Category Archives: Political Ecology

On the Bonn Challenge: Tree Restoration and the Climate Emergency

“Plant a tree and save the world” is the short version of the Bonn Challenge of 2011 and the UN Decade of Ecosystem Restoration 2021-2030 (Stanturf and Mansourian 2020), and so here we are with a major ecological challenge for the decade we have just started. Planting trees around the world to restore 350 million hectares of degraded land is the goal, and it is a challenge that ecologists must think clearly about to avoid failure of another grand scheme.

Restoring ecosystems is not easy as we have already learned to our dismay. What began as a relatively simple restoration of old fields used in agriculture, a few hectares of ploughed ground surrounded by forest or grassland, has now morphed into very large areas devastated by forest fires, insect outbreaks, or drought. The largest forest fires in Arizona prior to the year 2000 were 20,000 ha, but after prolonged drought by 2020 they have reached nearly 300,000 ha (Falk 2017). The larger and more severe the fire, the greater the distance seed must disperse to recolonize burnt areas, and hence the recovery from large fires differs dramatically from the recovery from small or patchy fires.

I concentrate here on forest restoration, but always with the caveat in mind that the trees are not the forest – there are a plethora of other species involved in the forest ecosystem (Temperton et al. 2019). The restoration of forest landscapes is driven by the estimate that forest originally covered about 5.9 billion ha of the Earth but at the present time there is about 4 billion ha of forest remaining. Restoration of degraded ecosystems has always been a good idea, and this program can now be tied in with the climate emergency. New trees will remove CO2 from the air as they grow so we can score 2 points with every tree we plant (Bernal and Pearson 2018).  

The scale of plans for the UN Decade of Ecosystem Restoration 2021-2030 are challenging and Stanturf and Mansourian (2020) provide current details country by country. For example, Brazil a country of 836 million ha has pledged to restore 12 million ha (1.44%), with some countries like Spain and Russia so far not pledging any Bonn Challenge restoration. The take-up of actual restoration is uneven globally. The USA has committed to restore 12 million ha to the Bonn Challenge, but Canada has made no formal commitment, although the federal government has proposed to plant 2 billion trees during this decade to counteract climate change.  

Many problems arise with every ecological restoration. Not the least is the time frame of the recovery of damaged ecosystems. Forests recover slowly even when carefully tended, and 100 years might be a partial target for temperate forests. For North American west-coast forests a 400+-year time frame might be a target. Most private companies and governments can not even conceive of this scale of time. For those who think everything should work faster than this, Moreno-Mateos et al. (2020) report a large sample of >600 restored wetlands that recovered to only 74% of the target value in 50-100 years. Schmid et al. (2020) found that the microbial community of a lignite mine in Germany had not recovered to the control level even after 52 years. Ecological time does not always conform readily to industrial time.

Other constraints blur the grand global picture. Restoration with trees should not be done on tropical grasslands because of their inherent biodiversity values (c.f. Silveira et al. 2020 for excellent examples), nor can we restore trees on rangeland that is used for agricultural production lest we engage in robbing agricultural Peter to pay forester Paul (Vetter 2020). These important ecological critiques must be incorporated into country-wide plans for reforestation whose primary aim might be CO2 capture. Again the devil is in the details, as Vetter (2020) clearly articulates.  

The Bonn Challenge remains ongoing, waiting for another review after 2030. Who will remember what was promised, and who will be given the awards for achievements reached? What quantitative goals exactly have been promised, and what happens if they slip to 2050 or 2070?  

Bernal, B., Murray, L.T., and Pearson, T.R.H. (2018). Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance and Management 13, 22. doi: 10.1186/s13021-018-0110-8.

Bonnesoeur, V., Locatelli, B., Guariguata, M.R., Ochoa-Tocachi, B.F., Vanacker, V. et al. (2019). Impacts of forests and forestation on hydrological services in the Andes: A systematic review. Forest Ecology and Management 433, 569-584. doi: 10.1016/j.foreco.2018.11.033.

Falk, Donald A. (2017). Restoration ecology, resilience, and the axes of change. Annals of the Missouri Botanical Garden 102, 201-216, 216. doi: 10.3417/2017006.

Moreno-Mateos, D., et al. (2020). The long-term restoration of ecosystem complexity. Nature Ecology & Evolution 4, 676-685. doi: 10.1038/s41559-020-1154-1.

Silveira, F.A.O., Arruda, A.J., Bond, W., Durigan, G., Fidelis, A., et al. (2020). Myth-busting tropical grassy biome restoration. Restoration Ecology 28, 1067-1073. doi: 10.1111/rec.13202.

Stanturf, J.A. and Mansourian, S. (2020). Forest landscape restoration: state of play.
Royal Society Open Science 7, 201218. doi: 10.1098/rsos.201218.

Temperton, V.M., Buchmann, N., Buisson, E., Durigan, G. and Kazmierczak, L. (2019). Step back from the forest and step up to the Bonn Challenge: how a broad ecological perspective can promote successful landscape restoration. Restoration Ecology 27, 705-719. doi: 10.1111/rec.12989.

Vetter, S. (2020). With Power Comes Responsibility – A rangelands perspective on forest landscape restoration. Frontiers in Sustainable Food Systems 4, 549483. doi: 10.3389/fsufs.2020.549483.

On the Rules of Civilization in 2020

We are all citizens of the Earth, so we will start with the single assumption that we wish to protect the Earth for our children and grandchildren, If you do no agree with this assumption we hope you will find life on Mars to be more congenial. If you are content with life on Earth, please observe these rules.

