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Summary

The performance of an individual has remained at the heart of evolutionary biology since the
time of Darwin. Physiologists are equally drawn to the implications of individual variation
for health and sporting endeavours, and specifically, whether or not a physiological trait is
repeatable within an individual. Experimental biologists are especially interested in
temporally stable physiological traits that are relevant to an individual's lifetime fitness for
natural selection to act upon. Experimental noise, however, confounds the measurement of
such repeatability, even though validated protocols exist for measuring many meaningful
physiological performance traits. Missing is a decision matrix that helps distinguish
individual variation from experimental noise. We propose a precision-&-repeatability
assessment matrix (PRAM) that integrates established assessments of individual variability
and repeatability. This matrix places metrics that are more repeatable and precise in the
quadrant closest to the origins of Cartesian coordinates; those farthest away are less
acceptable in terms of both repeatability and precision. As a case study, PRAM is applied to
whole-organism aerobic and non-aerobic metabolic performance metrics from fish that were
measured with the same protocols. The analysis illustrates that aerobic metabolic metrics can
be more repeatable and precise than non-aerobic ones. Consequently, PRAM helps
physiologists to better understand whether the observed variability is due to non-repeatable

metrics or true individual variation.

Glossary

Absolute aerobic scope (AAS): the numerical difference between maximum and standard

metabolic rate, defining the aerobic capacity of animals for their activities [1].

Aerobic metabolism: metabolic pathways supported by oxidative phosphorylation under a

steady-state condition.

Aerobic metric: a metric measured with a standardized test at the organismic level that

estimates either the rate, performance or capacity of aerobic metabolism.

Accumulated oxygen deficit (AOD): Accumulated oxygen deficit is the anaerobic capacity of
an animal in oxygen equivalents to be comparable with absolute aerobic scope [2]. It can be
measured as the cumulative oxygen deficit when animals are in a severely low oxygen level

below critical oxygen saturation and before the animals lose their upright equilibrium.
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Anaerobic metabolism: metabolic pathways temporarily supported by substrate-level

phosphorylation. Also referred to as non-aerobic at the whole-animal level.

Non-aerobic metric: a metric measured with a standardized test at the organismic level that
reflects the performance or capacity of anaerobic pathways. The metric is measured at the
organismic level with a standardized test that reflects the performance and capacity based on
high-energy phosphate stores, oxygen stores in tissues and substrate-level phosphorylation

metabolic pathways.

Bland-Altman analysis: an established statistical method that quantifies measurement

variability when a metric is remeasured on the same individual [3].

Critical oxygen saturation: minimum O saturation (critical Oz saturation, Ozc:it) needed to

sustain standard metabolic rate [4] [5].
Ectotherm: an animal whose body temperature conforms to ambient temperature.

Experimental noise: experimental noise that is attributable to operational, instrumental,
methodological, and/or analytical variability. Experimental noise is reduced through better
controls (either methodologically or statistically), better testing equipment and better training

of personnel who make the measurements.

Excess post-exercise oxygen consumption (EPOC): O; requirement to restore tissue O2 stores
and high-energy phosphate stores, and to metabolize the end products of substrate-level
phosphorylation after exhaustive exercise [6]. EPOC is another form of accumulated oxygen

deficit.

Factorial aerobic scope (FAS): Factorial aerobic scope measures the aerobic capacity as the
ratio to the minimum maintenance oxygen demands (maximum O uptake / standard

metabolic rate) [7].

Factorial scope for oxygen deficit (FSOD): the ratio between critical oxygen saturation and

incipient lethal oxygen saturation [8].

Incipient lethal oxygen saturation (ILOS): oxygen level when the fish loses its upright

equilibrium, an assessment of hypoxia tolerance [9].

Individual repeatability: The degree to which a trait in an individual is statistically similar
each time it is remeasured. While individual repeatability can be statistically tested,

repeatability is typically considered within a specific and defined timescale.
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87  Individual variability: The degree to which a trait numerically varies each time it is

88  remeasured in an individual; The converse of individual repeatability.

89  Maximum oxygen consumption rate (MO2zmax): the maximum attainable rate of oxygen

90  uptake [6] [10].

91  Physiological metric: a physiological measurement made at one or multiple levels of a

92  biological system.

93  Precision: the variability of a repeated measurement; higher numerical variability reflects less
94  precision. Therefore, identifying or improving the precision of measurement improves our
95 confidence in assessing the repeatability of the trait by reducing the risk of Type-II statistical

96 errors so that true biological variation can be detected [11].

97  Routine metabolic rate (RMR): metabolic rate when animals are in a state of routine

98 activities, which is very much situation-specific [12].

