Understanding the ecosystem dynamics of the tall-grass prairie might have been simpler 200 years ago, but is now complicated by landscape alteration by agriculture, nitrogen deposition from air pollution, the introduction of weeds from overseas, and the loss of large herbivores like bison.

Long-term studies always lead us back to the question of when we can quit such studies. There are two aspects of this issue. One is scientific, and that question is relatively easy to answer – stop when you find there are no important questions left to pursue. But this means we must have some mental image of what ‘important’ questions are (itself another issue needing continuous discussion). Scientists typically answer this question with their intuition, but not everyone’s intuition is identical. The other aspect leads us into the monitoring question – should we monitor ecosystems? The irony of this question is that we monitor the weather, and we do so because we do not know the future. So the same justification can be made for ecosystem monitoring which should be as much a part of our science as weather monitoring, human health monitoring, or stock market monitoring are to our daily lives. The next level of discussion, once we agree that monitoring is necessary, is how much money should go into ecological monitoring? The current answer in general seems to be only a little, so we stumble on with too few LTER sites and inadequate knowledge of where we are headed, like cars driving at night with weak headlights. We should do better.

A few of the 186 papers listed in the Web of Science since 2010 that include reference to Konza Prairie data:

Raynor, E.J., Joern, A. & Briggs, J.M. (2014) Bison foraging responds to fire frequency in nutritionally heterogeneous grassland. Ecology, 96, 1586-1597. doi: 10.1890/14-2027.1

Sandercock, B.K., Alfaro-Barrios, M., Casey, A.E., Johnson, T.N. & Mong, T.W. (2015) Effects of grazing and prescribed fire on resource selection and nest survival of upland sandpipers in an experimental landscape. Landscape Ecology, 30, 325-337. doi: 10.1007/s10980-014-0133-9

Ungerer, M.C., Weitekamp, C.A., Joern, A., Towne, G. & Briggs, J.M. (2013) Genetic variation and mating success in managed American plains bison. Journal of Heredity, 104, 182-191. doi: 10.1093/jhered/ess095

Veach, A.M., Dodds, W.K. & Skibbe, A. (2014) Fire and grazing influences on rates of riparian woody plant expansion along grassland streams. PLoS ONE, 9, e106922. doi: 10.1371/journal.pone.0106922

On Sequencing the Entire Biosphere

There is an eternal war going on in science which rests on the simple question of “What should we fund?” If you are at a cocktail party and want to set up a storm of argument you should ask this question. There may be general agreement among many scientists that we should reduce funding on guns and wars and increase funding on alleviating poverty. But then the going gets tough. It is easier to restrict our discussion to science. There is a clear hierarchy in science funding favouring the physical sciences that can make money and the medical sciences that keep us alive until 150 years of age. But now let’s go down to biology.

The major rift in biology is between funding blue sky research and practical research. In the discussions about funding, protagonists often confound these two categories by saying that blue sky research will lead us to practical research and nirvana. We can accept salesmanship to a degree. The current bandwagon in Canada is to barcode all of life on earth, at a cost of perhaps $2 billion but probably much more. Or we can sequence everything we can get our hands on with the implicit promise that it will help us understand these organisms better or solve practical problems in conservation and management. But all of this is driven by what we can do technically, so it is machine driven, not necessarily thought driven. So if you want another heated discussion among ecologists, ask them how they would spend $2 billion for research in ecology.

We sequence because we can. Fifty years ago I heard a lecture by Richard Lewontin in which he asked what we would know if we had a telephone book with all the genetic sequences of all the organisms on earth. He concluded, as I remember, that we would know nothing unless we had a purely ‘genetic-determinism’ view of life. There is more to life than amino acid sequences perhaps.

No one I know thinks that current ecological changes are driven by genetics, but perhaps I do not know the right people. So for example, if we sequence the genomes of all the top predators on earth (Estes et al. 2011, Ripple et al. 2014), would we know anything about their importance in community and ecosystem dynamics? Probably not. But still we are told that if in New Zealand we sequence the common wasp genome we will find new ways to control this insect pest. Perhaps an equally important area would be funding to understand their biology in New Zealand, and the threats and threatening processes in an ecosystem context.

We are back to the starting question about the allocation of resources within biology. Perhaps we cycle endlessly in science funding in search of the Promised Land. In a recent paper Richards (2015) makes the argument that genome sequencing is the key to biology and thus the Promised Land:

“The unifying theme of biology is evolutionary conservation of the gene set and the resultant proteins that make up the biochemical and structural networks of cells and organisms throughout the tree of life.”

“The absence of these genome references is not just slowing research into specific questions; it is precluding a complete description of the molecular underpinnings of biology necessary for a true understanding of life on our planet.” (p. 414)

There seems little room in all this for ecological thought or ecological viewpoints. It is implicit to me that these arguments for genome sequencing have as a background assumption that ecological research is rather useless for achieving biological understanding or for solving any of the problems we currently face in conservation or management. Richards (2015) makes the point himself in saying:

“While the author is fond of ‘stamp collecting’, there are many good reasons to expand the reference sequences that underlie biological research (Table 2).”

