Monthly Archives: November 2015

On Improving Canada’s Scientific Footprint – Breakthroughs versus insights

In Maclean’s Magazine on November 25, 2015 Professor Lee Smolin of the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo, and a member of the Royal Society of Canada, wrote an article “Ten Steps to Make Canada a Leader in Science” ( ). Some of the general points in this article are very good but some seem to support the view of science as big business and that leaves ecology and environmental science in the dust. We comment here on a few points of disagreement with Professor Smolin. The quotations are from the Maclean’s article.

  1. Choose carefully.

“Mainly invest in areas of pure science where there is a path to world leadership. This year’s Nobel prize shows that when we do this, we succeed big.” We suggest that the Nobel Prizes are possibly the worst example of scientific achievement that is currently available because of their disregard for the environment. This recommendation is at complete variance to how environmental sciences advance.

  1. Aim for breakthroughs.

“No “me-too” or catch-up science. Don’t hire the student of famous Prof. X at an elite American university just because of the proximity to greatness. Find our own path to great science by recruiting scientists who are forging their own paths to breakthroughs.” But the essence of science has always been replication. Long-term monitoring is a critical part of good ecology, as Henson (2014) points out for oceanographic research. But indeed we agree to the need to recruit excellent young scientists in all areas.

  1. Embrace risk.

“Learn from business that it takes high risk to get high payoff. Don’t waste money doing low-risk, low-payoff science. Treat science like venture capital.” That advice would remove most of the ecologists who obtain NSERC funding. It is one more economic view of science. Besides, most successful businesses are based on hard work, sound financial practices, and insights into the needs of their customers.

  1. Recruit and invest in young leaders-to-be.

“Be savvy and proactive about choosing them…. Resist supporting legacies and entitlements. Don’t waste money on people whose best work is behind them.” We agree. Spending money to fund a limited number of middle aged, white males in the Canadian Excellence in Research Chairs was the antithesis of this recommendation. See the “Folly of Big Science” by Vinay Prasad (2015). Predicting in advance who will be leaders will surely depend on diverse insights and is best evaluated by giving opportunities for success to many from which leaders will arise.

  1. Recruit internationally.

“Use graduate fellowships and postdoctoral positions as recruitment tools to bring the most ambitious and best-educated young scientists to Canada to begin their research here, and then target the most promising of these by creating mechanisms to ensure that their best opportunities to build their careers going forward are here.” This seems attractive but means Canadian scientists have little hope of obtaining jobs here, since we are < 0.1% of the world’s scientists. A better idea – how about Canada producing the “best-educated” young scientists?

  1. Resist incrementalism.

If you spread new money around widely, little new science gets done. Instead, double-down on strategic fields of research where the progress is clear and Canada can have an impact.“ Fortin and Currie (2013) show that spreading the money around is exactly the way to go since less gets wasted and no one can predict where the “breakthroughs” will happen.  This point also rests on one’s view of the world of the future and what “breakthroughs” will contribute to the sustainability of the earth.

  1. Empower ambitious, risk-taking young scientists.

Give them independence and the resources they need to develop their own ideas and directions. Postdocs are young leaders with their own ideas and research programs”. This is an excellent recommendation, but it does conflict with the recommendation of many universities around the world of bringing in old scientists to establish institutes and giving incentives for established senior scientists.

  1. Embrace diversity.

Target women and visible minorities. Let us build a Canadian scientific community that looks like Canada.” All agreed on this one.

  1. Speak the truth.

“Allow no proxies for success, no partial credit for “progress” that leaves unsolved problems unsolved. Don’t count publications or citations, count discoveries that have increased our knowledge about nature. We do research because we don’t know the answer; don’t force us to write grant proposals in which we have to pretend we do.” This confounds the scientists’ code of ethics with the requirements of bureaucracies like NSERC for accounting for the taxpayers’ dollars. Surely publications record the increased knowledge about nature recommended by Professor Smolin.

