How Big an Area is Big Enough for Conservation?

The larger the species, the more likely it is to be a species of conservation concern. Like many principles of conservation biology, this statement is a generalization with many exceptions. Often it has to be coupled with a statement of the geographic range size of the species of concern and the disturbances wrought by humans within this geographic range. And on top of these ecological issues, there are genetic concerns about population viability. The net result of all these issues is that conservation tends to focus on single species and to minimize the need to understand community and ecosystem dynamics. There is a limit on what we can achieve with limited funding and person-power. The public consensus at this time seems to be that we are losing the battle, that biodiversity is being lost on a global scale, even though we are winning the battle for some charismatic species (e.g. waterfowl, Anderson et al. 2018).

The scale issue is what has continued to defeat us. Take any group of species from your local area and try to determine what size of national park or protected area would be required for that group to survive for your great-grandchildren. No one knows the answer to this simple question, except for the negative finding that at present no protected area is large enough to prevent serious biodiversity loss of a 50-year time scale, no matter what its size.

One escape from this loss of biodiversity has been to call for establishing larger protected areas for conservation, and it leads directly into the critical question of how big a protected area is needed. This question can be analyzed at the level of the single species or an entire ecosystem, but the result is always the same – however big the protected area, it is not big enough. The only answer ecologists have to this challenge is to set up protected areas as large as is politically possible and then monitor them to see how they perform. The skeptic claims immediately that climate collapse will render the selected large protected areas unsuitable for many of the area’s fauna and flora as time progresses.

We cannot at present answer the simple question how big is big enough? The result of all this uncertainly is that we must set boundaries to our conservation goals, and that these will have to be on a local scale. We need to define a time limit for achieving our goals, perhaps 50 years is one we could cope with, and we need to monitor a defined subset of species so that we can track the resilience of the system under study over time and be able to use some feasible management tools if species are in long-term decline. Some national parks are now able to set these goals and keep track of how ecosystems are changing but in a majority of cases we do not have the monitoring data to define success or failure. This problem is not new (Newmark 1985, 1995).

Meanwhile we search for alternative approaches. In some cases, corridors between small protected areas are helpful, and in other cases fenced areas are sufficient for protecting threatened species, particularly when introduced predators are the major problem (Legge et al. 2018). More elaborate approaches must take account of climate change on protected areas (e.g. Rilov et al. 2019). Methods are being developed to deal with mosaic ecosystems in which conservation reserves are embedded in agricultural landscapes (Nowack et al. 2019). The conflict always remains whether to aim conservation at specific taxa or to try to maximize the number of species retained.

These issues of how big are most readily solvable in areas like northern Canada or Alaska, Russia, and in marine environments that are still relatively lightly used for human activities. Analyses of particular groups of taxa (e.g. trees, Médail et al. 2019) can also be usefully evaluated for conservation purposes for relatively large landscapes. The question of how big is big enough will continue to an important one for continuing efforts in conservation.

The assumption we should question is what size of area will protect the small species of insects and plants. It often seems to be assumed that our existing parks are too small for the larger species of the fauna and flora but are sufficiently large for small insects and plants. One should doubt that this simple principle is correct.

The related question of how long is long enough (for monitoring) is much simpler to deal with because in principle there should be no limit. In practice this limit is set by money and person-power, and in the end these decisions will rest on how much the world’s leaders are concerned about the loss of biodiversity. If the value of a species is directly related to its size, much could be lost with little public concern, and these questions of how big and how long will be “academic” in the worst sense of this word.

Anderson, M.G., et al. (2018) The migratory bird treaty and a century of waterfowl conservation. Journal of Wildlife Management, 82, 247-259. doi: 10.1002/jwmg.21326

Hewson, C.M., et al. (2018) Estimating national population sizes: Methodological challenges and applications illustrated in the common nightingale, a declining songbird in the UK. Journal of Applied Ecology, 55, 2008-2018. doi: 10.1111/1365-2664.13120

Legge, S., et al. (2018) Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildlife Research, 45, 627-644. doi: 10.1071/WR17172

Mason, C., et al. (2018) Telemetry reveals existing marine protected areas are worse than random for protecting the foraging habitat of threatened shy albatross (Thalassarche cauta). Diversity & Distributions, 24, 1744-1755. doi: 10.1111/ddi.12830

Médail, F., et al. (2019) What is a tree in the Mediterranean Basin hotspot? A critical analysis. Forest ecosystems, 6, 17. doi: 10.1186/s40663-019-0170-6

Newmark, W.D. (1985) Legal and biotic boundaries of Western North American National Parks: A problem of congruence. Biological Conservation, 33, 197-208. doi: 10.1016/0006-3207(85)90013-8

Newmark, W.D. (1995) Extinction of mammal populations in Western North American national parks. Conservation Biology, 9, 512-526. doi: 10.1046/j.1523-1739.1995.09030512.x

Nowack, S., Bauch, C.T. & Anand, M. (2019) A local optimization framework for addressing conservation conflicts in mosaic ecosystems. PLoS ONE, 14, e0217812. doi: 10.1371/journal.pone.0217812

Rilov, G., et al. (2019) Adaptive marine conservation planning in the face of climate change: What can we learn from physiological, ecological and genetic studies? Global Ecology and Conservation, 17, e00566. doi: 10.1016/j.gecco.2019.e00566

Leave a Reply