Category Archives: Political Ecology

Bill 24 – A threat to biodiversity and ecosystems associated with agriculture in BC

Bill 24 – a threat to biodiversity and ecosystems associated with agriculture in BC

buse 2010Agriculture has often been viewed as a threat to natural environments. This is clearly the case when forests are cut down to create pastures for grazing animals or fields for high value crops.  However, in a world already greatly manipulated by human activities, agricultural areas have increased in significance as refuges for organisms ranging from wildlife, birds, insects, plants, and soil microbes.  In addition agricultural lands can preserve wetlands, riparian habitats, streams, wind breaks and patches of forest.  These habitats and the organisms that dwell there benefit the agricultural industry and society in general by providing healthy, functioning ecosystems both on and adjacent to agriculture.

In British Columbia Canada, agricultural lands have been protected to some degree since 1973 by the Agricultural Land Reserve administered by the Agricultural Land Commission. Approximately 47,000 sq. km have been preserved for agricultural use either now or in the future. It has been a continual battle over the years to prevent lands from being removed from the land reserve and large tracts have been used in land claim settlements with First Nations and for a variety of development projects.  For the latter, the claim has been made that the land under contention is not sufficiently high quality for agriculture or the need for economic development is greater than the need for food security

A new threat to the ALR is currently before the BC Legislature, Bill 24.  The proposed act will make it easier for many non-agricultural uses to be developed on agricultural lands. It will seriously change the operation of the Agricultural Land Commission, and will allow changes in the classification of Agricultural lands to occur without a transparent, public process based on sound, scientifically derived information. This bill is deeply flawed and threatens the sustainability and security of agricultural production. It puts the survival of many species and ecosystems at risk. It is particularly ill timed as the future of agriculture will be greatly changed as the climate continues to warm and northern areas become more suitable for crops.

A number of ecologists have voiced their concerns about the impact of this proposed bill in a letter to Primer Christy Clark.  Their concerns are not only about the impacts on the sustainability of the agricultural industry, but also about the enormous threats to biodiversity, species at risk and the functioning ecosystems in British Columbia that would follow the reduction of the Agricultural Land Reserve. This letter is copied below.

From: The undersigned concerned scientist and naturalists

To: Premier Christy Clark

PO BOX 9041
STN PROV GOVT
VICTORIA, BC
V8W 9E1

Dear Premier Clark,

The British Columbia Government’s recently proposed changes to the Agriculture Land Commission (the Commission) Act greatly concerns many scientists for three reasons.

First, the revised changes to the governance and decision-making structure of the Commission reduces the ability for science to inform land use decisions. Second, the shift to divide the decision-making process regarding land classification into southern and interior zones will increase pressure to remove land from the reserve at a cost to the general good. And finally, the rationale for the division of the province into two jurisdictions, based simply on the value of the crops, overlooks the importance of other values associated with agricultural lands such as habitat for wildlife, endangered species, and contributions to ecosystem services.

Agricultural lands that occur in all regions of the province hold many values other than simply crop production. These areas contain wetlands, streams, ponds, riparian areas, woodlands, hedgerows, and uncultivated grasslands that are either adjacent to or integral to farm operations. These areas are instrumental in protecting functioning healthy ecosystems and in many cases, these diverse services help boost agricultural production. Many of the ecosystems encompassed by the Agricultural Land Reserve are rare in British Columbia and they provide habitat for a number of the Province’s most threatened or endangered species such as the burrowing owl, American badger, yellow-breasted chat, sage thrasher, Nooksack dace, and west slope cutthroat trout.  Other more common species that occur on Agricultural Land Reserve land are integral to agricultural production. These species range from soil microbes that sequester carbon below pasturelands, to birds such as the western meadowlarks, swallows, and common nighthawks whose populations are already declining. Species prized for hunting such as deer and elk also use so called marginal agricultural lands.  These species decline when agricultural lands are removed from production, marginal lands are converted to more intensive uses, or nonagricultural developments are permitted on agricultural lands. Allowing more nonagricultural uses on ALR land and the release of more lands from reserves will have the unintended consequence of threatening many important ecosystems and, by extension, many valuable species including species-at-risk.

Changing the current structure of the Commission to one that does not incorporate scientifically-derived information is deeply-flawed. Additionally, making changes to such an important piece of provincial legislation without consultation with the public, the agricultural industry, or scientists in general prevents relevant information and viewpoints to factor into informed decision-making. Allowing the agricultural industry to move forward with alternatives that incorporate science-based decision making within the current legislative framework are valid alternatives to altering the current reserve framework. These and other options should be explored because failing to incorporate alternate view points and scientifically derived information into the Commissions’ decision-making framework threatens the health of British Columbia’s ecosystems and endangers its biodiversity. The lack of a process to access and incorporate science-based information into the proposed framework threatens the biodiversity of British Columbia’s ecosystems and the sustainability and security of agricultural production in a changing climate.

We call upon the government of British Columbia to include scientifically derived information in the evaluation of the impacts of changes to Agricultural Land Reserve that may impact the health of British Columbia’s ecosystems and species at risk.

