On Three Kinds of Ecology Papers

There are many possible types of papers that discuss ecology, and in particular I want to deal only with empirical studies that deal with terrestrial and aquatic populations, communities, or ecosystems. I will not discuss here theoretical studies or modelling studies. I suggest it is possible to classify papers in ecological science journals that deal with field studies into three categories which I will call Descriptive Ecology, Explanatory Ecology, and Experimental Ecology. Papers in all these categories deal with a description of some aspects of the ecological world and how it works but they differ in their scientific impact.

Descriptive Ecology publications are essential to ecological science because they present some details of the natural history of an ecological population or community that is vital to our growing understanding of the biota of the Earth. There is much literature in this group, and ecologists all have piles of books on the local natural history of birds, moths, turtles, and large mammals, to mention only a few. Fauna and flora compilations pull much of this information together to guide beginning students and the interested public in increased knowledge of local fauna and flora. These publications are extremely valuable because they form the natural history basis of our science, and greatly outnumber the other two categories of papers. The importance of this information has been a continuous message of ecologists over many years (e.g. Bartholomew 1986; Dayton 2003; Travis 2020).

The scientific journals that professional ecologists read are mostly concerned with papers that can be classified as Explanatory Ecology and Experimental Ecology. In a broad sense these two categories can be described as providing a good story to tie together and thus explain the known facts of natural history or alternatively to define a set of hypotheses that provide alternative explanations for these facts and then to test these hypotheses experimentally. Rigorous ecology like all good science proceeds from the explanatory phase to the experimental phase. Good natural history provides several possible explanations for ecological events but does not stop there. If a particular bird population is declining, we need first to make a guess from natural history if this decline might be from disease, habitat loss, or predation. But to proceed to successful management of this conservation problem, we need studies that distinguish the cause(s) of our ecological problems, as recognized by Caughley (1994) and emphasized by Hone et al. (2018). Consequently the flow in all the sciences is from descriptive studies to explanatory ideas to experimental validation. Without experimental validation ‘ecological ideas’ can transform into ‘ecological opinions’ to the detriment of our science. This is not a new view of scientific method (Popper 1963) but it does need to be repeated (Betini et al. 2017). 

If I repeat this too much, I suggest you do a survey of how often ecological papers in your favorite journal are published without ever using the word ‘hypothesis’ or ‘experiment’. A historical survey of these or similar words would be a worthwhile endeavour for an honours or M.Sc. student in any one of the ecological subdisciplines. The favourite explanation offered in many current papers is climate change, a particularly difficult hypothesis to test because, if it is specified vaguely enough, it is impossible to test experimentally. Telling interesting stories should not be confused with rigorous experimental ecology.

Bartholomew, G. A. (1986). The role of natural history in comtemporary biology. BioScience 36, 324-329. doi: 10.2307/1310237

Betini, G.S., Avgar, T., and Fryxell, John M. (2017). Why are we not evaluating multiple competing hypotheses in ecology and evolution? Royal Society Open Science 4, 160756. doi: 10.1098/rsos.160756.

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Dayton, P.K. (2003). The importance of the natural sciences to conservation. American Naturalist 162, 1-13. doi: 10.1086/376572

Hone, J., Drake, Alistair, and Krebs, C.J. (2018). Evaluating wildlife management by using principles of applied ecology: case studies and implications. Wildlife Research 45, 436-445. doi: 10.1071/WR18006.

Popper, K. R. (1963) ‘Conjectures and Refutations: The Growth of Scientific Knowledge.’ (Routledge and Kegan Paul: London.)

Travis, Joseph (2020). Where is natural history in ecological, evolutionary, and behavioral science? American Naturalist 196, 1-8. doi: 10.1086/708765.