Monthly Archives: September 2016

What Can Ecologists Do?

For about 40 years many ecologists as well as other scientists have reported on the consequences of climate change. In recent years there has been more and more public awareness of the problems associated with changing climate. But there it all seems to stop. Jobs and dollars trump everything in the western world. I sit today listening to the Federal Government in Canada approving a very large export agreement for liquefied natural gas (LNG) on the central west coast of British Columbia. The gas will be largely obtained by fracking and in spite of the fact that the shipping point is near the mouth of one of the largest salmon rivers on the west coast, and requires a long pipeline to deliver the gas with all its problems, the report of the government states that this development will have no harmful effects on the environment. The perception that burning natural gas is somehow good for the environment boggles my mind. You have heard all of this kind of discussion many times before I am sure.

Yet as far as we can tell these are not evil people who are approving these developments but their decisions are so far away from scientific reality that one can only wonder what drives this current economic system. There are several competing hypotheses. (1) Climate change is not a problem and is not caused by human actions releasing greenhouse gases. This is not believable if scientific evidence is given any credibility. So we need a better excuse for our current myopia. (2) The problems of climate change are so uncertain and far into the distant future so that it is not our job to be concerned about action now. (3) We should take action now but if we do it will disrupt the global economy too much to contemplate. Taxes will have to increase. (4) Much money can be made by these enterprises and this will allow western countries to develop technologies that will remove carbon from the atmosphere, so all will be well in the future. (5) A price can be set on carbon so that business as usual under a carbon price will take care of the problem. The market will take care of us.

Take your pick on these last 4 excuses, but as an ecologist I cannot buy any of them. Clearly I am not a social scientist or an economist, and consequently have little understanding of how all of this proceeds and how the continued nonsense of business as usual is reported on much of the media as though this is the only way forward. The disconnect between what the educated public believes and what the government and business economists push has never been more serious. Perhaps the dominant view of many people is that we have always managed to muddle through in the past, and so this is a minor issue that we will overcome as usual by some kind of technological fix. And it is a long term problem, and I will not be here in the long term.

What can we ecologists do? Teach, report, communicate to the wider public via social media or traditional media, and hope that progress in understanding will finally take hold. Set an example, and hope that we can turn this juggernaut around. David Suzuki and Bill McKibben and many others are doing this. As an army dedicated to peace we can move forward and hope for wisdom to prevail.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences 280(1754): 20122845. doi: 10.1098/rspb.2012.2845.

Ehrlich, P.R., and Ehrlich, A.H. 2013. Future collapse: how optimistic should we be? Proceedings of the Royal Society B: Biological Sciences 280(1767): 20131373. doi: 10.1098/rspb.2013.1373.

Kelly, M.J. 2013. Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich. Proceedings of the Royal Society B: Biological Sciences 280(1767). doi: 10.1098/rspb.2013.1193.

McKibben, B. 2013. Oil and Honey: The Education of an Unlikely Activist. Henry Holt and Company, New York. 257 pp.  ISBN: 978-08050-9284-4

A Modest Proposal for a New Ecology Journal

I read the occasional ecology paper and ask myself how this particular paper ever got published when it is full of elementary mistakes and shows no understanding of the literature. But alas we can rarely do anything about this as individuals. If you object to what a particular paper has concluded because of its methods or analysis, it is usually impossible to submit a critique that the relevant journal will publish. After all, which editor would like to admit that he or she let a hopeless paper through the publication screen. There are some exceptions to this rule, and I list two examples below in the papers by Barraquand (2014) and Clarke (2014). But if you search the Web of Science you will find few such critiques for published ecology papers.

