Monthly Archives: May 2014

When Should One Retire from a University Appointment?

In the good old days universities had a hard retirement policy that once you reached age 65 you were retired whether you liked it or not. Then in the age of entitlement it was declared that this was discrimination on the basis of age and thus could not be allowed. Universities bemoaned the fact that they had no firm financial projections under the new policy, and many different policies were introduced partly to solve this problem. In some cases you could gradually go to half-time, and then at some age to quarter time, until you eventually did retire, but most of these policies were voluntary.

It is useful to look at the broad picture that these changes produced in the university community. If there was indeed some general plan of development in a particular discipline like zoology, committees could lay out a future hiring plan but it was usually chaos because the time frame was so uncertain. So in my experience most carefully thought out hiring plans went out the window and hiring became ad hoc with the accompanying ‘departmental drift’. So, as a hypothetical example, if a professor in entomology retired, he or she might get replaced by a young assistant professor in microbial genetics.

On a larger scale, we need to look carefully at the consequences of keeping older professors on the books commandeering relatively large salaries. There are no clear rules but in general one might recognize professors that are worn out at age 55 and ought to retire, others that are happy to stop at 65 and relax more, and others who ask to stay on indefinitely. Every case is an individual one. Some of the age 55 scientists are still vigorous and any concerned department ought to work to make their life easier so they can continue to work. Others of the same age should be encouraged to go. The same should occur at age 65. The worry I have most is about those over 65. I give no names but I can list brilliant scientists who continued to be paid and work until they were 75 or 80. I can also list scientists who were brilliant in their time but had passed the gate by 65 (or even 55) but insisted in taking up a position for many years after age 65. This is a tragedy for the individual, for the department, and in particular for young scientists looking for a university position but finding none because the money is tied up in professors well past their use-by-date. I would expect that the only possible solution to this issue is for the university to evaluate every professor over 55 with strict demands of performance if they wish to remain on the payroll and to do this on a 1 or 2 year timetable. No one likes doing such evaluations so perhaps the university would have to hire one of the many hard-nosed CEOs of companies that are seen to be effective at firing all their workers.

None of this is to say that any and all professors who have retired at age 55, 65, 75, or 85 should not be encouraged to continue research work, but they must do it on their retirement savings. In my youth I met a 98 year old Drosophila researcher who was continuing to do valuable research in his long retirement. In Canada the federal research agencies do not seem to care how old you are when they evaluate the quality of your research work and contributions to science, so they at least do not appear to discriminate in awarding research funds on the basis of age. Scientific journals do not ask you how old you are when you submit a potential scientific paper.

There has always been a paradigm that scientific advances are made entirely by young scientists, so that, as the joke goes, almost all mathematicians should be shot after age 30 (that is a joke….). In at least some of the ecological sciences this age paradigm is not correct, but nevertheless I think it is morally recumbent on older professors to realize that their time on the payroll should be limited in order to release funds for the aspiring young scientists who can rejuvenate university departments.

Some Reflections on Evo-Eco

Some ecologists study evolutionary processes and we call them evolutionary ecologists. They have their own journals and are a thriving field of science. Other ecologists study populations, communities, and ecosystems in ecological time and do not in general concern themselves with evolutionary changes.The question is should they? Evo-Eco is a search for evolutionary changes that have a decisive impact on observable ecological changes like that of a collapsing bird population.

There are two schools of thought. The first is that evo-eco is very important and the changes that ecologists are trying to understand are partly caused by ecological mechanisms like predation and competition but are also associated with genetic changes that affect survival and reproduction. Consequently an ecologist studying the declining bird population should study both genetics and ecology. The second school of thought is that evo-eco is rarely of any importance in causing ecological changes, so that we can more or less ignore genetics if we wish to understand why this bird population is disappearing.

A practical problem immediately rears its head. To be safe we should all follow evo-eco in case genetics is involved in dynamics. But given the number of problems that ecologists face, the number of scientists available to analyse them, and the research dollars available it is rare to have the time, energy or money to take the comprehensive route. Conservation ecologists are perhaps the most tightly squeezed of all ecologists because they have no time to spare. Environmental managers request answers about what to do, and the immediate causes of conservation problems are (as everyone knows) habitat loss, introduced pests and diseases, and pollution.

The consequence of all this is that the two schools of thought drift apart. I cannot foresee any easy way to solve this issue. Progress in evolutionary ecology is often very slow and knowing the past rarely gives us much insight into predicting the human-affected future. Progress in conventional ecology is faster but our understanding is based on short-term studies of unknown generality for future events. Both schools of thought race along with mathematical models that may or may not tell us anything about the real world, but are conceptually elegant and in a pinch might be called progress if we had time to test them adequately.

The most useful evo-eco approach has been to look at human-caused selection via fishing for large sized fish or hunting for Dall sheep with the largest horns. The overuse of antibiotics for human sickness and as prophylactics for our farm animals is another classic case in which to understand the ecological dynamics we need to know the evolutionary changes that we humans have caused. These are clear cases in which genetic insights can teach us very much.

I end with a story from my past. In the 1950s, nearly 70 years ago now, Dennis Chitty working at Oxford on population fluctuations in small grassland rodents considered that he could reject most of the conventional explanations for animal population changes, and he suggested that individuals might change in quality with population density. This change he thought might involve genetic selection for traits that were favourable only in high density populations that reappeared every 3-4 years. So in some strange sense he was one of the earliest evo-eco ecologists. The result was that he was nearly laughed out of Oxford by the geneticists in control. The great evolutionary geneticist E.B. Ford told Chitty he was completely mad to think that short term selection was possible on a scale to impact population dynamics. Genetic changes took dozens to hundreds of years at the best of time. There were of course in the 1950s only the most primitive of genetic methods available for mammals that all look the same in their coat colour, and the idea that changes in animal behaviour involving territoriality might cause genetic shifts on a short-term period gradually lost favour. Few now think that Chitty was right in being evo-eco, but in some sense he was ahead of his time in thinking that natural selection might operate quickly in field populations. Given the many physiological and behavioural changes that can occur phenotypically in mammals, most subsequent work on grassland rodents has become buried in mechanisms that do not change because of genetic selection.

When we try to sort out whether to be concerned about evo-eco, we must strike a compromise between what the exact question is that we are trying to investigate, and how we can best construct a decision tree that can operate in real time with results that are useful for the research question. Not every ecological problem can be solved by sequencing the study organism.

Chitty, D. 1960. Population processes in the vole and their relevance to general theory. Canadian Journal of Zoology 38:99-113.