  1. Listen to Greta, in English or Swedish.
  2. For further guidance join 350.org. https://350.org/about/   
  3. If you think the present climate crisis is a minor problem, please read David Wallace-Wells’ book (2019). 
  4. If you are an old person (>45 years) go to (9) below. If you are a young person, keep reading.
  5. The world is a mess and it is not your fault. Do not give up. Become active. Vote. Go to political meetings and ask questions.
  6. Ask about policies at the local, regional, and national level. How is this policy – this war, this new freeway, this new oil pipeline – helping to solve the Earth’s climate crisis.
  7. Do not take business-as-usual for an answer to your questions. Challenge the system to do better.
  8. Work to make voting compulsory. That would begin to ensure democracy. Cut the voting age to 16. Work for proportional representation. You must design a fool-proof world. We have failed to do so.
  9. If you are an older person and at least 45 years old, realize that half or more of your life is over. You have time now to atone for your environmental sins of the past and to work hard to protect the Earth for the young people. Read Stiglitz (2012) or Reich (2018).
  10. Support strong legislation. For many policies we old people should not have a vote. At best to be nice to the elderly, perhaps our vote should count in the reverse proportion of age/100, so a 50 year old would have ½ a vote, and a 75 year old would have ¼ a vote relative to the young people who will inherit the planet.  
  11. Stop supporting the electoral parties who have made the environment a mess. Demand real sustainability, not nonsense policies.
  12. Encourage taxes on wealth. No matter what you may think, you cannot take it with you. Believe it or not, there are countries on Earth with good policies for people and for the environment. Mimic the good. Shame the bad.
  13. If you wish to be radical, vote for policies that provide the highest salaries and lowest taxes to nurses, doctors, teachers, and social workers, and the lowest salaries and highest taxes to CEOs, politicians, lawyers, economists, and TV personalities.
  14. Work for equality in the world, and remember that you as an individual are important, but you are not the most important person in the world. We already know who that is.

Reich, R. (2018). Saving Capitalism: For the Many, Not the Few. 219 pp. ISBN: 978-0-385-35057-0)

Stiglitz, J.E. (2012) ‘The Price of Inequality.’ W.W. Norton and Company: New York. 560 pp. ISBN: 978-0-393-34506-3

Wallace-Wells, David (2019) ‘The Uninhabitable Earth: Life After Warming ‘ Tim Duggan Books: New York. 304 pp. ISBN: 978-0-525-57670-9.  

On Fires in Australia

The fires of Australia in their summer 2019-20 are in the news constantly, partly because the media survive on death and destruction and partly because to date we have never seen a whole continent burn up. It is hardly a ‘Welcome to the Anthropocene”  kind of event to celebrate, and the northern media display the fires as nearly all news of the Southern Hemisphere is treated, something unusual, often bad, but of no general importance to the real world of the Northern Hemisphere.

What do we hear from a cacophony of public opinion?

“Nothing unusual. We have always had fires in the past. Why in 1863…..”
“Nothing to do with climate change. Climate has always been changing….(see point 1)
“Main cause had been Green Policies. If we had more forestry, there would have been many fewer trees to burn….”
“Inadequate controlled burning because of the Greens’ policies….(see point 3)
“Why doesn’t the Government do something about this?”
“Fortunately these fires are a rare event and not likely to occur again…….

In reply an ecologist might offer these facts:

  1. Much research by plant geographers and ecologists have shown how many plant communities are dominated by fire. The boreal forest is one, the chaparral of Southern California is another, the grasslands of Africa and the Great Plains of the USA are yet more.
  2. By preventing fire in these communities over time the fuel load builds up so that, should there be a subsequent fire, the fire severity would be very high.
  3. By building houses, towns, and cities in these plant communities fire danger increases, and an active plan of fire management must be implemented. Most of these plans are effective for normal fires but for extreme conditions no fire management plan is effective.
  4. Climate change is now producing extreme conditions that were once very rare but are now commonly achieved. With no rainfall, high winds, and temperatures over 40-45ºC fires cannot be contained. Severe fires generate their own weather that accelerates fire spread with embers being blown kilometers ahead of the active fire front.
  5. The long-term plan to have controlled patch burns to relieve these fire conditions are impossible to implement because they require no wind, low temperatures, and considerable person-power to prevent controlled burns getting away from containment lines should the weather change.

Since a sizeable fraction of dangerous fires are deliberately set by humans, methods to detect and prevent this behaviour could help in some cases. Infrastructure such as power lines could be upgraded to reduce the likelihood of falling power poles and lines shorting out. All this will cost money, and the less the fire frequency, the fewer the people willing to pay more taxes to reduce public risk. Some serious thinking is needed now because Australia 2020 is just the start of a century of fire, drought, floods, and high winds. We do not need the politicians of 2050 telling us “why didn’t someone warn us?

There is a very large literature on fire in human landscapes (e.g. Gibbons et al. 2012), and I include only a few references here. They illustrate that the landscape effects of fire are multiple and area specific. Much more field research is needed, and landscape ecology has a vital role to play in understanding and managing the interface of humans and fire.

Badia, A. et al. (2019). Wildfires in the wildland-urban interface in Catalonia: Vulnerability analysis based on land use and land cover change. Science of The Total Environment 673, 184-196. doi: 10.1016/j.scitotenv.2019.04.012.