Sincerely,

The undersigned concerned scientists and naturalists

Authors

William Harrower RP Bio, PhD Candidate UBC

Judith Myers Professor Emeritus UBC

Sarah Otto, Fellow Royal Society of Canada, Director of Biodiversity Research Centre, Professor, UBC

Eric Taylor, Director Beaty Biodiversity Museum, Professor UBCElizabeth Kleynhans PhD Candidate UBC

 

 

Signatories

 

Angert Amy, Canada Research Chair in Conservation Ecology, Assistant Professor, University of British Columbia
Arcese Peter, FRBC Chair in Applied Conservation Ecology, Professor, University of British Columbia
Baker Sandra, Senior Environmental Assessment Specialist, RP Bio, n/a
Baute Gregory J. , PhD Candidate, University of British Columbia
Bears Heather, Wildlife Ecologist, PhD, Zoetica Wildlife Research Services
Bestbier Regina, Research Assistant, University of British Columbia
Beyers Rene, Associate Researcher, University of British Columbia
Bomke Art, Professor Emeritus, University of British Columbia
Bradfield Gary, Associate Professor, University of British Columbia
Brotz Lucas, PhD Student, University of British Columbia
Bunnell Fred, Professor Emeritus, University of British Columbia
Burton Philip J., NW Regional Chair, Associate Professor, UNBC
Burton Carla, Phd, Symbios Research and Restoration
Byers Sheila, Registered Professional Biologist, Beaty Biodiversity Museum
Cannings Richard, Senior Programs Biologist, Bird Studies Canada
Carefoot Tomas, Professor Emeritus, University of British Columbia
Christensen Villy, Professor, University of British Columbia
Clark Trisha, Research Technician, University of British Columbia
Cockle Kristina, NSERC Post-doctoral Fellow, Louisiana State University
Cooke James, Lecturer, University of British Columbia
Couch Brett, Instructor, University of British Columbia
Cumming Preston, Post-Doctoral Fellow, University of British Columbia
Davis Helen, Senior Wildlife Biologist, Artemis Wildlife Consultants
Doebeli Michael, Fellow of American Association for the Advancement of Science, Professor, University of British Columbia
Durand Ryan, Senior Ecologist, RP Bio. , Durand Ecological Ltd.
Dykstra Pamela, Master of Resource Management, RP Bio, PR Dykstra & Associates Resource Management Ltd.
Enns Katherine, MSc RP Bio., Delphinium Holdings Inc. (formerly Larkspur Biological Consultants Ltd.)
Fenneman James D., PhD Candidate, University of British Columbia
Fraser Lauchlan, Professor, Thompson Rivers University
Frid Leonardo, Systems Ecologist, Apex Resource Management Solutions Ltd.
Gibeau Pascale, RP Bio. PhD Student, Simon Fraser University
Gillis Elizabeth, Professor, Vancouver Island University
Gosselin Louis, Associate Professor, Thompson Rivers University
Hackinen Alisha, MSc Student, University of British Columbia
Halsey T. Gordon
Harrison Bruce, Registered Professional Biologist, Independent Practicing Biologist
Hauert Christoph , Associate Professor, University of British Columbia
Hehenberger Elisabeth, Post-Doctoral Fellow, University of British Columbia
Henry Greg, Professor, University of British Columbia
Hill Ryan, Professional Biologist, Azimuth Consulting Group Partnership
Hodges Karen, Associate Professor, University of British Columbia
Hoffos A Robin, Naturalist, Citizen
Houde Isabelle, MSc. RP Bio, Association of Professional Biology
Irwin Darren, Associate Professor, University of British Columbia
Javney Mohr Carmelle, Junior Fellow, The Chester Ronning Centre for the Study of Religion & Public Life
Jose Mereno Geraldes Armando, Research Associate, University of British Columbia
Kaytor Benita, MSc student, UNBC
Kerry Mara, Director of Science and Policy, David Suzuki Foundation
Koot Cathy, Research Coordinator, RP Bio, University of British Columbia
Krzic Maja, Professor, University of British Columbia
Ladell Jason, Registered Professional Biologist, Independent Practicing Biologist
Larsen Karl, Professor, Thompson Rivers University
Latimer Susan, Registered Professional Biologist, Independent Practicing Biologist
Lawson Julia, MSc student, University of British Columbia
Le Renard Ludovic, PhD Candidate, University of British Columbia
Leathem Jamie, MSc student, University of British Columbia
Leduc-Robert Genevieve, MSc student, University of British Columbia
Leering Gerry, Registered Professional Biologist, past President, Association of Professional Biology
Lehmann Crysta, n/a, University of British Columbia
Leskiw Leonardo, Senior Soil Scientist, Paragon Soil and Environmental Consulting
Letaw Alathea, PhD Candidate, University of British Columbia
Lewis Alan, Professor Emeritus, University of British Columbia
Lin Sherry, University of British Columbia
Lion Christine, Environmental Scientist, Stantec
Lussier Jason, University of British Columbia
Machmer Marlene M., Registered Professional Biologist, Pandion Ecological Research Ltd.
Mahon Todd, Wildlife Ecologist, RP Bio, Wildfor Consultants Ltd
Martone Patrick T., Associate Professor, University of British Columbia
Matthewson Lisa, Professor Emeritus, University of British Columbia
McCune Jenny L, Liber Ero Postdoctoral Fellow, University of Guelph
McGrath Kate , student, University of British Columbia
Millen Sandra, Sr. Instructor Emerita, University of British Columbia
Mobach Annmarie, self-employed
Moore Jonathan, Liber Ero Chair of Coastal Science and Management, Assistant Professor, Simon Fraser University
Morien Evan, Bioinformatician, MSc, University of British Columbia
Mosquin Daniel, Research Manager, University of British Columbia
Moyers Brook, PhD Candidate, University of British Columbia
Neill William E., Professor Emeritus, University of British Columbia
Neville John, President, BC Nature (Federation of BC Naturalists)
Osmond Matthew, PhD Candidate, University of British Columbia
Pollock Carol, Director of 1st Year Biology, Professor of Teaching, University of British Columbia
Power Damian, Registered Professional Biologist, Wolfhound Wildlife Services
Rahme Ann, Biologist, Fisheries and Oceans Canada
Reid Anya, PhD Student, University of British Columbia
Rieseberg Loren, Professor, University of British Columbia
Rodgers Thea, student, University of British Columbia
Rogic Sanja, Research Associate, Center for High-Throughput Sequencing
Rudman Seth, PhD Candidate, University of British Columbia
Ruskey Jennifer, MSc student, University of British Columbia
Salomon Anne, Assistant Professor, Simon Fraser University
Samuels Lacey, Botany Department Head, Professor, University of British Columbia
Scholer Micah, PhD Candidate, University of British Columbia
Seghers Ben, Lecturer (retired), Oxford
Shartau Ryan, PhD Candidate, University of British Columbia
Siegle Matthew, PhD Candidate, University of British Columbia
Smith Jackie, Senior Manager, RP Bio. P Ag., SLR Consulting Ltd
Snyder Joan, PhD, RP Bio. , Retired
Soto Marybel, MSc Student, University of British Columbia
Stafl Natalie, MSc Student, University of British Columbia
Starzomski Brain, Assistant Professor, University of Victoria
Steele Fiona, Senior Biologist, Diamond Head Consulting Ltd.
Suarez Adriana, PhD Candidate, University of British Columbia
Sullivan Tomas, Professor, University of British Columbia
Thiel Bryanna, MSc student, University of British Columbia
Thorley Joseph, PhD, RP Bio. , Poisson Consulting
Tonya Ramey, PhD Candidate, University of British Columbia
Turkington Roy, Professor, University of British Columbia
Wang Jessie, student, University of British Columbia
Wellwood Debbie, Wildlife Ecologist, RPBio, Raven Ecological Services
Werring John, Senior Science and Policy Advisor, MSc. RP Bio., David Suzuki Foundation
William Ramey, Professor of Teaching, University of British Columbia
Williams Jennifer, Assistant Professor, University of British Columbia
Worcester Robyn, Conservation Programs Manager, Stanley Park Ecology Society
Xue Xinxin, PhD Candidate, University of British Columbia
Zevit Pamela , Registered Professional Biologist, Adamah Consultants