One solution jumped to mind for this dilemma: start a new ecology journal perhaps entitled Misleading Ecology Papers: Critical Commentary Unfurled. Papers submitted to this new journal would be restricted to a total of 5 pages and 10 references, and all polemics and personal attacks would be forbidden. The key for submissions would be to state a critique succinctly, and suggest a better way to construct the experiment or study, a new method of analysis that is more rigorous, or key papers that were missed because they were published before 2000. These rules would potentially leave a large gap for some very poor papers to avoid criticism, papers that would require a critique longer than the original paper. Perhaps one very long critique could be distinguished as a Review of the Year paper. Alternatively, some long critiques could be published in book form (Peters 1991), and not require this new journal. The Editor of the journal would require all critiques to be signed by the authors, but would permit in exceptional circumstances to have the authors be anonymous to prevent job losses or in more extreme cases execution by the Mafia. Critiques of earlier critiques would be permitted in the new journal, but an infinite regress will be discouraged. Book reviews could be the subject of a critique, and the great shortage of critical book reviews in the current publication blitz is another aspect of ecological science that is largely missing in the current journals. This new journal would of course be electronic, so there would be no page charges, and all articles would be open access. All the major bibliographic databases like the Web of Science would be encouraged to catalog the publications, and a doi: would be assigned to each paper from CrossRef.

If this new journal became highly successful, it would no doubt be purchased by Wiley-Blackwell or Springer for several million dollars, and if this occurred, the profits would accrue proportionally to all the authors who had published papers to make this journal popular. The sale of course would be contingent on the purchaser guaranteeing not to cancel the entire journal to prevent any criticism of their own published papers.

At the moment criticism of ecological science does not occur for several years after a poor paper is published and by that time the Donald Rumsfeld Effect would have occurred to apply the concept of truth to the conclusions of this poor work. For one example, most of the papers critiqued by Clarke (2014) were more than 10 years old. By making the feedback loop much tighter, certainly within one year of a poor paper appearing, budding ecologists could be intercepted before being led off course.

This journal would not be popular with everyone. Older ecologists often strive mightily to prevent any criticism of their prior conclusions, and some young ecologists make their career by pointing out how misleading some of the papers of the older generation are. This new journal would assist in creating a more egalitarian ecological world by producing humility in older ecologists and more feelings of achievements in young ecologists who must build up their status in the science. Finally, the new journal would be a focal point for graduate seminars in ecology by bringing together and identifying the worst of the current crop of poor papers in ecology. Progress would be achieved.

 

Barraquand, F. 2014. Functional responses and predator–prey models: a critique of ratio dependence. Theoretical Ecology 7(1): 3-20. doi: 10.1007/s12080-013-0201-9.

Clarke, P.J. 2014. Seeking global generality: a critique for mangrove modellers. Marine and Freshwater Research 65(10): 930-933. doi: 10.1071/MF13326.

Peters, R.H. 1991. A Critique for Ecology. Cambridge University Press, Cambridge, England. 366 pp. ISBN:0521400171

 

Climate Change and Ecological Science

One dominant paradigm of the ecological literature at the present time is what I would like to call the Climate Change Paradigm. Stated in its clearest form, it states that all temporal ecological changes now observed are explicable by climate change. The test of this hypothesis is typically a correlation between some event like a population decline, an invasion of a new species into a community, or the outbreak of a pest species and some measure of climate. Given clever statistics and sufficient searching of many climatic measurements with and without time lags, these correlations are often sanctified by p< 0.05. Should we consider this progress in ecological understanding?

An early confusion in relating climate fluctuations to population changes was begun by labelling climate as a density independent factor within the density-dependent model of population dynamics. Fortunately, this massive confusion was sorted out by Enright (1976) but alas I still see this error repeated in recent papers about population changes. I think that much of the early confusion of climatic impacts on populations was due to this classifying all climatic impacts as density-independent factors.

