Tag Archives: sustainability

On House Mouse Outbreaks in Australia

It occurred to me after some recent discussions that the problem of house mouse outbreaks in Australia is almost a paradigm for modern ecological science. A brief synopsis. At irregular intervals house mice (an introduced pest) reach high densities in the wheat growing areas of eastern and southern Australia, and cause serious damage to wheat, barley, oats, and sunflower crops. There are two approaches to this applied problem.

The ecological approach is to understand why these outbreaks occur and why for many years (2-9 years) between outbreaks, hardly a mouse can be found. This approach has been highly successful led by a series of excellent Australian ecologists over the last 40 years. The key limitation is food, combined with social interactions, and the food supply is driven by rain at critical times of the year to provide seeds for the mice. There are no competitors for house mice, and there are a few insignificant predators, overwhelmed by the mouse’s high reproductive rate. These ecological facts are clearly known, and the job now is to build the best predictive models to help the farmers anticipate when the outbreak is coming. There are still important ecological questions to be studied, to be sure, but the broad outline of the ecological play is well described.

The management approach is much simpler because farmers can control house mice with poison, primarily zinc phosphide, and for them the question is when to poison, and secondarily (over time and with more research) can we develop better poisons so there are few non-target problems. Poisoning costs time and money so good farmers wish to minimize these costs.

The long-term issues get lost in this situation, a model of the way the world operates now with ecological and environmental problems. Questions about sustainability multiply in any system dependent on poisons for a solution. Will the target organisms become resistant so the poison does not work? Many examples exist of this already. Are there any long-term problems with soil organisms, or non-target species? No research yet on these issues, and perhaps they are more serious with herbicide applications in agriculture. And while predators do not control house mice during outbreaks, they do eat many of them and this food pulse may have implications for the wider ecosystem. We focus on farming and forget the wider ecosystem which has no dollars attached to it.

Ecologists recognize that these issues are not the farmers’ fault, but we raise the question of who worries about the long-term future of this system, and the answers to these long-term questions. The government is rushing to get out of long-term ecological and agricultural research and we leave problems that do not have immediacy.

Consequently we become short-sighted as a society. Long-term research becomes 1-3 years and not the 50-100 years that ecologists would support. And consequently applied ecologists bounce from one problem to the next under the paradigm that, no matter what we do, science will come up with a technological fix. There should be a better way. To go back to our house mice, we might ask (for example) if we implement no-till agriculture, what will be the consequences for house mouse survival and future outbreaks? The practical minister of agriculture will respond that we have no time or money for such research, so we lurch along, managing the world in an ad-hoc manner. There should be a better way. But meanwhile we must follow the money.

On the Need for Ecological Meetings

Perhaps I am the only ecologist in the world who is overwhelmed by the number of conferences that go on every year. I think we need to consider why we have so many meetings and consider some of the problems of the current model for ecological scientific communication. The problems that bring this to the fore for me are five:

  • Travel in its many forms increases greenhouse gases which contribute to climate change. Ecologists in particular are not supposed to be happy about that.
  • The number and frequency of meetings operate on a time scale completely inconsistent with having any new experimental data to report.
  • Large meetings operate with 6 or more concurrent sessions that cannot all be attended and there are so many people you cannot possibly talk to many you wish to meet.
  • Many of the talks at some meetings are poorly presented and a complete waste of one’s time.
  • Modern forms of electronic communication produce much more rapid and efficient transfer of scientific information than attending conferences.

I have of course left out the somewhat frivolous but true observation that really important people at meetings never go to any of the talks except their own.

The advantages of scientific meetings are many, and I am a believer in communication in person rather than via electronic media. So we must be careful here – I do not propose getting rid of all meetings. And I recognize that they are very important for young ecologists to help their careers develop.

So I think we have a problem and we need to think of possible solutions. One solution is to space meetings every 4 years instead of annually. Many societies do this already and do not seem to suffer. Even if we had an ESA meeting every second year we would have less stress. Another solution has been to divide up meetings into smaller groups, so the small mammal population ecologists meet as a unit, and the stream ecologists meet separately, and the carbon cycle ecologists meet on their own. This works to cut the size of meetings down and again they do not always need to hold meetings annually. Further reductions can occur by regional meetings, so the East Coast stream ecologists get together readily with minimal travel and so on. Much of this is already happening.

We have not yet used electronic forms of communication very effectively. Plenary lectures could be streamed on video and thus be available around the world for little cost and less CO2 emissions. I am hardly the one to tell you about modern communication but even I use Skype and other platforms to keep in touch with colleagues and ask questions.

There is a slightly frantic nature about ecological meeting e mails that reminds me of the Church in the good old days when every Saturday or Sunday you were supposed to attend for some reason never quite clear. If we are to continue to have large meetings often, we might at least have them in less developed countries that could use the economic stimulus that is clearly a large part of large scientific meetings. Which raises the issue of how much money should we spend on going to meetings versus doing some scientific work.

And my final complaint, having just witnessed the G20 Meeting in Australia, is that we should not adopt their model of meeting every year in very expensive places like Sydney and not having accomplished a single thing in recent memory except to say that they are a very important group.