 

 

 

Research funding for women

NSERC funding by gender

Success rates are similar, but women still get less

Judith Myers UBC

NSERC has over the years provided data on request for the Discovery Grant Program for Ecology and Evolution broken down by both gender and different categories of applicants, eg. established, new first renewals etc.  In 2008, I summarized these data for presentation at the Canadian Coalition of Women in Science, Engineering, Trades and Technology (CCWESTT). This can be found as “NSERC Discovery Grant Statistics for males and females 2002 – 2008 at http://ww.ccwestt.org/Home/tabid/36/Default.aspx. That analysis showed a consistent trend for women to receive smaller grants than men with the exception of new applicants in 2007 and 2008 for which grants for women were larger.

Here, I analyze the NSERC data from 2009 and 2013. I show that success rates for grant applications are similar between men and women; however, the trend for women to receive lower grant funding on average continues.

Figure 1

Figure 1. Proportion applicants successful in 2009 and 2013 competitions.  Numbers of applicants are given in the legend. “Renewal” is first time renewal and “first” includes those applying for the first time and applicants that were previously unsuccessful in their first attempt.  Horizontal lines indicate overall average success rate, 73% in 2009 and 63% in 2013. Number of applicants is at the top of the bar.

Figure 1 shows that the overall success rate in 2013 is approximately 10% lower than in 2009, the successes of males and females are similar, and the success rate across categories is similar although first renewal success is lower and is lowest for females. Given the importance of this stage for the establishment of the future careers of these applicants this trend is of concern.

Figure 2 nserc

Figure 2. Average grants of different categories of applicants for NSERC Discovery Grants in 2009 and 2013.  The horizontal line indicates the overall average grants grant size, $33 351 (grants $5028 less for females than males) in 2009 and $31 828 ($6650 less for females than males) in 2013.

Figure 2 shows that the trend seen in earlier data continues with grants of males being larger than those of females by a substantial amount.  A factor here is that there are no female high fliers who have substantially larger grants than the average, and overall median grants are about the same for males and females. I have not taken accelerator grants into consideration here.

Given that females are on average receiving approximately $6500 less than their male colleagues, it would be interesting to know how this is translated into productivity measured as the number of publications in one year.  For an indication of how publications relate to grant sizes, I selected individuals from the NSERC results for 2013 taking from a range of grant sizes but including those with the largest grants and a sampling from the lower grant sizes.  I then used Web of Science to determine the number of publications for the year 2012-2013 for each chosen individual.

Figure 3 nserc

Figure 3. Size of grant awarded in 2013 and number of publications in 2012-2013 for an arbitrary sample of grantees. Neither relationship is significant, but that for males is influenced by the high publication number for two of the male “high fliers”.