One’s first response perhaps might be that indeed many of the changes we see in populations and communities are indeed related to climate change. But the key here is to validate this conclusion, and to do this we need to talk about the mechanisms by which climate change is acting on our particular species or species group. The search for these mechanisms is much more difficult than the demonstration of a correlation. To become more convincing one might predict that the observed correlation will continue for the next 5 (10, 20?) years and then gather the data to validate the correlation. Many of these published correlations are so weak as to preclude any possibility of validation in the lifetime of a research scientist. So the gold standard must be the deciphering of the mechanisms involved.

And a major concern is that many of the validations of the climate change paradigm on short time scales are likely to be spurious correlations. Those who need a good laugh over the issue of spurious correlation should look at Vigen (2015), a book which illustrates all too well the fun of looking for silly correlations. Climate is a very complex variable and a nearly infinite number of measurements can be concocted with temperature (mean, minimum, maximum), rainfall, snowfall, or wind, analyzed over any number of time periods throughout the year. We are always warned about data dredging, but it is often difficult to know exactly what authors of any particular paper have done. The most extreme examples are possible to spot, and my favorite is this quotation from a paper a few years ago:

“A total of 864 correlations in 72 calendar weather periods were examined; 71 (eight percent) were significant at the p< 0.05 level. …There were 12 negative correlations, p< 0.05, between the number of days with (precipitation) and (a demographic measure). A total of 45- positive correlations, p<0.05, between temperatures and (the same demographic measure) were disclosed…..”

The climate change paradigm is well established in biogeography and the major shifts in vegetation that have occurred in geological time are well correlated with climatic changes. But it is a large leap of faith to scale this well established framework down to the local scale of space and a short-term time scale. There is no question that local short term climate changes can explain many changes in populations and communities, but any analysis of these kinds of effects must consider alternative hypotheses and mechanisms of change. Berteaux et al. (2006) pointed out the differences between forecasting and prediction in climate models. We desire predictive models if we are to improve ecological understanding, and Berteaux et al. (2006) suggested that predictive models are successful if they follow three rules:

(1) Initial conditions of the system are well described (inherent noise is small);

(2) No important variable is excluded from the model (boundary conditions are defined adequately);

(3) Variables used to build the model are related to each other in the proper way (aggregation/representation is adequate).

Like most rules for models, whether these conditions are met is rarely known when the model is published, and we need subsequent data from the real world to see if the predictions are correct.

I am much less convinced that forecasting models are useful in climate research. Forecasting models describe an ecological situation based on correlations among the measurements available with no clear mechanistic model of the ecological interactions involved. My concern was highlighted in a paper by Myers (1998) who investigated for fish populations the success of published juvenile recruitment-environmental factor (typically temperature) correlations and found that very few forecasting models were reliable when tested against additional data obtained after publication. It would be useful for someone to carry out a similar analysis for bird and mammal population models.

Small mammals show some promise for predictive models in some ecosystems. The analysis by Kausrud et al. (2008) illustrates a good approach to incorporating climate into predictive explanations of population change in Norwegian lemmings that involve interactions between climate and predation. The best approach in developing these kinds of explanations and formulating them into models is to determine how the model performs when additional data are obtained in the years to follow publication.

The bottom line is to avoid spurious climatic correlations by describing and evaluating mechanistic models that are based on observable biological factors. And then make predictions that can be tested in a realistic time frame. If we cannot do this, we risk publishing fairy tales rather than science.

Berteaux, D., et al. (2006) Constraints to projecting the effects of climate change on mammals. Climate Research, 32, 151-158. doi: 10.3354/cr032151

Enright, J. T. (1976) Climate and population regulation: the biogeographer’s dilemma. Oecologia, 24, 295-310.

Kausrud, K. L., et al. (2008) Linking climate change to lemming cycles. Nature, 456, 93-97. doi: 10.1038/nature07442

Myers, R. A. (1998) When do environment-recruitment correlations work? Reviews in Fish Biology and Fisheries, 8, 285-305. doi: 10.1023/A:1008828730759

Vigen, T. (2015) Spurious Correlations, Hyperion, New York City. ISBN: 978-031-633-9438