The 7 Generation Rule

Some of the First Nations people of northern Canada believe that we are stewards of the Earth, and for their particular area the land must be managed within a time horizon of 7 generations, approximately 200 years. If we are serious about sustainability, we need to ask for each situation how the impact of this or that environmental decision will track for the next 7 generations. It is quite clear to anyone who listens to any of the news media that we are not at present even living by a 1 Generation Rule. The guide of governments and corporations of virtually all developed nations is economic growth, producing societies that are more and more inequitable, the rich 1% and the poor 99%. The environment is almost never mentioned. What might we do if we lived by the 7 Generation Rule?

The first item to question might be the transportation system of the world and the use of fossil fuels. All is well you might argue, gasoline and diesel are cheap, we carry on. But if we think of future generations we might worry about whether increasing CO2 is causing climate change; the naïve belief that burning fossil fuels has nothing to do with climate change means that we do not believe any of the laws of physics. There is yet another problem somewhere on the 7 Generation horizon – fossil fuels are a non-renewable resource. At some point sooner or later we will run out of fossil fuels, or as an economist would say fossil fuels will not run out but will get very expensive. How far will you be driving in 7 Generations if the price of gasoline is $10,000 a litre? Round that to $40,000 a gallon if you calculate in those units.

But if I cannot drive my car on gasoline, surely someone will invent a car that runs on solar power. Technology will save us. This is akin to a religious belief for many people, and it might be true. If it is, then we can leave the coal, oil, and natural gas in the ground, which is what we ought to plan in any event if we live by the 7 Generation Rule. It is good to be an optimist but it is also good to have a Plan B.

There is one more problem that might be even more important than driving our cars – the provisioning of food. The demand for food in the world today grows at a rate exceeding the rate of food production. No problem, you say, we have plenty of food as long as we continue to neglect one-third of the people on Earth that are undernourished and as long as we operate with the 1 Generation Rule. There are several ways of solving this problem but many of the suggestions are quite impossible. We can become more vegetarian in our diets, and that would be good. But we cannot develop more farmland because virtually all of it is in use. We can increase the productivity of our crops by genetic means, but we cannot compensate for losses in soil fertility and erosion. Fertilizer which is essential to modern agriculture could be problematic. Nitrogen fertilizer is now made largely from fossil fuel (natural gas) and phosphate fertilizer comes entirely from phosphate rocks which are being mined but are also a non-renewable resource. What does our 4th or 5th generation do when phosphate runs out? Might we consider recycling starting now to prepare for the 7th generation?

Ecologists fight now with minimal funding to describe and protect the biodiversity of the Earth, which might be useful already to generation 3, while governments spend much more money subsidizing the fossil fuel industry that is destroying the Earth. There is little money left for environmental protection. How is your government tracking toward a sustainable planet? What Generation Rule are they following? Ask yourself these questions the next time you vote.

Diamond, J. 2011. Collapse: How Societies Choose to Fail or Survive. Penguin Books, London. 608 pp. ISBN: 9780241958681

McKibben, B. 2013. Oil and Honey: The Education of an Unlikely Activist. Times Books, New York. 272 pp. ISBN: 9780805092844

The Ancient Cedars Trail in British Columbia

Whistler, British Columbia, is one of the famous ski hills in North America. Just north of the town of Whistler, above Green Lake, is a 4.5 km logging road that leads to the Ancient Cedars Trail, a 5 km round trip to see an old growth stand of several hectares of western red cedars (Thuja plicata). The red cedars are enormous, perhaps 700-1000 years old, and well worth seeing. But what disturbed me as I walked this trail is that this type of old growth forest with its rich diversity of tree species is what much of the forested world of coastal British Columbia and south-eastern Alaska used to look like, and I wonder what are we leaving in this part of the world for our great-grandchildren.

Trees are dollar bills in another form, and so the forestry industry thrives. But this is mostly crown land, not private land, and what do we the public get for this continual ravaging of the landscape? A strong economy to be sure, but is it sustainable? Forestry is sustainable if it allows ecosystem renewal at a time scale that is relevant to a human lifespan. Is modern forestry in British Columbia sustainable? We are told continually that it is.

Perhaps the paradigm is that we should log everything that can be converted into dollars, leaving a few hectares for the ancient cedars to remain. Then once we have logged up to the Arctic Ocean, we can come back south and start again. But will a logged forest ever recover as part of a forest ecosystem? And if it does will it take 300, 500, or 1000 years? If it takes that long, forestry is a mining operation, and from the point of view of our grandchildren the forests are destroyed not renewed.

The key issue for an ecologist is whether the forest ecosystem ever recovers after logging. It certainly does for some species but it is highly probable that other species are lost to the ecosystem. Part of this is because the forests that replace old growth are too often tree monocultures designed for optimum yield rather than for biodiversity maximization. So I think we should be more questioning when we are told an industry like forestry is operating sustainably. If it is sustainable, why are we logging old growth forests? If it is sustainable why are we logging 25° and 30° slopes? And what do we mean when we say that we are developing a forest harvesting plan when the time to recovery from logging is 200-300+ years? That is perhaps 3-4 generations of humans, more than we would like to tell our children. At a time when biodiversity conservation is being seen as more and more important, we are rushing ahead with logging old growth, hoping to get the dollars out before we find out that it was a mistake in management.

In the end we need to ask over and over again – what are we leaving for our grandchildren? And if you go walking in the coastal forests of western North America you need to look and then ask yourself what “sustainability” means, and whether the landscape is being managed sustainably. Perhaps many of our old growth forests in Canada are too important to be left to the management of the forest industry.