Gibbons, P, et. al. (2012) Land management practices associated with house loss in wildfires. PLoS ONE 7(1): e29212. https://doi.org/10.1371/journal.pone.0029212

Gustafsson, L. et al. (2019). Rapid ecological response and intensified knowledge accumulation following a north European mega-fire. Scandinavian Journal of Forest Research 34, 234-253. doi: 10.1080/02827581.2019.1603323.

Minor, J. and Boyce, G.A. (2018). Smokey Bear and the pyropolitics of United States forest governance. Political Geography 62, 79-93. doi: 10.1016/j.polgeo.2017.10.005.

Ramage, B.S., O’Hara, K.L., and Caldwell, B.T. (2010). The role of fire in the competitive dynamics of coast redwood forests. Ecosphere 1(6), art20. doi: 10.1890/ES10-00134.1.

On Salmon Hatcheries as an Ecological Paradigm

The West Coast of North America hosts 5 species of Pacific salmon that are an invaluable fishery resource and at least in theory a resource that is completely sustainable. The management of these fisheries provides a useful case study in how humans currently approach major resources, the mistakes they make, and how attempts to fix mistakes can lead to even further mistakes.

Salmon have been a major resource utilized by the First Nations of the Pacific Coast after the glaciers melted some 10-12,000 years ago. Salmon are anadromous fish, living in the ocean and spawning in fresh water. Their populations fluctuate from year to year but until the 1900s they were essentially considered an inexhaustible resource and thus became a target for exploitation. The buildup of salmon fisheries during the last 100 years coincided with an increase in environmental damage to freshwater spawning grounds. Dams on rivers cut migration routes to spawning grounds, pollution arising from mining, and erosion from forestry and agriculture all began to cut into spawning habitat and subsequently the available catch for the fishery. Salmon catches began to decline and in the late 1800s hatcheries began to be built both to restore fish stocks that were threatened and to increase the abundance of desirable fish like salmon (Naish et al 2007).

The simple model of salmon hatcheries was that the abundance of juvenile fish was the main factor limiting the adult population, so that adding more juveniles to wild juveniles moving out into the ocean would be profitable. This view of the world I call the “Farmer Paradigm” and if you are a dairy farmer with 4 cows that produce X milk, if you add 4 more cows to your farm, you now get 2X milk and thus more profit. But it became apparent with fish hatcheries that adding more juvenile fish did not necessarily increase the resulting fish catch. Some simple reasons might be that more juveniles were eaten by the predators waiting at the mouth of the river or stream, so that predation on juvenile fish was limiting. Alternatively, perhaps the ocean only had a given amount of food for juvenile growth, so that adding too many juveniles induced starvation deaths. Other explanations involving disease transmission could also be invoked.

Whatever the mechanism, it became clear that hatcheries for salmon sometimes worked and sometimes did not work to increase the productivity of the fishery. The Farmer Paradigm had to add a footnote to say “its complicated”. One complication noted early on was the possibility that natural selection in hatcheries was not equivalent to natural selection in wild populations. If hatchery fish were replacing wild fish in any population, the genetic changes involved could work in two directions by either making the entire population more fit or less fit, more productive or less. Much depends on what traits are selected for in hatcheries. In one example for sockeye salmon in Washington State, hatcheries appear to have selected for earlier spawning, so that wild sockeye in one river system return to spawn later than hatchery raised sockeye raised in the same river (Tillotson et al. 2019). Since in general juveniles from early spawners have poorer survival, climate change could favour earlier breeding and thereby reduce the overall productivity of the sockeye population in the river system. We are far from knowing the long-term selection that is occurring in hatcheries, and what it means for future populations of salmon (Cline et al. 2019, Stevenson et al. 2019).

Hatcheries are popular with the public because they indicate the government is doing something to assist fishers and hatcheries should increase and maintain fisheries production for species we love to eat. Consequently, there is a social signal that might be suppressed in data that might suggest a particular hatchery was in fact harming the fishery for a particular river or lake system. If someone wishes to do an economic analysis of the costs and benefits of a hatchery, one runs up against the standard simple belief that more juvenile fish equals higher fishery production. When Amoroso et al. (2017) tried to evaluate for pink salmon in Alaska whether hatcheries were an economic benefit or a loss, their best analysis suggested that recent increases in pink salmon productivity were higher in areas of Alaska with no hatcheries, compared with those with hatcheries. Since different river populations of pink salmon mix in their oceanic phase, it is difficult to obtain a clear experimental signal of hatchery success or failure. The immediate and the longer-term unintended consequences of hatcheries require further study. The assumption that every hatchery is an ecological and social good cannot be presumed.  

Salmon hatcheries are for me an ecological paradigm because they illustrate the management sequence: unlimited abundance → overharvesting → collapse of resource → find a technological fix → misdiagnosed problem → failure of technological fix → better diagnosis of the problem → competing socio-economic objectives → failure to act → collapse of the resource. This need not be the case, and we need to do better (Bendriem et al. 2019).

Amoroso, R.O. et al. (2017). Measuring the net biological impact of fisheries enhancement: Pink salmon hatcheries can increase yield, but with apparent costs to wild populations. Canadian Journal of Fisheries and Aquatic Sciences 74, 1233-1242. doi: 10.1139/cjfas-2016-0334.

Bendriem, N. et al. (2019). A review of the fate of southern British Columbia coho salmon over time. Fisheries Research 218, 10-21. doi: 10.1016/j.fishres.2019.04.002.