99  Scope for oxygen deficit (SOD): the numerical difference between critical oxygen saturation

100  and incipient lethal oxygen saturation [8].

101  Stability: A condition of a metric or trait measured in an individual that exhibits high
102  repeatability. A less variable trait has greater stability. Stability (see below) is inferred from a

103  statistical test of a metric’s repeatability within an individual.
104  Standard metabolic rate: the minimum maintenance metabolic rate in the postabsorptive state.

105  Time instantaneous MO, is above 50% absolute aerobic scope (T>s0%aas): The amount of
106  time an animal spends above 50% of its absolute aerobic scope during measurement of

107  standard metabolic rate [13].
108  Trait: a well-defined biological metric that has proven mechanistic underpinnings.

109  Variation: describes the differences in values for a given metric among individuals [14] [15].
110  Variation is a theoretical concept of frequency distribution pertaining to true biological

111 differences seen among individuals within a population for a metric.

112 Variability: Variability combines biological variation among a group of individuals and the
113 influence of experimental noise on the values for a given metric, i.e., the full tendency of
114  individual differences in a metric [14] [15] [16].

115 " The abbreviations listed in the glossary will be directly referred to in the main text.
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116  Conceptualizing the challenge

117 Individual variation in physiological performance traits is fundamental for evolution
118  through natural selection [17] [18]. Thus, the performance of individuals ultimately

119  influences the chance of success of a species, a strain, or a population, just as individual

120  human athletes succeed in sports competitions. Consequently, the past century of science has
121  emphasized the importance of individual variation in evolutionary processes [19], and

122 individual-based models have become central in ecology for many decades [20] [21].

123 Likewise, performance studies in elite athletes have revealed why ‘winners’ are winners, and
124  also provided insight into the upper limits of human physiological performance and the

125  capacity of physiological systems to acclimatize [22]. Beyond human athletes, the

126  physiological limits, capacities and acclimatization potential of other animals are beginning
127  tounfold (e.g, [1] [23-25] [26] [27]). Ultimately, measurement systems that can reliably and
128  precisely estimate the repeatable physiological variation among individuals remain at the

129  heart of both biomedical research and evolutionary biology [17], despite the attraction of

130  "The Golden Mean" and a long tradition in scientific culture of minimizing individual

131  variation in our data to obtain a clear picture.

132 A core challenge for experimental biologists examining the repeatability of individual
133 traits is experimental noise, which exists even when laboratory experiments are highly

134  controlled (Fig. 1). Indeed, if experimental noise is too great when a physiologically

135  meaningful trait is measured and then remeasured for an individual, a Type II statistical error
136  (false negative) can emerge in both longitudinal and cross-sectional studies (because

137  experimental noise equally influences control and treatment groups). Thus, both longitudinal
138  and cross-sectional physiological studies often assume that a trait in an individual is

139  temporally stable over the timescale of the experiment [28].

140 Yet, physiological systems are dynamic, e.g., ontogeny and aging [29]. Moreover,
141  comparative physiologists who study ectotherms routinely measure this dynamic when

142  measuring acclimation or acclimatization responses to new environmental conditions.

143 Therefore, while comparative physiologists have necessarily examined the temporal stability
144  of a physiological trait in “control” animals, the understanding of the repeatability of

145  physiological traits under “experimental” conditions (where the animal is challenged to

146  perform) lags well behind that of sports and biomedical physiology [e.g., exercise

147  performance [30] [31], temperature regulation [32] [33] [34] [35], and overall metabolism
148  [36] [37] [38] [39].
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149 Consequently, the major goal of this study is to propose and test an analytical

150  approach that would help comparative physiologists better separate those traits within an
151  individual that are repeatable, from those traits confounded by too much experimental noise.
152  Herein, we propose a Precision-&-Repeatability Assessment Matrix (PRAM) that integrates
153  established statistical methods that can measure variability and individual repeatability (see
154  Glossary for important distinction). Furthermore, our case study, which focuses on whole-
155  organism physiological performance, is a suitable candidate for all animals because of its
156  established relationship to locomotion performance [40], its important implications on

157  lifetime fitness [41] [42], and its demonstrated genetic underpinnings in some ectothermic
158  vertebrate systems [27] [43].