The lack of relationship between yearly publication rates and grant size shows that productivity does not relate strongly to funding success. No female received a grant of more than $50 000 in 2013 so the range of the data is less for them.  For males, high publication numbers for two “high fliers” cause a weak upward trend in the relationship of publications to funding, but average publication numbers for four “high fliers” pulls this relationship down.  For these selected data the average number of publications for males was 10.5 and for females 9.1.  Removing the data for “high fliers” in the male data sets results in a slightly higher grant size for males than for females but only 7 publications on average for males compared to 9 for females for similar funding levels. Although this is a small and selected data set, it likely reflects the overall pattern for little relationship between grant size and publication numbers.  Similarly Lortie et al. 2012 (Oikos 121: 1005–1008) found that for the mostly highly-funded North American ecologists and environmental scientists, citations per paper were not related to increased levels of funding although for NSERC funded researchers there was a weak relationship. Fortin and Currie (2013) found that the number of papers, highest times cited, and number of high impact articles were only weakly related to NSERC funding levels for Animal Biology, Chemistry and Ecology and Evolution (PLOS ONE, DOI: 10.1371). Missing from these analyses are the data for individuals who receive no funding.  Thus the reduced proportion of successful renewals in the current funding environment, and the slightly reduced success of first time renewals are not reflected in these evaluations of research productivity. A recent study of global patterns of publications and citations shows that women publish less than men particularly in areas in which research is expensive, they are less likely to participate in international collaborations and are less likely to be first or last authors on papers (Larivière et al. 2013. Nature 504:211 – 213). There are many factors involved here.

We do not have data on HQP numbers, a metric that is heavily weighted in the NSERC Discovery Grant evaluation.  It is likely that the reduced funding level for females results in fewer HQP for them and this could have a strong impact on average funding from NSERC and publication numbers in the future.

In conclusion the new system of Discovery Grant evaluation appears to result in more similar levels of funding across categories but does not remove the bias towards larger grants on average for males. The impact on research productivity of the 37% of applicants that receive no funding as a result of the lower success rate is not easy to evaluate, but data do not support the hypothesis that higher funding for fewer individuals increases Canada’s research productivity.

Open Letter from a Scientist to a Bureaucrat

Let us assume for the moment that I am a scientist who has worked in a government research organization for 25 years under a series of bureaucrats. I have just retired and the object of this letter is to tell a bureaucrat what is good and what is bad about the bureaucratic government system. If you work in a perfect government system, perhaps you do not need to read further.

Dear Sir/Madam:

I would like to offer you some free advice that comes from a scientist who has worked in government for many years. This is presumptuous to be sure in light of our relative positions, but I feel you might benefit from some notes from the trenches.

First, science should never be organized in a top-down manner. We ecologists know about trophic cascades and the consequences it has for the lower trophic levels. You should not tell us what to do because you know nothing about the subject matter of the science, in this case ecology. I note especially that an MBA does not confer infinite wisdom on science matters. So I suggest you consider organizing things bottom-up. Your job is to provide scientists with the technical support, the funding, and the facilities to do their work. I note that this does not preclude you providing us with general areas of science in which we are expected to do our research. If our general position is to study the effectiveness of pollination in California crops, you should not tolerate us going to Africa to study elephant ecology. We appreciate that the government has at least some general ideas of what is critical to study. If they do not, it would be advisable to gather a group of scientists to discuss what the critical problems are in a particular area of science. Scientists do not work in closed rooms and do have a general understanding of what is happening in their field.

Second, do not muzzle us about anything scientific. We do not work for you or for the current government but we do work for the people of Canada or Australia or whatever country, and our mandate is to speak out on scientific questions, to provide evidence based policy guidance and to educate the public when errors are promulgated by people who know nothing about what they speak. This could well include government ministers who are known at least on occasion to utter complete nonsense. Our job is not to support the government’s policies of the day but to provide evidence about scientific questions. In general we scientists do not see government ministers crying out that they know more about brain surgery than trained doctors, so we think the same attitude ought to be taken toward ecologists.

Third, ask your scientists about the time frame of their scientific studies. Most bureaucrats seem to think that, since the world was created in 7 days, scientific work ought to take no more than a year or two or perhaps three. We would like to tell you that many, perhaps most, important ecological questions involve a time frame of 10 years or more, and some require continuous funding and support for periods in excess of 50 years. You apparently did not ask medical scientists to stop working on cancer or malaria after 3 years or even 50 years, so we are uncertain why ecologists should be kept to short time frames for their research. Ecological research is perhaps the most difficult of all the sciences, so if we do not find answers in a few years it is not because we are not working hard enough.

Finally, ask your scientists to publish in national and international journals because that is the corner stone for judging scientific progress. We do not mind having rules about rates of publication. And as a spur please fund your scientists to go to scientific meetings to present their results to the scientific world. And have them communicate to the public what they are doing and what they have found. After all the public pays, so why should they not hear about what has come of their tax dollars.

Your job, in a nutshell, is to support your scientists not to hinder them, to encourage their work, and to speak to the higher levels of government about why funding science is important. And to (at least on occasion) protest about government policies that are not based on scientific evidence. If you are successful in all of this, the people of your country will be the better for it. On the other hand, you may be headed for early retirement if you follow my advice.