Cline, T.J. et al. (2019). Effects of warming climate and competition in the ocean for life-histories of Pacific salmon. Nature Ecology & Evolution 3, 935-942. doi: 10.1038/s41559-019-0901-7.

Naish, K.A. et al. (2007). An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Advances in Marine Biology 53, 61-194. doi: 10.1016/S0065-2881(07)53002-6.

Stevenson, C.F. et al. (2019). The influence of smolt age on freshwater and early marine behavior and survival of migrating juvenile sockeye salmon. Transactions of the American Fisheries Society 148, 636-651. doi: 10.1002/tafs.10156.

Tillotson, M.D. et al. (2019). Artificial selection on reproductive timing in hatchery salmon drives a phenological shift and potential maladaptation to climate change. Evolutionary Applications 12, 1344-1359. doi: 10.1111/eva.12730.

Do We Need Commissioners for the Environment?

Canada has just gone through an election, the USA will next year, and elections are a recurring news item everywhere. In our Canadian election we were spared any news on the state of the environment, and the dominant theme of the election was jobs, the economy, oil, gas, and a bit on climate change. The simplest theme was climate change, and yes, we are all in favour of stopping it so long as we do not need to do anything about it that would cost money or change our lifestyles. Meanwhile the fires of California and Australia and elsewhere carry on, generating another news cycle of crazy comments about the state of the environment.

Is there a better way? How can we get governments of the world to consider that the environment is worthy of some discussion? There is, and New Zealand has led the way in one direction. New Zealand has a Parliamentary Commissioner for the Environment, an independent Officer of Parliament, whose job it is to provide Members of Parliament with independent advice on matters that may have impacts on the environment. The Office is independent of the government of the day and the Prime Minister, and consequently can “tell it like it is”. A few quotations for the 2019 report give the flavour of this recent New Zealand report:

“If there is one thing that stands out from [our] reports, it is the extent of what we don’t know about what’s going on with our environment.  

“…the blind spots in our environmental reporting system don’t represent conscious choices to collect data or undertake research in some fields rather than others. Rather, they represent the unplanned consequences of a myriad choices over decades. Ours has been a passive system that has harvested whatever data is there and done the best it can to navigate what’s missing.

“In some ways, the most important recommendations in this report are those that relate to the prioritising and gathering of data in a consistent way. Despite attempts over more than two decades, no agreement has ever been reached on a set of core environmental indicators. This has to happen. Consistent and authoritative time series coupled with improved spatial coverage are essential if we are to detect trends. Only then will we be able to judge confidently whether we are making progress or going backwards – and get a handle on whether costly interventions are having an effect.

https://www.pce.parliament.nz/publications/focusing-aotearoa-new-zealand-s-environmental-reporting-system

This report is full of ecological wisdom and would be a useful starting point for many countries. Canada has (to my knowledge) no Environmental Commissioner and although various provinces and cities provide State of the Environment Reports, they are largely based on inadequate data. In some cases, like commercial fisheries, Parliaments or Congress have mandated annual reports, provided the secure funding, and retained independence of the relevant director and staff. In many cases there is far too much bickering between jurisdictions, use of inadequate methods of data collecting, long time periods between sampling, and no indication that the national interest has been taken into account.

Most Western countries have National Academies or Royal Societies which provide some scientific advice, sometimes requested, sometimes not. But these scientific publications are typically on very specific topics like smoking and lung cancer, vaccine protection, or automobile safety requirements. We can see this problem most clearly in the current climate emergency. The Intergovernmental Panel on Climate Change (IPCC) of the United Nations provides excellent reports on the climate emergency but no government is required to listen to their recommendations or to implement them. So, we have local problems, regional problems and global problems, and we need the political structures to address environmental problems at all these levels. New Zealand has provided a way forward, and here is another quote from the 2019 report that ecologists should echo:

Given that many of the environmental problems we face have been decades in the making and that for nearly 30 years we have [made] specific reference to cumulative effects that arise over time…it is astonishing that we have so little data on trends over time.

….it takes time to assemble time series. If we start collecting data today, it may be a decade or more before we can confidently judge whether the issue being monitored is getting better or worse. Every year that we delay the collection of data in an area identified as a significant gap, we commit New Zealand to flying blind in that area. …..A lack of time series in respect of some environmental pressure points could be costing us dearly in terms of poorly designed policies or irreversible damage.

One example may be enough. Caribou herds in southern Canada are threatened with extinction (Hebblewhite 2017, DeMars et al. 2019). Here is one example of counts on one caribou herd in southern Canada:

2009 = 2093 caribou
2012 = 1003
2019 = 185

It would be difficult to manage the conservation of any species of animal or plant that has such limited monitoring data. We can and must do better. We can start by dragging state of the environment reports out of the control of political parties by demanding to have in every country Commissioners of the Environment that are fully funded but independent of political influence. As long as the vision of elected governments is limited to 3 years, environmental decay will continue, out of sight, out of mind.

There is of course no reason that elected governments need follow the advice of any independent commission, so this recommendation is not a panacea for environmental issues. If citizens have independent information however, they can choose to use it and demand action.

DeMars, C.A.et al. (2019). Moose, caribou, and fire: have we got it right yet? Canadian Journal of Zoology 97, 866-879. doi: 10.1139/cjz-2018-0319.

