Tag Archives: models

The Snowshoe Hare 10-year Cycle – A Cautionary Tale

We have been working on the ten-year cycle of snowshoe hares (Lepus americanus) in the southwest Yukon since 1975 trying to answer the simple question of what causes these cyclic fluctuations. I think that we now understand the causes of the cyclic dynamics, which is not to say all things are known but the broad picture is complete. But some misunderstanding persists, hence this one page summary. Some biology first.

The snowshoe hare cycle has been known from Canada lynx fur return data for more than 100 years, and of course known to First Nations people much before that. Hares are herbivores of small trees and shrubs, they reproduce at age 1 and rarely live more than 1-2 years. They have 2-4 litters in a summer, with litter size around 4-6. Juvenile losses are high and at best populations increase about three-to-four-fold per year. Almost everything eats them – lynx, coyotes, great-horned owls, goshawks, a long list of predators on the young. Reproduction collapses with rising density and females reduce their output from 4 litters to 2 in the peak and decline phase.

The obvious driving factors when Lloyd Keith and his students began working on the hare cycle in Alberta in the 1960s were winter food shortage and predation. When there is a high hare peak, damage to shrubs and small trees is obvious. But it was quite clear in Keith’s studies that the decline phase continued well after the vegetation recovered, and so he postulated a two-factor explanation, winter food shortage followed by high predation losses. He looked for disease and parasite problems in hares but found nothing.

Testing the winter food limitation would appear to be simple but is fraught with problems. Everyone believes that food is an ultimate limiting factor, so that it must be involved in the cyclic dynamics. We began testing food limitation in the mid-1970s and found that one could add natural food or artificial food (rabbit chow) and apparently have no effect on cyclic dynamics. Hares came to the food grids so the density increased by immigration, but the decline started at the same time and at the same rate as on control grids. So what is the role of food?

Our next attempt was to do a factorial experiment adding food, reducing predation, and doing both together. The details are important, replication was never enough for the manipulated treatments, we did it only for 10 years rather than 20 or 30. What we found was that there was an interaction between food addition and mammal predator exclusion so that the combined treatment increased to a much higher density than any single treatment. But this result came with a puzzle. What is the role of food? Hares showed no evidence of malnutrition in the peak or decline, fed hares did not increase their reproductive output. What produced the strong interaction between food addition and predator reduction?

The next breakthrough came when Rudy Boonstra suggested that predator-caused stress might underlie these strange dynamics. Because we could now measure stress with faecal cortisol measures we could test for stress directly in free-ranging hares. The surprise was that this idea worked and Michael Sheriff capped off the stress hypothesis by showing that not only does predator-induced stress reduce reproductive rates, but the stress effect is inherited maternally in the next generation.

The bottom line: the whole dynamics of the snowshoe hare cycle are predator-induced. All the changes in mortality and reproduction are direct and indirect effects of predators chasing and eating hares. The experimental food/predator interaction was mechanistically wrong in targeting food as a major limiting factor.

This of course does not mean that food is irrelevant as an important factor to study in hare cycles. In particular very high peak populations damage shrubs and small trees and we do not yet have the details of how this works out in time. Secondary chemicals are certainly involved here.

Why does all this matter? Two points. First, the hare cycle is often trumpeted as an example of a tri-trophic interaction of food – hares – predators, when in fact it seems to be a simple predator-prey system, as Lotka suggested in 1925. Models of the hare cycle have proliferated over time, and there are far more models of the cycle in existence than there are long-term field studies or field experiments. It is possible to model the hare cycle as a predator-prey oscillation, as a food plant-hare oscillation, as a parasite-hare interaction, as a cosmic particle – hare oscillation, as an intrinsic social – maternal effects interaction, and I have probably missed some other combinations of delayed-density dependent factors that have been discussed. That one can produce a formal mathematical model of the hare cycle does not mean that the chosen factor is the correct one.

The other point I would leave you with is the large amount of field work needed to sort out the mechanisms driving the population dynamics of hares. Ecology is not simple. This enigma of the ten-year cycle has always been a classic example in ecology and perhaps it is now solved. Or perhaps not?

Boonstra, R., D. Hik, G. R. Singleton, and A. Tinnikov. 1998. The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68:371-394.

Boutin, S., C. J. Krebs, R. Boonstra, M. R. T. Dale, S. J. Hannon, K. Martin, A. R. E. Sinclair, J. N. M. Smith, R. Turkington, M. Blower, A. Byrom, F. I. Doyle, C. Doyle, D. Hik, L. Hofer, A. Hubbs, T. Karels, D. L. Murray, V. Nams, M. O’Donoghue, C. Rohner, and S. Schweiger. 1995. Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74:69-80.

Keith, L. B., and L. A. Windberg. 1978. A demographic analysis of the snowshoe hare cycle. Wildlife Monographs 58:1-70.

Keith, L. B. 1990. Dynamics of snowshoe hare populations. Current Mammalogy 4:119-195.

Krebs, C. J., S. Boutin, R. Boonstra, A. R. E. Sinclair, J. N. M. Smith, M. R. T. Dale, K. Martin, and R. Turkington. 1995. Impact of food and predation on the snowshoe hare cycle. Science 269:1112-1115.