I wish you success.

Sincerely yours,

A.B.C. Jones PhD, DSc, FRS, FAA
Retired

Should All Ecologists Become Social Scientists or Politicians?

Two items this week have stirred me to write about the state of ecology. The first was a talk by an eminent biologist, who must remain nameless, about how scientists should operate. All very good, we should be evidence-based, open to falsification of hypotheses, and we should work as best we can to counter media misinformation. He/she talked about the future of biology in optimistic terms and in the entire one hour talk the word ‘biodiversity’ occurred once and the word ‘environment’ once. So my conclusion was that to this eminent biologist ecology was not on the radar as anything very important. We should be principally concerned about improving the health and wealth of humanity, and increasing economic growth.

This got me to thinking about why ecology falls at the bottom of the totem pole of science so that even though we work hard to understand the functioning of nature, ecologists seem to have value only to ourselves rather than to society. Perhaps society as a whole appreciates us for light entertainment about birds and bees, but when ecologists investigate problems and offer solutions they seem to be sidelined rapidly. Perhaps this is because taking care of the biosphere will cost money, and while we happily spend money on cars and new airplanes and guns, we can afford little for the natural world. One possible explanation for this is that many people and most politicians believe that “Mother Nature will take care of herself” at no financial cost.

If this is even partly correct, we need to change society’s view. There are several ways to do this, perhaps most importantly via education, but a more direct way is for ecologists to become social scientists and perhaps politicians. My experience with this recommendation is not terribly good. Social scientists have in my experience accomplished little for all their work on the human foibles of our time. Perhaps going into politics would be useful for our science if anyone wishes to cross that Rubicon, but there are few role models that we can put up.

So we continue in a political world where few ecologists sit in high places to challenge the modern paradigm of economic growth fuelled by non-renewable resources, and many of our national leaders see no human footprint on climatic warming. Short-term thinking is one element of this puzzle for we ecologists who take a longer view of life on Earth, but it must really rankle our paleo-ecologists who take a very long term look at changes in the Earth’s environment.

The second item this week that has encapsulated all of this was the announcement from a developed country that a new institute with over 1000 scientists was to be set up to study molecular biology for the improvement of human health. Now this is a noble cause that I do not wish to cast aspersions on, but it occurred to me that this was possibly a number greater than the total number of ecologists working in Canada or Australia or New Zealand. The numbers are hard to document, but I have not seen anything like this kind of announcement for a new institute that would address any of our many ecological problems. There is money for many things but very little for ecology.

None of this is terribly new but I am puzzled why this is the case. We live in a world of inequality in which the rich squander the wealth of the Earth while the future of the planet seems of little concern. Luckily ecologists are a happy lot once they get a job because they can work in the laboratory or in the field on interesting problems and issues (if they can get the money). And to quote the latest Nature (March 13, 2014, p. 140) “If ecologists want to produce work useful to conservation, they might do better to spend their days sitting quietly in ecosystems with waterproof notebooks and hand lenses, writing everything down.” That will cost little money fortunately.

Why I am Bored with Biodiversity and Ecosystem Services

Ecosystem services have become the flavour of the month and already it seems tired and bland.  “Biodiversity must be preserved for its ecosystem services” but making the tie between diversity and services has been elusive and will continue to be so. A body of literature has accumulated on the results of small-scale experiments in which plant diversity is manipulated and some service, let’s say productivity, is monitored. In some cases a relationship is found − more species more productivity; but not always. A rancher who wants to increase the productivity of her rangeland would be more inclined to plant to a monoculture of a highly productive grass. For example the introduced species, Crested Wheat Grass (Agropyron cristatum), was widely used in British Columbia in the early 20th century. Cheat grass (Bromus tectorum), another exotic species (if we are talking about North America) is expanding into rangeland and while it might increase the diversity, it reduces the productivity for forage.

Recently Mark Vellend (TREE 29(3): 138, March 2014) reviewed a book by Donald Maier, “What’s so Good about Biodiversity? A Call for Better Reasoning about Nature’s Value. “(Springer 2012). The take home message of this book is that the biodiversity−ecosystem services rationale for protecting biodiversity does not always hold and more species does not necessarily translate into more food or less disease.  It is time to get rid of platitudes and to confront our biases in a critical manner when it comes to biodiversity.

Further to this topic, in December 2013 the first meeting was held of the budding International Panel on Biodiversity and Ecosystem Services. It will focus on the following topics:

1) Task force on capacity building
2) Task force on indigenous and local knowledge systems
3) Task force on knowledge and data
4) Development of a guide to the production and integration of assessments from and across all levels
5) Assessment on pollination and pollinators associated with food production
6) Methodological assessment on scenario analysis and modeling of biodiversity and ecosystem services
7)  Methodological assessment on the conceptualization of values of biodiversity and nature’s benefits to people
8) Development of a catalogue of policy support tools and methodologies and providing guidance on how further development of such tools and methodologies could be promoted and catalyzed

Given the involvement of 115 countries it will be interesting to track the success of this panel.  Note that pollination and pollinators are identified as a specific ecosystem service. Critical experimental ecologists should be involved if this panel is to be productive in a meaningful way and, if not on the panel, they should track its progress and comment accordingly. Stay tuned for further updates.