Hebblewhite, M. (2017). Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biological Conservation 206, 102-111. doi: 10.1016/j.biocon.2016.12.014.

On Planting Trees to Solve the Climate Emergency

Rising CO2 levels could possibly be stopped by planting lots of trees. In recent months the media have rejoiced in a proposal (The Bonn Challenge) to plant trees on 350 million ha of degraded forest land around the globe by 2030 and thereby stop or greatly slow the global increase in CO2. The Bonn Challenge was first proposed in 2011 at a meeting in Germany and to date 43 countries have made pledges to plant trees to cover about half of the proposed needs, perhaps a total of 1 billion trees. Lewis et al. (2019) recently reported on progress to date in meeting this challenge. The question that a flurry of letters to Nature and other journals have raised is whether this goal is ecologically feasible.

There has always been a cohort of scientists seeking a technological fix to the climate emergency by capturing greenhouse gases or changing the atmosphere. To date all these technological fixes fail the economic test. Can biologists ride to the rescue for the CO2 problem and save the world? Clearly many people as well as politicians are technological optimists who hope that we can continue our lifestyle with little change in the coming decades. No one likes nay-sayers but it is important to hear what problems might arise to achieve a forestry solution to the climate emergency.

Lewis et al. (2019) mapped the land areas potentially available for restoration by planting trees. To achieve the Bonn Challenge most plantings would need to be in tropical and subtropical areas where tree growth is rapid. Bond et al. (2019) concentrated their analysis on Africa where about 1 million km2 have been proposed for restoration with trees. But they point out that much of this proposed area is grassland and savannah which support high value biodiversity. Tanzania we might presume would not be happy if the Serengeti was converted to a closed forest ecosystem. If we proceed with the Bonn Challenge and grasslands and savannahs become closed forests, several unintended consequences would occur. Trees utilize more water to grow and given a fixed rainfall in an area, less water would go into rivers, streams and lakes. Trees also absorb more solar radiation so that the climate in the restored areas would warm, while a main objective of the Bonn Challenge is to reverse global warming.

The list of ecological problems is long. Plantations of monocultures typically capture less CO2 than natural forests on the same land area. Forest fires release large amounts of CO2 from both natural forests and plantations, and rising temperatures are increasing forest losses to fire. Carbon capture estimates depend critically on turnaround times which depend on tree growth rates and the uses to which wood is put after a tree is harvested. Smith et al. (2015) concluded in an earlier analysis that afforestation could not achieve the goal of limiting global warming below 2ºC.

All these problems should not stop the reforestation of closed forest areas that were degraded in historical time, as Bond et al. (2019) have pointed out. But unfortunately, this news that we cannot reverse climatic warming by planting large numbers of trees continues the negativity that bedevils the science of ecology – you cannot achieve this goal given the ecological constraints of the Earth. Politicians and the public at large do not want to hear these messages and prefer the belief that technology will come up with a simple inexpensive solution. To shout that “this will not work” is not a way to become popular.

We appear not to have progressed from what David Schindler said 22 years ago:

“Humans, including ecologists, have a peculiar fascination with attempting to correct one ecological mistake with another, rather than removing the source of the problem.”
                  (Schindler 1997, pg.4).

Bond, W.J., et al. (2019). The Trouble with Trees: Afforestation Plans for Africa. Trends in Ecology & Evolution (in press). doi: 10.1016/j.tree.2019.08.003.

Lewis, S.L., et al. (2019). Regenerate natural forests to store carbon. Nature 568, 25-28 (4 April 2019). doi: 10.1038/d41586-019-01026-8.

Schindler D.W. (1997). Liming to restore acidified lakes and streams: a typical approach to restoring damaged ecosystems? Restoration Ecology 5, 1-6. doi: 10.1046/j.1526-100X.1997.09701.x.

Smith, P. et al. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change 6, 42-50 (January 2016). doi: 10.1038/nclimate2870.

Big Science – Poor Data?

The big global problems of our time are climate change, human population growth, and migration. From these emerge all the others that worry us from inequality leading to poverty, regional wars, emerging diseases, and biodiversity loss. As ecologists we typically worry about climate change and biodiversity loss. We can do little directly about climate change except to change our life style and replace our do-nothing-politicians. We can have some effect on biodiversity conservation, a subject of later discussions. But the elephant in the room is always climate change, and Bill McKibben (2019) has presented us with a synopsis of a positive evaluation from the viewpoint of fossil fuels and is currently bringing out a book on these issues (McKibben 2019a).

There is much discussion of these articles in reviews such as Diamond (2019) and in the social media. The negative concerns for the future have in recent years been getting more press than the positive possibilities and these negative views may cause the public to give up and say all efforts are hopeless. But these three references from McKibben and Diamond push the possibility of a positive outcome, premised partly on the growing concern of humans to the effects of climate change and the emerging technologies in energy capture that do not depend on oil and gas. I do not wish to question these statements but rather to raise the question of where ecological scientists should fit into this picture.

If natural capital is in decline and some to many species are at risk of extinction, what should be the reaction of a young ecologist just starting their ecological career? I can see two extreme responses to the current situation. One I will call the Carry-on-Regardless approach, and the other the Mad Panic approach. The Carry-on Regardless approach believes that we as one or a few scientists have little ability to change the global paradigm of environmental destruction. Certainly, we will use our own efforts to educate and give good environmental example to all we encounter. But as a scientist the most important achievement one can make is to do good ecological science, to understand in some small way how populations and communities of organisms interact and sustain themselves at the present time. In this way we can hopefully solve some immediate practical problems but more importantly collect some critical data for the next generations of ecologists to use in understanding the changes that will go on during the next several centuries. In a simple manner, future ecologists will be able to say, ‘so this is how system X was working in 2020”. We have no way to know now how much our hard-earned knowledge will be useful to our great-grandchildren, but we press on in the hope that it will be of some help in understanding the trace of the human footprint down the ages.