Krebs, C. J., S. Boutin, and R. Boonstra, editors. 2001. Ecosystem Dynamics of the Boreal Forest: the Kluane Project. Oxford University Press, New York.

Sheriff, M. J., C. J. Krebs, and R. Boonstra. 2009. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology 78:1249-1258.

Yan, C., N. C. Stenseth, C. J. Krebs, and Z. Zhang. 2013. Linking climate change to population cycles of hares and lynx. Global Change Biology 19:3263-3271.

Some Reflections on Evo-Eco

Some ecologists study evolutionary processes and we call them evolutionary ecologists. They have their own journals and are a thriving field of science. Other ecologists study populations, communities, and ecosystems in ecological time and do not in general concern themselves with evolutionary changes.The question is should they? Evo-Eco is a search for evolutionary changes that have a decisive impact on observable ecological changes like that of a collapsing bird population.

There are two schools of thought. The first is that evo-eco is very important and the changes that ecologists are trying to understand are partly caused by ecological mechanisms like predation and competition but are also associated with genetic changes that affect survival and reproduction. Consequently an ecologist studying the declining bird population should study both genetics and ecology. The second school of thought is that evo-eco is rarely of any importance in causing ecological changes, so that we can more or less ignore genetics if we wish to understand why this bird population is disappearing.

A practical problem immediately rears its head. To be safe we should all follow evo-eco in case genetics is involved in dynamics. But given the number of problems that ecologists face, the number of scientists available to analyse them, and the research dollars available it is rare to have the time, energy or money to take the comprehensive route. Conservation ecologists are perhaps the most tightly squeezed of all ecologists because they have no time to spare. Environmental managers request answers about what to do, and the immediate causes of conservation problems are (as everyone knows) habitat loss, introduced pests and diseases, and pollution.

The consequence of all this is that the two schools of thought drift apart. I cannot foresee any easy way to solve this issue. Progress in evolutionary ecology is often very slow and knowing the past rarely gives us much insight into predicting the human-affected future. Progress in conventional ecology is faster but our understanding is based on short-term studies of unknown generality for future events. Both schools of thought race along with mathematical models that may or may not tell us anything about the real world, but are conceptually elegant and in a pinch might be called progress if we had time to test them adequately.

The most useful evo-eco approach has been to look at human-caused selection via fishing for large sized fish or hunting for Dall sheep with the largest horns. The overuse of antibiotics for human sickness and as prophylactics for our farm animals is another classic case in which to understand the ecological dynamics we need to know the evolutionary changes that we humans have caused. These are clear cases in which genetic insights can teach us very much.

I end with a story from my past. In the 1950s, nearly 70 years ago now, Dennis Chitty working at Oxford on population fluctuations in small grassland rodents considered that he could reject most of the conventional explanations for animal population changes, and he suggested that individuals might change in quality with population density. This change he thought might involve genetic selection for traits that were favourable only in high density populations that reappeared every 3-4 years. So in some strange sense he was one of the earliest evo-eco ecologists. The result was that he was nearly laughed out of Oxford by the geneticists in control. The great evolutionary geneticist E.B. Ford told Chitty he was completely mad to think that short term selection was possible on a scale to impact population dynamics. Genetic changes took dozens to hundreds of years at the best of time. There were of course in the 1950s only the most primitive of genetic methods available for mammals that all look the same in their coat colour, and the idea that changes in animal behaviour involving territoriality might cause genetic shifts on a short-term period gradually lost favour. Few now think that Chitty was right in being evo-eco, but in some sense he was ahead of his time in thinking that natural selection might operate quickly in field populations. Given the many physiological and behavioural changes that can occur phenotypically in mammals, most subsequent work on grassland rodents has become buried in mechanisms that do not change because of genetic selection.

When we try to sort out whether to be concerned about evo-eco, we must strike a compromise between what the exact question is that we are trying to investigate, and how we can best construct a decision tree that can operate in real time with results that are useful for the research question. Not every ecological problem can be solved by sequencing the study organism.

Chitty, D. 1960. Population processes in the vole and their relevance to general theory. Canadian Journal of Zoology 38:99-113.

Models need testable predictions to be useful

It has happened again.  I have just been to a seminar on genetic models – something about adaptation of species on the edges of their ranges.  Yes this is an interesting topic of relevance to interpreting species’ responses to changing environments.  It ended by the speaker saying something like, “It would be a lot of work to test this in the field”. How much more useful my hour would have been spent if the talk had ended with “Although it would be difficult to do, this model makes the following predictions that could be tested in the field,” or “The following results would reject the hypothesis upon which this model is based.”

Now it is likely that some found these theoretical machinations interesting and satisfying in some mathematical way, but I feel that it is irresponsible to not even consider how a model could be tested and the possibility (a likely possibility at that) that it doesn’t apply to nature and tells us nothing helpful about understanding what is going to happen to willow or birch shrubs at the edge of their ranges in the warming arctic (for example).

Recommendation – no paper on models should be published or talked about unless it makes specific, testable predictions of how the model can be tested.