Tag Archives: coral reefs

How Should We Test Global Models in Ecology?

There is an understandable desire to view ecological ideas on an exceptionally large or even global scale. Just as physicists, chemists, and engineers apply their scientific results as correct everywhere, biologists would like to have global hypotheses and global models of ecological principles. There is only one problem – that ecological principles or ‘laws’ are climate contingent. This simple fact has produced a minor mode of panic in the ecological literature. How reliable are our ecological principles? Must we change them as the climate changes? In principle not, since many chemical and physical laws are temperature dependent or moisture dependent, and we just recognize that these laws have a temperature or moisture parameter as part and parcel of how things like chemical reactions can change.

This kind of argument would suggest that if we build the physical-chemical universe into our ecological models we could approach the hard sciences in predictive precision. Alas as we know this is not to be. Why not? The first argument is that ecological systems are composed of many variables – all individuals in a population are not identical, communities and ecosystems contain many interacting species with different physical and chemical requirements. But this does not necessarily let ecologists off the hook because it can be interpreted to mean that we simply have a much harder job to do and it will take much longer but it is in principle achievable. The second argument is that evolution continues to occur and is in principle unpredictable, so that while we know where we are at present, we do not know the future (Ivory et al. 2019).

Let us take a global example of the decline in coral reefs as temperature in the ocean rises. We will ignore for the moment CO2 acidity changes to keep the discussion simple. We can define closely the thermal limits of different coral species, so that should give us good predictability. But we do not know if natural selection will change these thermal limits, or whether or not it can do so rapidly enough. For the most part we project that increasing ocean temperatures will destroy most of our coral reefs and turn them into algal communities. This prediction is partly based on observations of the last 40 years in different parts of the tropics and partly based on measurements in physiological ecology in the lab. But the elephant in the prediction room is evolution and what genetic variation now exists but has not been measured, as well as how far temperature and CO2 will increase (Frank 2019).  

So ecologists are caught in a dilemma – we can in principle define the current state of ecosystems and make short term predictions that we can test with further monitoring, but we cannot make the long term predictions everyone wants to have. As conservation biologists we can make warnings but few of them would stand up in court when push comes to shove. So the consequence is that we live in a world of make believe where, for example in British Columbia the government in its wisdom says yes we must protect old growth forests, and we will do all possible to achieve this goal, as long as new policies do not reduce the annual allowable cut to the forest industry.

We can look to paleoecology to get an overview of how life on Earth has changed in the past on any time scale you wish. If there is a general law coming out of all this research it is that when climate changes, ecological communities and ecosystems change. The simple message that is hard to get across is that, if you like current environmental conditions and desire only small changes in our present ecological communities, it is desirable to reduce the pollution that is causing rapid climate change. No clever and detailed global ecological model will help us overcome the tragedies unfolding with the business as usual models we currently use unless we control rapid climate change (van der Zande et al. 2020). A current popular example is the suggestion that if we plant trees around the world, we can reverse rising CO2 level. That sounds like a good achievable plan but in fact it is impossible (Friedlingstein et al. 2019).

So, my advice is two-fold. First, design and test global ecological models for short term understanding and predictions. Do not pretend they will provide accurate long-term predictions for ecological systems. In some cases, there is little predictability (Geary et al. 2020). Second, do much more long-term monitoring of communities and ecosystems to trace local and global changes quantitatively (Wagner 2020). Then at least we will know how big the ‘wolf’ is before we ‘cry wolf’. 

Frank, P. (2019). Propagation of error and the reliability of global air temperature projections. Frontiers in Earth Science 7, 223. doi: 10.3389/feart.2019.00223.

Friedlingstein, P., Allen, M., Canadell, J.G., Peters, G.P., and Seneviratne, S.I. (2019). Comment on “The global tree restoration potential”. Science 366, eaay8060. doi: 10.1126/science.aay8060.

Geary, W.L., Doherty, T.S., Nimmo, D.G., Tulloch, A.I.T., and Ritchie, E.G. (2020). Predator responses to fire: A global systematic review and meta-analysis. Journal of Animal Ecology 89, 955-971. doi: 10.1111/1365-2656.13153.

Ivory, S. J., Russell, J., Early, R., and Sax, D.F. (2019). Broader niches revealed by fossil data do not reduce estimates of range loss and fragmentation of African montane trees. Global Ecology and Biogeography 28, 992-1003. doi: 10.1111/geb.12909.

van der Zande, R.M., Achlatis, M., Bender-Champ, D., Kubicek, A., and Dove, S. (2020). Paradise lost: End-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Global Change Biology 26, 2203-2219. doi: 10.1111/gcb.14998.

Wagner, D.L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology 65, 457-480. doi: 10.1146/annurev-ento-011019-025151.