The Mad Panic approach at the other extreme argues that you should stop all the research that you are doing and become an advocate to try to convince the world to change course and prevent disaster. There is no time to do research, we ought to be out there shouting from the rooftops. If you wish to work at the research end of this school of thought you should perhaps be looking for an ecological disaster (e.g. plastics in the ocean) that you can investigate to beat politicians over the head about how we must change now to prevent further disaster. There is certainly a need for this sort of action.

The problem is how to advise ecologists starting their careers. There is no simple answer, and some are better at the first approach and others at the second. The key point is that we need both, and my concern (being a Carry-on phenotype) is that we need to have clear and precise data of how the planet is changing as a prerequisite for the second approach. We do not have this now except for a few species in a few locations. We have very little long-term data on biodiversity, and we only kid ourselves if we decide that a 3-year study can be classified as a long-term study, or that a list of species in a given area tells us something about ecosystem function. Consider how long it has taken to show clear trends in climate data, or in a more news-worthy area how little economic understanding has emerged from all the detailed minute-by-minute data on the stock market over the last 70 years.

So, we end up with big questions and poor data, and somehow hope that we can model the future changes in the world’s ecosystems to give the public guidance. To achieve this goal, we need more Carry-on Regardless ecologists doing good work and fewer, less strident Mad Panic environmentalists. Environmental warning bells are certainly going off, and we should listen to them and try to gather the data necessary to understand what is happening and how good management might counter negative environmental trends. It is good to be optimistic, but we must couple our optimism with strong ecological studies to understand how communities and ecosystems function. And we are a long way from having enough of these basic studies to be confident of future projections to guide the next generations.

Diamond, Jared. 2019. Striking a balance between fear and hope on climate change. New York Times, 15 April 2019.

McKibben, Bill. 2019. A Future Without Fossil Fuels? New York Review of Books, April 4, 2019, pp.

McKibben, Bill. 2019a. Falter: Has the Hunan Game Begun to Play Itself Out? Henry Holt and Company, 291 pp. ISBN:13: 9781250178268

Why do Scientists Reinvent Wheels?

We may reinvent wheels by repeating research that has already been completed and published elsewhere. In one sense there is no great harm in this, and statisticians would call it replication of the first study, and the more replication the more we are convinced that the results of the study are robust. There is a problem when the repeated study reaches different results from the first study. If this occurs, there is a need to do another study to determine if there is a general pattern in the results, or if there are different habitats with different answers to the question being investigated. But after a series of studies is done, it is time to do something else since the original question has been answered and replicated. Such repeated studies are often the subject of M.Sc. or Ph.D. theses which have a limited 1-3-year time window to reach completion. The only general warning for these kinds of replicated studies is to read all the old literature on the subject. There is a failure too often on this and reviewers often notice missing references for a repeated study. Science is an ongoing process but that does not mean that all the important work has been carried out in the last 5 years.

There is a valid time and place to repeat a study when the habitat for example has been greatly fragmented or altered by human land use or when climate change has made a strong impact on the ecosystem under study. The problem in this case is to have an adequate background of data that allows you to interpret your current data. If there is a fundamental problem with ecological studies to date it is that we have an inadequate baseline for comparison for many ecosystems. We can conclude that a particular ecosystem is losing species (due to land use change or climate) only if we know what species comprised this ecosystem in past years and how much the species composition fluctuated over time. The time frame desirable for background data may be only 5 years for some species or communities but for many communities it may be 20-40 years or more. We are too often buried in the assumption that communities and ecosystems have been in equilibrium in the past so that any fluctuations now seen are unnatural. This time frame problem bedevils calls for conservation action when data are deficient.

The Living Planet Report of 2018 has been widely quoted as stating that global wildlife populations have decreased 60% in the last 4 decades. They base their analysis on the changes in 4000 vertebrate species. There are about 70,000 vertebrate species on Earth, so this statement is based on about 6% of the vertebrates. The purpose of the Living Planet Report is to educate us about conservation issues and encourage political action. No ecologist in his or her right mind would question this 60% quotation lest they be cast out of the profession, but it is a challenge to the graduate students of today to analyze this statistic to determine how reliable it is. We all ‘know’ that elephants and rhinos are declining but they are hardly a random sample. The problem in a nutshell is that we have reliable long-term data on perhaps 0.01% or less of all vertebrate species. By long term I suggest we set a minimal limit of 10 generations. As another sobering test of these kinds of statements I suggest picking your favorite animal and reading all you can on how to census the species and then locate how many studies of this species meet the criteria of a good census. The African elephant could be a good place to start, since everyone is convinced that it has declined drastically. The information in the Technical Supplement is a good starting point for a discussion about data accuracy in a conservation class.

My advice is that ecologists should not without careful thought repeat studies that have already been carried out many times on common species . Look for gaps in the current wisdom. Many of our species of concern are indeed declining and need action but we need knowledge of what kinds of management actions are helpful and possible. Many of our species have not been studied long enough to know if they are under threat or not. It is not helpful to ‘cry wolf’ if indeed there is no wolf there. We need precision and accuracy now more than ever.