  1. Consider the way funding agencies do business.

“We scientists know that panels can discourage risk-taking, encourage me-too and catch-up science, and reinforce longstanding entitlements and legacies. Such a system may incentivize low-risk, incremental work and limit the kind of out-of-the-box ideas that….leads to real breakthroughs. So create ambitious programs, empower the program officers to pick out and incubate the brightest and most ambitious risk-takers, and reward them when the scientists they invest in make real discoveries.” What is the evidence that program officers in NSERC or NSF have the vision to pick winners? This is difficult advice for ecologists who are asked for opinions on support for research projects in fields that require long-term studies to produce increases in ecological understanding or better management of biodiversity. It does seem like a recipe for scientific charlatans.

The bottom line: We think that the good ideas in this article are overwhelmed by poor suggestions with regards to ecological research. We come from an ecological world faced with three critical problems that will determine the fate of the Earth – food security, biodiversity loss, and overpopulation. While we all like ‘breakthroughs’ that give us an IPhone 6S or an electric car, few of the discoveries that have increased our knowledge about nature would be considered a breakthrough. So do we say goodbye to taxonomic research, biodiversity monitoring, investigating climate change impacts on Canadian ecosystems, or investing in biological control of pests? Perhaps we can add the provocative word “breakthrough” to our ecological papers and media reports more frequently but our real goal is to acquire greater insights into achieving a sustainable world.

As a footnote to this discussion, Dev (2015) raises the issue of the unsolved major problems in biology. None of them involve environmental or ecological issues.

Dev, S.B. (2015) Unsolved problems in biology—The state of current thinking. Progress in Biophysics and Molecular Biology, 117, 232-239.

Fortin, J.-M. & Currie, D.J. (2013) Big science vs. little science: How scientific impact scales with funding. PLoS ONE, 8, e65263.

Prasad, V. (2015) The folly of big science. New York Times. October 2, 2015 ( )

Henson, S.A. (2014) Slow science: the value of long ocean biogeochemistry records. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2025). doi: 10.1098/rsta.2013.0334.


On Funding for Agricultural Research

One of the most important problems of our day is the interaction between human population growth and the maintenance of sustainable agriculture in the face of climate change. I am currently sitting at the International Rice Research Institute (IRRI) near Manila where I am told they are responding to a 15-20% reduction in funding for their work. I have found this funding situation to be so ridiculous that I have decided to write this blog. Please stop reading if you think agricultural research already has too much funding, or that climate change and sustainable agriculture are not very important issues in comparison to our need for economic growth and increased wealth.

The critical issues here in Southeast Asia are the increasing human population and the productivity of rice agriculture. IRRI has done and is doing outstanding research to raise production of rice with new varieties and to control pests of rice with clever techniques that minimize the spreading of poisons, which everyone agrees must be minimized to protect agricultural and natural ecosystems. Present research concentrates on the ‘yield gap’, the difference between the actual production from farmer’s fields and the maximum possible yield that can be achieved with the best farm practices. The yield gap can be closed with more research by both social and natural scientists, but that is what is under stress now. IRRI operates with funding from a variety of governments and from private donors. Research funds are now being reduced from many of these sources, and the usual explanation is the faltering global economy combined with the severe refugee problems in the Middle East.

Consequently we now do not have enough money to support the most important research on a crop – rice – that is the essential food of half of the Earth’s human population. And it is not just research on rice that is being reduced, but that on corn, wheat, and any other crop you wish to name. Governments of developed countries like Canada, Australia and the USA are reducing their funding of agricultural research. Anyone who likes to eat might think this is the most ridiculous decision of all because agricultural research is an essential part of poverty reduction in the world and overall human welfare. So I ask a simple question – Why? How is it that you can visit any city in a developed country and see obscene excesses of wealth defined in any way you wish? Yet our governments continue to tell us that we are taxed too much, and we cannot afford more foreign aid, and that if we raised the taxation rate to help the poor of the Earth, our countries would all collapse economically. Yet historically taxes have often been raised during World Wars with general agreement that we needed to do so to achieve society’s goals. The goal now must be poverty reduction and sustainability in agriculture as well as in population. Important efforts are being done on these fronts by many people, but we can and must do more if we wish to leave a suitable Earth for future generations.