10 Limitations on Progress in Ecology

Ecological science moves along slowly in its mission to understand how the Earth’s populations, communities, and ecosystems operate within the constraints of human impacts on the Biosphere. The question of the day is can we identify the factors currently limiting the rate of progress so that at least in principle we could speed up progress in our science. Here is my list.

1. A shortage of ecologists or more properly jobs for ecologists. In particular a scarcity of government agencies employing ecologists in secure jobs to work on stable, long-term environmental projects that are beyond the scope of university scientists. Many young ecologists of high quality are stalled in positions that are beneath their talents. We are in a situation similar to having highly trained medical doctors being used as hospital janitors. This is a massive failure on many fronts, regional and national, political and scientific. Many governments around the world think economists and lawyers are key while environmental scientists are superfluous.

2. The lack of proper funding from both government, private companies and private individuals. This is typified by the continual downsizing of government scientists working on natural resource problems – fisheries, wildlife, park management – and continuing political interference with scientific objectives. Private companies too often rely on taxpayers to fund their environmental investigations and do not view them as a part of their business model. Private citizens give money to medical research rather than to environmental programs largely based on the belief that of all the life on Earth, only the human component is important.

3. The deficiency of taxonomic expertise to define clearly the species that inhabit the Earth. The estimates vary but perhaps only 10% of the total biota can be given a Latin name and morphological description, leaving out for the moment all the bacteria and viruses. Equate this with having a batch of various shaped coins in your pocket with only a few of them giving the denomination. This problem has been identified for years with little action.

4. Given adequate taxonomy, the lack of adequate natural history data on most of the biota. This activity, so critical for all ecological science, was called “stamp collecting” and thus condemned to the lowest point on the scientific totem pole. The consequence of this is that we try to understand the Earth with data only on butterflies, some birds, and some large mammals.

5. A failure of ecologists to map out the critical questions facing natural populations, communities, and ecosystems on Earth. The roadmap of ecology is littered with wrecks of ideas once pushed to explain nearly everything, and we need a more nuanced map of what is a critical issue. There are a considerable number of fractures within the ecological discipline about what needs to be done, if people and money were available. This fosters the culture of I win = you lose in competition for money and jobs.

6. The confusion of mathematical models with reality. There is a strong disconnect between models and data that persists. Models rapidly proliferate, data are slow to accumulate, so we try to paper over the fragility of our understanding with mathematical wizardry, trying to be like physicists. Connecting model predictions with empirical data studies would go a long way to righting this problem but it is a tall order in a world that confuses the number of publications and h scores with important contributions.

7 The fact that too many ecologists do not adopt the scientific method of investigation, to carry out experiments with multiple alternative hypotheses with clear predictions. Arguments continue endlessly based on words (‘concepts’) that are so vaguely defined as to be meaningless operationally. If you need an example, think ‘stability’ or ‘diversity’. These vague words are then herded into pseudo-hypotheses to doubly confound the confusion over what the critical questions in ecology really are.

8. The need for ecologists to work in stable groups. Serious ecological problems demand expertise in many scientific specialities, and we need better mechanisms to foster and maintain such groups. The assessment of scientists on the basis of individual work is long out of date, the Nobel Prize is an anachronism, and we need strong groups concentrating on important issues for long term studies. At the moment many groups exist to do meta-analyses and fewer to do science.

9. Placing the technological horse in front of the ecological cart. Ecology like many sciences is often led by technology rather than by questions. The current DNA bandwagon is one example, but we should not get so confused to think that that most important questions in ecology are those that use the most technology. Jumping from one technological bandwagon to the next is a good recipe for minimizing progress.

10. The fractionation of ecology into subdisciplines and the assumption that the only important research work has been done since 2000. Aquatic ecologists do not talk to terrestrial ecologists, microbial ecologists live in their own special world, and avian ecologists do not talk to insect ecologists. The result is that the existing literature is too often wasted by investigators who have no idea that question XX has already been answered either in another subdiscipline or in existing literature from 50 years ago.

Not all of these limitations apply to every ecologist, and at best I would view them as a set of guideposts that need to be considered as we move further into the 21st century.

Krebs, C. J. 2006. Ecology after 100 years: progress and pseudo-progress. New Zealand Journal of Ecology 30:3-11.

Majer, J. D. 2012. Critical times: How has ecological research responded over the past 35 years? Austral Ecology 37:149-152.

Sutherland, W. J. et al. 2010. A horizon scan of global conservation issues for 2010. Trends in Ecology & Evolution 25:1-7.

Science and Money

Why do we the public support science? The general answer is that science produces products we like, improves our possibilities of a healthy life, and increases wealth. A less general answer is that science informs us about how the Earth works and how the Earth fits into the universe. Most people would agree that science should not provide us with ethical judgments or define good and evil. The result of this dichotomy between science and ethics in the broad sense is that scientists live in a divided world. Each scientist has definite views on what is good for society and what is evil, and these views can differ among scientists in different cultures. But as a scientist he or she cannot use scientific information to define good and evil and therefore to advise governments about what actions to take in particular problems. All this is very vague until you bring it into the arguments of our time – abortion, gay marriage, the death penalty for criminals, nuclear power, fish farming in the ocean, tar-sands oil, fracking – the list goes on.