World Wildlife Fund. 2018. Living Planet Report – 2018: Aiming Higher. Grooten, M. and Almond, R.E.A.(Eds). WWF, Gland, Switzerland. ISBN: 978-2-940529-90-2.
https://wwf.panda.org/knowledge_hub/all_publications/living_planet_report_2018/

Blaming Climate Change for Ecological Changes

The buzz word for all ecological applications for funding and for many submitted papers is climate change. Since the rate of climate change is not something ecologists can control, there are only two reasons to cite climate change as a reason to fund current ecological research. First, since change is continuous in communities and ecosystems, it would be desirable to determine how many of the observed changes might be caused by climate change. Second, it might be desirable to measure the rate of change in ecosystems, correlate these changes to some climate variable, and then use these data as a political and social tool to stimulate politicians to do something about greenhouse gas emissions. The second approach is that taken by climatologists who blame hurricanes and tornadoes on global warming. There is no experimental way to trace any particular hurricane to particular amounts of global warming, so it is easy for critics to say these are just examples of weather variation of which we have measured much over the last 150 years and paleo-ecologists have traced over tens of thousands of years using proxies from tree rings and sediment cores. If we are to use the statistical approach we need a large enough sample to argue that extreme events are becoming more frequent, and that might take 50 years by which time the argument would be made too late to request proper action.

The second approach to prediction in ecology is fraught with problems, as outlined in Berteaux et al. (2006) and Dietze (2017). The first approach has many statistical problems as well in selecting a biologically coherent model that can be tested by in a standard scientific manner. Since there are a very large number of climate variables, the possibility of spurious correlations is excessive, and the only way to avoid these kinds of results is to be predictive and to have a biological causal chain that is testable. Myers (1998) reviewed all the fishery data for predictive models of juvenile recruitment that used environmental variables as predictors and data was subsequently collected and tested with the published model. The vast majority of these aquatic models failed when retested but a few were very successful. The general problem is that model failures or successes might not be published so even this approach can be biased if only a literature survey is undertaken. The take home message from Myers (1998) was that almost none of the recruitment-environment correlations were being used in actual fishery management.

How much would this conclusion about the failure of environmental models in fishery management apply to other areas in ecology? Mouquet et al. (2014) pointed out that predictions could be classified as ‘explanatory’ or ‘anticipatory’ and that “While explanatory predictions are necessarily testable, anticipatory predictions need not be…….In summary, anticipatory predictions differ from explanatory predictions in that they do not aim at testing models and theory. They rely on the assumption that underlying hypotheses are valid while explanatory predictions are based on hypotheses to be tested. Anticipatory predictions are also not necessarily supposed to be true.” (page 1296). If we accept these distinctions, we have (I think) a major problem in that many of the predictive models put forward in the ecological literature are anticipatory, so they would be of little use to a natural resource manager who requires an explanatory model.

If we ignore this problem with anticipatory predictions, we can concentrate on explanatory predictions that are useful to managers. One major set of explanatory predictions in ecology are those associated with range changes in relation to climate change. Cahill et al. (2014) examined the conventional hypothesis that warm-edge range limits are set by biotic interactions rather than abiotic interactions. Contrary to expectations, they found in 125 studies that abiotic factors were more frequently supported as setting warm-edge range limits. Clearly a major paradigm about warm-edge range limits is of limited utility.

Explanatory predictions are not always explicit. Mauck et al. (2018) for example developed a climate model to predict reproductive success in Leach’s storm petrel on an island off New Brunswick in eastern Canada. From 56 years of hatching success they concluded that annual global mean temperature during the spring breeding season was the single most important predictor of breeding success. They considered only a few measures of temperature as predictor variables and found that a quadratic form of annual global mean temperature was the best variable to describe the changes in breeding success. The paper speculates about how global or regional mean temperature could possibly be an ecological predictor of breeding success, and no mechanisms are specified. The actual data on breeding success are not provided in the paper, even as a temporal plot. Since global temperatures were rising steadily from 1955 to 2010, any temporal trend in any population parameter that is rising would correlate with temperature records. The critical quadratic relationship in their analysis suggests that a tipping point was reached in 1988 when hatching success began to decline. Whether or not this is a biologically correct explanatory model can be determined by additional data gathered in future years. But it would be more useful to find out what the exact ecological mechanisms are.

If the ecological world is going to hell in a handbasket, and temperatures however measured are going up, we can certainly construct a plethora of models to describe the collapse of many species and the rise of others. But this is hardly progress and would appear to be anticipatory predictions of little use to advancing ecological science, as Guthery et al. (2005) pointed out long ago. Someone ought to review and evaluate the utility of AIC methods as they are currently being used in ecological and conservation science for predictions.

Berteaux, D., Humphries, M.M., Krebs, C.J., Lima, M., McAdam, A.G., Pettorelli, N., Reale, D., Saitoh, T., Tkadlec, E., Weladji, R.B., and Stenseth, N.C. (2006). Constraints to projecting the effects of climate change on mammals. Climate Research 32, 151-158. doi: 10.3354/cr032151.

Cahill, A.E., Aiello-Lammens, M.E., Fisher-Reid, M.C., Hua, X., and Karanewsky, C.J. (2014). Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. Journal of Biogeography 41, 429-442. doi: 10.1111/jbi.12231.