At the same time this shortage of funding should not all be laid at the feet of governments. Private wealth continues to increase in the world, and private gifts to research agencies like IRRI and to universities are substantial. But if we believe Piketty (2014), the rich will only get richer in the present economic climate and perhaps the message needs to be sent that donations are long overdue from the wealthy to establish foundations devoted to the problems of sustainability in agriculture, population, and society, as well as the protection of biodiversity. The inactions of people and governments in the past are well documented in books like Diamond (2005). Many scientific papers are mapping and have mapped the way forward to achieve a sustainable society (e.g. Cunningham et al. 2013). To make effective progress we must begin reinvestment in agriculture while not neglecting the human tragedies of our time. It can be both-and rather than either-or.

Cunningham, S.A., et al. (2013) To close the yield-gap while saving biodiversity will require multiple locally relevant strategies. Agriculture, Ecosystems & Environment, 173, 20-27. doi 10.1016/j.agee.2013.04.007

Diamond, J. (2005) Collapse: How Societies Choose to Fail or Succeed. Viking, New York. 575 pp. ISBN: 0670033375

Piketty, T. (2014) Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006

The Volkswagen Syndrome and Ecological Science

We have all been hearing the reports that Volkswagen fixed diesel cars by some engineering trick to show low levels of pollution, while the actual pollution produced on the road is 10-100 times higher than the laboratory predicted pollution levels. I wonder if this is an analogous situation to what we have in ecology when we compare laboratory studies and conclusions to real-world situations.

The push in ecology has always been to simplify the system first by creating models full of assumptions, and then by laboratory experiments that are greatly oversimplified compared with the real world. There are very good reasons to try to do this, since the real world is rather complicated, but I wonder if we should call a partial moratorium on such research by conducting a review of how far we have been led astray by both simple models and simple laboratory population, community and ecosystem studies in microcosms and mesocosms. I can almost hear the screams coming up that of course this is not possible since graduate students must complete a degree in 2 or 3 years, and postdocs must do something in 2 years. If this is our main justification for models and microcosms, that is fair enough but we ought to be explicit about stating that and then evaluate how much we have been misled by such oversimplification.

Let me try to be clear about this problem. It is an empirical question of whether or not studies in laboratory or field microcosms can give us reliable generalizations for much more extensive communities and ecosystems that are not in some sense space limited or time limited. I have a personal view on this question, heavily influenced by studies of small mammal populations in microcosms. But my experience may be atypical of the rest of natural systems, and this is an empirical question, not one on which we can simply state our opinions.

If the world is much more complex than our current understanding of it, we must conclude that an extensive list of climate change papers should be moved to the fiction section of our libraries. If we assume equilibrial dynamics in our communities and ecosystems, we fly in violation of almost all long term studies of populations, communities, and ecosystems. The problem lies in the space and time vision of our science. Our studies are too short to show even a good representation of dynamics over a 100 year time scale, and the problems of landscape ecology highlight that what we see in patch A may be greatly influenced by whether patches B and C are close by or not. We see this darkly in a few small studies but are compelled to believe that such landscape effects are unusual or atypical. This may in fact be the case, but we need much more work to see if it is rare or common. And the broader issue is what use do we as ecologists have for ecological predictions that cannot be tested without data for the next 100 years?

Are all our grand generalizations of ecology falling by the wayside without us noticing it? Prins and Gordon (2014) in their overview seem to feel that the real world is poorly reflected in many of our beloved theories. I think this is a reflection of the Volkswagen Syndrome, of the failure to appreciate that the laboratory in its simplicity is so far removed from real world community and ecosystem dynamics that we ought to start over to build an ecological edifice of generalizations or rules with a strong appreciation of the limited validity of most generalizations until much more research has been done. The complications of the real world can be ignored in the search for simplicity, but one has to do this with the realization that predictions that flow from faulty generalizations can harm our science. We ecologists have very much research yet to do to establish secure generalizations that lead to reliable predictions.

Prins, H.H.T. & Gordon, I.J. (2014) Invasion Biology and Ecological Theory: Insights from a Continent in Transformation. Cambridge University Press, Cambridge. 540 pp. ISBN 9781107035812.