Scientific information is vital to the decisions made on all these issues. Consider fracking for oil and gas. One scientific question is: Does fracking contaminate the water table? Does fracking release the greenhouse gas methane to the atmosphere? Given adequate scientific information, governments and the public may support or ban fracking, and to support or ban is not a scientific issue but an ethical one. Public opinion of course is affected by scientific findings, and the job of the scientist is to make these findings precise and accurate. But to do that requires money.

The result of all this is that governments and the public have developed a ranking system of the sciences. At the top of the totem pole are physics and chemistry (and their associated engineering sciences) because their findings and products are typically thought to be very useful – cars, computers, IPhones, medical drugs. Not only are they useful but they make lots of money for many people. Geology is also somewhere near the top of the pole because it produces oil and minerals, but suffers somewhat from being responsible for earthquakes and tsunamis. Somewhat lower on the totem pole are the biological sciences. Molecular biology is closely akin to chemistry and offers medical promises so it is high on the totem pole. Biochemistry and physiology follow closely, but they are somewhat suspect unless they promise that their results can be applied to human wellbeing. Near the bottom of the totem pole are the ecologists who describe how the web of life works on Earth and how it has been affected by human actions. The top position of ecology goes to natural history, and bird watching brings much happiness to many people. TV programs like those of David Attenborough bring images of many areas and species that few will be able to visit or see. Descriptive ecology fares slightly less well because it seems harmless to most people but is unable to generate money in any useful manner. Conservation ecology sits at the bottom of the ecology heap, falling into the dark side because it continually points out problems of what humans have done or are doing to life on earth, to ecosystem processes that are essential to a healthy environment. Only climate scientists are lower on the totem pole than ecologists because they are always talking about the coming train wreck of climate change, with the ethical implication that we the public should be doing something by changing our habits.

The results are that funding for scientific work follows the totem pole. Ecologists fare poorly along with organismal biology with the result that we do not have an inventory of life on Earth or an adequate understanding of how most of the Earth’s ecosystems operate. Climate scientists are perhaps fortunate because the gathering of climate data has been extensive because people need weather information to drive to work or plant their crops. Consequently, even though it is at the lower end of the totem pole climate science has much data to utilize, although many do not like the ensuing message. I suspect many governments of the day would like to close down all the weather stations to save money as well as to avoid further negative findings.

There is unlikely to be any move soon in the relative positions on the totem pole for the different sciences. We ecologists live in a trickle down world where some funding sieves through to the lower layers of biology, partly by accident and partly because there are some who think that we should know more about our Earth’s biological heritage.

Fortin, J.-M. and D. J. Currie. 2013. Big science vs. little science: How scientific impact scales with funding. PLoS ONE 8:e65263.

Haufe, C. 2013. Why do funding agencies favor hypothesis testing? Studies in History and Philosophy of Science Part A 44:363-374.

May, R. M. 1997. The scientific wealth of nations. Science 275:793-796.

 

The 7 Generation Rule

Some of the First Nations people of northern Canada believe that we are stewards of the Earth, and for their particular area the land must be managed within a time horizon of 7 generations, approximately 200 years. If we are serious about sustainability, we need to ask for each situation how the impact of this or that environmental decision will track for the next 7 generations. It is quite clear to anyone who listens to any of the news media that we are not at present even living by a 1 Generation Rule. The guide of governments and corporations of virtually all developed nations is economic growth, producing societies that are more and more inequitable, the rich 1% and the poor 99%. The environment is almost never mentioned. What might we do if we lived by the 7 Generation Rule?

The first item to question might be the transportation system of the world and the use of fossil fuels. All is well you might argue, gasoline and diesel are cheap, we carry on. But if we think of future generations we might worry about whether increasing CO2 is causing climate change; the naïve belief that burning fossil fuels has nothing to do with climate change means that we do not believe any of the laws of physics. There is yet another problem somewhere on the 7 Generation horizon – fossil fuels are a non-renewable resource. At some point sooner or later we will run out of fossil fuels, or as an economist would say fossil fuels will not run out but will get very expensive. How far will you be driving in 7 Generations if the price of gasoline is $10,000 a litre? Round that to $40,000 a gallon if you calculate in those units.

But if I cannot drive my car on gasoline, surely someone will invent a car that runs on solar power. Technology will save us. This is akin to a religious belief for many people, and it might be true. If it is, then we can leave the coal, oil, and natural gas in the ground, which is what we ought to plan in any event if we live by the 7 Generation Rule. It is good to be an optimist but it is also good to have a Plan B.

There is one more problem that might be even more important than driving our cars – the provisioning of food. The demand for food in the world today grows at a rate exceeding the rate of food production. No problem, you say, we have plenty of food as long as we continue to neglect one-third of the people on Earth that are undernourished and as long as we operate with the 1 Generation Rule. There are several ways of solving this problem but many of the suggestions are quite impossible. We can become more vegetarian in our diets, and that would be good. But we cannot develop more farmland because virtually all of it is in use. We can increase the productivity of our crops by genetic means, but we cannot compensate for losses in soil fertility and erosion. Fertilizer which is essential to modern agriculture could be problematic. Nitrogen fertilizer is now made largely from fossil fuel (natural gas) and phosphate fertilizer comes entirely from phosphate rocks which are being mined but are also a non-renewable resource. What does our 4th or 5th generation do when phosphate runs out? Might we consider recycling starting now to prepare for the 7th generation?