The table he refers to in his paper has not a single item on ecological research, except that this approach will achieve “Acceleration of total biological research output”. It remains to be seen whether this view will achieve much more than stamp collecting and a massive confusion of correlation with causation. It requires a great leap of faith that this approach through genome sequencing can help to solve practical ecological problems.

Richards, S. (2015) It’s more than stamp collecting: how genome sequencing can unify biological research. Trends in Genetics, 31, 411-421.

Estes, J.A., et al. (2011) Trophic downgrading of Planet Earth. Science, 333, 301-306.

Ripple, W.J., et al. (2014) Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.

Is Conservation Ecology a Science?

Now this is certainly a silly question. To be sure conservation ecologists collect much data, use rigorous statistical models, and do their best to achieve the general goal of protecting the Earth’s biodiversity, so clearly what they do must be the foundations of a science. But a look through some of the recent literature could give you second thoughts.

Consider for example – what are the hallmarks of science? Collecting data is one hallmark of science but is clearly not a distinguishing feature. Collecting data on the prices of breakfast cereals in several supermarkets may be useful for some purposes but it would not be confused with science. The newspapers are full of economic statistics about this and that and again no one would confuse that with science. We commonly remark that ‘this is a good scientific way to go about doing things” without thinking too much about what this means.

Back to basics. Science is a way of knowing, of accumulating knowledge to answer questions or problems in an independently verifiable way. Science deals with questions or problems that require some explanation, and the explanation is a hypothesis that needs to be tested. If the test is retrospective, the explanation may be useful for understanding the past. But science at its best is predictive about what will happen in the future, given a set of assumptions. And science always has alternative explanations or hypotheses in case the first one fails. So much everyone knows.

Conservation ecology is akin to history in having a great deal of information about the past but wishing to use that information to inform the future. In a certain sense it has a lot of the problems of history. History, according to many historians (Spinney 2012) is “just one damn thing after another”, so that there can be no science of history. But Turchin disagrees (2003, 2012) and claims that general laws can be recognized in history and general mathematical models developed. He predicts from these historical models that unrest will break out in the USA around 2020 as cycles of violence have broken out in the past every 30-50 years in this country (Spinney 2012). This is a testable prediction in a reasonable time frame.

If we look at the literature of conservation ecology and conservation genetics, we can find many observations of species declines, of geographical range shifts, and many predictions of general deterioration in the Earth’s biota. Virtually all of these predictions are not testable in any realistic time frame. We can extrapolate linear trends in population size to zero but there are so many assumptions that have to be incorporated to make these predictions, few would put money on them. For the most part the concern is rather to do something now to prevent these losses and that is very useful research. But since the major drivers of potential extinctions are habitat loss and climate change, two forces that conservation biologists have no direct control over, it is not at all clear how optimistic or pessimistic we should be when we see negative trends. Are we becoming biological historians?

There are unfortunately too few general ‘laws’ in conservation ecology to make specific predictions about the protection of biodiversity. Every one of the “ecological theory predicts…” statements I have seen in conservation papers refer to theory with so many exceptions that it ought not to be called theory at all. There are some certain predictions – if we eliminate all the habitat a species occupies, it will certainly go extinct. But exactly how much can we get rid of is an open question that there are no general rules about. “Protect genetic diversity” is another general rule of conservation biology, but the consequences of the loss of genetic diversity cannot be estimated except for controlled laboratory populations that bear little relationship to the real world.

The problems of conservation genetics are even more severe. I am amazed that conservation geneticists think they can decide what species are most ‘important’ for future evolution so that we should protect certain clades (Vane-Wright et al. 1991, Redding et al. 2014 and much additional literature). Again this is largely a guess based on so many assumptions that who knows what we would have chosen if we were in the time of the dinosaurs. The overarching problem of conservation biology is the temptation to play God. We should do this, we should do that. Who will be around to pick up the pieces when the assumptions are all wrong? Who should play God?

Redding, D.W., Mazel, F. & Mooers, A.Ø. (2014) Measuring evolutionary isolation for conservation. PLoS ONE, 9, e113490.

Spinney, L. (2012) History as science. Nature, 488, 24-26.

Turchin, P. (2003) Historical dynamics : why states rise and fall. Princeton University Press, Princeton, New Jersey.

Turchin, P. (2012) Dynamics of political instability in the United States, 1780–2010. Journal of Peace Research, 49, 577-591.

Vane-Wright, R.I., Humphries, C.J. & Williams, P.H. (1991) What to protect?—Systematics and the agony of choice. Biological Conservation, 55, 235-254.