Dietze, M.C. (2017). Prediction in ecology: a first-principles framework. Ecological Applications 27, 2048-2060. doi: 10.1002/eap.1589.

Guthery, F.S., Brennan, L.A., Peterson, M.J., and Lusk, J.J. (2005). Information theory in wildlife science: Critique and viewpoint. Journal of Wildlife Management 69, 457-465. doi: 10.1890/04-0645.

Mauck, R.A., Dearborn, D.C., and Huntington, C.E. (2018). Annual global mean temperature explains reproductive success in a marine vertebrate from 1955 to 2010. Global Change Biology 24, 1599-1613. doi: 10.1111/gcb.13982.

Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., and Duputie, A. (2015). Predictive ecology in a changing world. Journal of Applied Ecology 52, 1293-1310. doi: 10.1111/1365-2664.12482.

Myers, R.A. (1998). When do environment-recruitment correlations work? Reviews in Fish Biology and Fisheries 8, 285-305. doi: 10.1023/A:1008828730759.

 

Ecology as a Contingent Science

The Northern Hemisphere is working through a summer of very warm weather, often temperatures 10ºC above ‘normal’. Climate change should in these conditions be obvious to all. Yet despite these clear changes, all the governments of developed countries – including Canada, USA, Australia, Britain – are doing next to nothing about the causes of climate change. This bald statement will lead to a lot of noise about “all we are now doing…”, a carbon tax promoted loudly but that is so low it can have little effect on emissions, and endless talk in the media about “sustainable practices” that are far from sustainable. Why should this be? There are many reasons and I want to discuss just one that pertains to the science of ecology.

Imagine that you are a physicist or chemist and are studying a physical or chemical problem in a lab in Germany and one in Canada. You would expect to get exactly the same experimental results in the two labs. The laws of chemistry and physics are universal and there would be consternation if results differed by geographical locations. Now transform this thought experiment to ecology. You might expect the converse for ecological experiments in the field, and there is much discussion of why this occurs (Brudvig et al. 2017, Marino et al. 2018, Zhou and Ning 2017). We need to think more about why this should be.

First, we might suspect that the ecological conditions are variable by place. The soils of Germany or France or New York or Vietnam differ in composition. The flora and fauna vary dramatically by site even within the same country. The impacts of human activities such as agriculture on the landscape vary by area. Climates are regional as well as local. Dispersal of seeds is not a uniform process. All these things ecologists know a great deal about, and they provide a rich source of post-hoc explanations for any differences. But the flip side is that ecology does not then produce general laws or principles except very general ones that provide guidance but not predictive models useful for management.

This thought leads me back to the general feeling that ecology is not categorized as a hard science and is thus often ignored. Ecologist have been pointing out many of the consequences of climate change for at least 30-40 years with few people in business or local political power listening. This could simply be a consequence of the public caring about the present but not about the future of the Earth. But it might be partly the result of ecology having produced no generality that the public appreciates, except for the most general ecological ‘law’ that “Mother Nature takes care of itself”, so we the public have little to be concerned about.

The paradigm of stability is deeply embedded in most people (Martin et al. 2016), and we are in the process of inventing a non-equilibrium ‘theory’ of ecology in which the outcome of ecological processes leads us into new communities and ecosystems we can only scarcely imagine and certainly not predict clearly. Physicists can predict generally what a future Earth climate with +2ºC or + 4ºC will entail (IPCC 2013, Lean 2018), but we cannot do this so readily with our ecological knowledge.

Where does this get us? Ecology is not appreciated as a science, and thus in the broad sense not funded properly. Ecologists fight over crumbs of funding even to monitor the changes that are occurring, and schemes that might alleviate some of the major effects of climate change are not tested because they are expensive and long-term. Ecology is a long-term science in a world that is increasingly short-term in thinking and in action. Perhaps this will change but no politician wants to wait 10-20 years to see if some experimental procedure works. Funding that is visionary is stopped after 4 years by politicians who know nothing about the problems of the Earth and sustainability. We should demand a politics of sustainability for our future and that of following generations. Thinking long-term should be a requirement not an option.

Brudvig, L.A., Barak, R.S., Bauer, J.T., Caughlin, T.T., and Laughlin, D.C. (2017). Interpreting variation to advance predictive restoration science. Journal of Applied Ecology 54, 1018-1027. doi: 10.1111/1365-2664.12938.

Chapman, M., LaValle, A., Furey, G., and Chan, K.M.A. (2017). Sustainability beyond city limits: can “greener” beef lighten a city’s Ecological Footprint? Sustainability Science 12, 597-610. doi: 10.1007/s11625-017-0423-7.

IPCC (2013) ‘IPCC Fifth Assessment Report: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, U.K.) http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf

Lean, J.L. (2018). Observation-based detection and attribution of 21st century climate change. Wiley Interdisciplinary Reviews. Climate Change 9, e511. doi: 10.1002/wcc.511.

Marino, N.A.C., Romero, G.Q., and Farjalla, V.F. 2018. Geographical and experimental contexts modulate the effect of warming on top-down control: a meta-analysis. Ecology Letters 21, 455-466. doi: 10.1111/ele.12913.

Martin, J-L., Maris, V., and Simberloff, D.S. (2016). The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences 113, 6105-6112. doi: 10.1073/pnas.1525003113.

Zhou, J. and Ning, D. (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81, e00002-00017. doi: 10.1128/MMBR.00002-17.