Ecologists fight now with minimal funding to describe and protect the biodiversity of the Earth, which might be useful already to generation 3, while governments spend much more money subsidizing the fossil fuel industry that is destroying the Earth. There is little money left for environmental protection. How is your government tracking toward a sustainable planet? What Generation Rule are they following? Ask yourself these questions the next time you vote.

Diamond, J. 2011. Collapse: How Societies Choose to Fail or Survive. Penguin Books, London. 608 pp. ISBN: 9780241958681

McKibben, B. 2013. Oil and Honey: The Education of an Unlikely Activist. Times Books, New York. 272 pp. ISBN: 9780805092844

The Hippocratic Oath and Ecology

“Physician, do no harm” (Hippocrates, Greece, 5th century BC) is one of the classic ethical standards of medicine. Of course as medical science has progressed, treatments that were once considered to be beneficial are now known to cause harm, so one has to apply these standards to the time and place of action. How does all of this apply to ecology and environmental science?
All science is or should be evidence-based and the job of the ecologist is to examine and measure the evidence about how the biological world works, how natural populations, communities, and ecosystems operate and continue to exist. Given that evolution is the background to all these operations, in the long term individual species will come and go and change the dynamics we now describe. At the level of basic or “blue-sky” research, ecologists run into few ethical issues. But at the level of applied ecology, we become the ‘physicians of the world’ because we must assess the problems that arise in the natural world from the actions or inactions of humans. Consequently when ecologists investigate problems caused by mining, logging, aquaculture, or agriculture, and the associated issues caused by population growth, we have an ethical responsibility captured by the Hippocratic Oath.
In many situations ecologists and environmental scientists do well, laying out the issues, the science behind the measured effects, and the best predictions they can make about future changes. Climate change science is the best current example. But in many areas the conclusions of our best ecologists and environmental scientists crash head on into the economic train that drives 95% of decision making at the political and business levels. This is the key point where the Hippocratic Oath must enter if we wish to behave ethically. We cannot allow companies or the government to carry out environmental policies that are harmful to the populations, communities and ecosystems of the Earth without our voices being heard. This does not permit us to fabricate evidence or extrapolate beyond what is known. It does permit us to say what is not known and needs investigation, and that the policy of “what you do not know cannot hurt you” is stupidity squared. None of this endears us to the business community or the government bent on economic growth at all costs.
We can hope that this is changing, albeit slowly. Politicians and oil companies now at least talk about ‘sustainability’ while pushing ahead. But if more wealth is gained at the expense of the Earth we are lost in the long term. A major problem for ecologists is that operational changes are made in forestry, agriculture and mining with little thought to their consequences for biodiversity and ecologists are left to pick up the pieces later. If you wish an immediate example, fracking for oil and gas is more than enough. This is not an intelligent way to operate if we wish to be stewards of the Earth. So in every bit of ecology we do, we need to keep the Hippocratic Oath in mind, and do our best to stop harming the Earth.
And at the political level, we could take the radical step of asking that every Minister of the Environment ought to be trained in environmental science and ecology, and understand the environmental problems of the Earth.

Why The Environmental Sciences Always Lose Out

One of the basic observations of our time in almost all countries is that some sciences are held in high esteem while others are not popular. Science is often confused with technology, so positive marks are typically given for new types of cell phones, tablets and computers, and the sciences that give rise to these technological advances like physics, chemistry, and engineering are viewed as gold stars. Medical advances are also highly regarded out of self-interest and most medical science from basic to applied is given high support in our society. At the other end of the ranking is ecology and in general environmental science. These are viewed poorly by many, so that action on climate-change and biodiversity conservation are supported by a dwindling few. Why are some sciences highly praised and others damned?

Part, but only part, of the explanation lies in religious beliefs. I do not know of any major religious group that condemns Iphones and computers, or medical advances, or even space research. But many people seem to have objections to biological concepts like evolution and question the role of humans in affecting the earth’s ecosystems. Possibly a larger part of this rejection of environmental science is explained by the fact that environmental scientists bring mostly bad news to the social table, while physicists promise infinite free energy and medical scientists promise cures for diseases. We prefer good news to bad.

The most prominent bad news story currently is climate change and the role of humans in causing these changes. Climate change science is easy to deny. The data are always variable, sometimes it still snows in the wrong month of the year or the summer is particularly cool. But most importantly the problem is slow moving, and humans are not very good at assessing slow moving catastrophes. Few of us will be alive when the climate problems get so serious only a fool would deny them, and our penchant for demanding fast solutions to problems will not work when the reversal of the cause (e.g. CO2 enrichment of the air) takes 100-200 years. So it is better to put our head in the sand and deny everything.

The problem with conservation ecology and biodiversity loss is similarly long-term and slow. To solve these problems we have to do something and we are all in favour of doing something if it does not reduce economic growth. So population growth is favoured since exponential growth is the new God pushing economic growth, and biodiversity loss does not seem to impact on most of us living in large cities. Sustainability thus becomes a meaningless word in both politics and business, talk much and do little. If there is an apparent conflict between economics and the environment guess who wins. Convincing people that economics cannot exist without the environment is the challenge of our time. We could start by electing governments that cultivate environmental concerns on an equal basis with economic concerns.

Oreskes, N. and E. M. Conway. 2010. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. Bloomsbury Press, New York. 365 pp.
Washington, H. 2013. Human Dependence on Nature. Routledge.144 pp.