159 In particular, metabolic rate, typically estimated by measuring oxygen (Oz) uptake
160  under various conditions (e.g., basal, routine, or maximum sustainable O» uptake rates) and
161  environments, has been broadly used to assess the robustness of the vertebrate

162  cardiorespiratory system [44] [45] and even linked to human longevity [46] [47] [48]. We
163  also consider metrics of whole-animal anaerobic metabolism, the glycolytic pathways that
164  utilize substrate-level phosphorylation to generate ATP, which in contrast, play a crucial role
165  in shorter-term, life-promoting situations [6] [2] [49] [50] [51] [52] [53], such as

166  environmental hypoxia [54] [2] [55], predation and predator-escape responses [56] [57] [58]
167  [59], and difficult reproductive migration passages [60] [23]. Indeed, anaerobic metabolic
168  metrics have received scant attention; just 12% of published repeatability studies in sports
169  medicine and comparative physiology (summarized in Table S1) have examined indirect
170  metrics to make largely inferential assessments of whole-animal anaerobic performance

171 (Table S1). Here, we take advantage of the standardized Integrated Respiratory Assessment
172 Protocol (IRAP, see supplementary materials for details) that measures both aerobic and
173  anaerobic metabolic metrics on individual fish. No single study to date has compared the
174  repeatability of aerobic and non-aerobic metabolic metrics. Therefore, our secondary goal is
175  to compare the repeatability of aerobic and non-aerobic metrics for whole-animal metabolism
176  measured by IRAP.

177

178  The focus of comparative physiology on the metabolic rate of fishes

179 Comparative physiologists study perhaps the most diverse biological system among
180  all experimental biologists, which in turn is well poised to tackle the challenges of studying
181  biological variations. Among all the physiological performance traits studied in vertebrates, a

182  great deal is known about the precision and reliability of whole-animal metabolic

6
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183  measurement techniques in fish [1] [6] [61] [62] [63] [4] [64] [65] [66] [67] [68] [10] [69]
184  [70] [71] [72]. Moreover, fish species are the most diverse vertebrate lineage (over 30,000
185  species), representing over 50% of vertebrate species by number and inhabiting almost every
186  aquatic environment on the planet [73] [74]. Their physiological systems, as a result, are

187  replete with biological variation and acclimation potential. Even a fundamental physiological
188 trait such as blood O transport can vary enormously among fish species [75] [76], which

189  have the only known vertebrate lineage without haemoglobin (e.g., icefish [77]). Within an
190  individual, different haemoglobin isoforms can change over periods of three weeks [78], and
191  factors that alter the oxygen affinity of hemoglobin can be modified within hours [79] [80].
192 Yet, comparative physiologists have continued to package individual variation around
193  a mean value bounded by the standard error bars rather than exploring the potential

194  significance of this individual variation, namely the ‘Tyranny of the ‘Golden Mean’ [17].

195  Although the reasons for the emphasis on the ‘Golden Mean’ in comparative physiology

196  remain valid and multifaceted [81], gains are being made in acknowledging individual

197  variation, reporting the precision of measurements [11] and reporting experimental conditions
198  to better assess the methodologies [81]. (Table 1 summarizes the challenges of pursuing high-
199  quality experimental studies of physiological performance alongside immediate and long-
200 term solutions.). Therefore, we propose that comparative physiology and fish physiology

201  specifically can benefit from the application of PRAM, which incorporates some of the key
202  operational principles used in biomedical physiology and animal ecology.

203

204  Approaches used by other disciplines to account for individual variation

205 Biomedical physiologists typically identify a healthy human state within a range of
206  values for a given parameter that is normal for individuals (rather than a single mean of a

207  population), an approach not systematically explored by comparative physiologists [82] [11].
208  The presumption with this approach is that the parameter can be measured precisely.

209 A Bland-Altman analysis, a statistical approach to assess individual variation [3] [83],
210 s often used in sports physiology. It calculates the percentage difference between two

211  measurements taken from the same individual, divided by their average [3]. The percentage
212 difference measured on the same individual and the average value become a single data point
213 on a Bland-Altman plot (Fig. 2). Experimental noise, however, is incorporated into a Bland-
214 Altman analysis of individual variation.

215 The normalized coefficient of repeatability (COR) for a group of individuals

216  quantifies the variability of a metric (Fig. 2) (Eqn. 1) [83].

7
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2 X /[Xi—w 2]/ (N-1)

217  Eqn. I: Normalized COR = 1Bz

X 100%

218 where y; is each value of the difference between two repeated measurements from
219  each individual, u is the mean of the difference between the two repeated measurements, N is
220  the sample size, a is the value of a metric measured in the 1% test, and f8 is the value of a

221  metric measured in the 2" test.

222 Repeatability of rank order in a repeated measurement design has been used by

223 comparative physiologists to examine if the individuals maintain their relative rank within a
224  population despite a shift in the population average (Also see the rank order analyses of our
225  dataset in Figs. S1, S2) [84] [85] [86] [87] [88] [89]). Analysis of rank order, however, loses
226  the quantitative aspect of the metric under consideration: the winner can remain the winner,
227  but information on the absolute performance is lost.

228 Generalized Linear Mixed Models (GLMM) are often used by animal ecologists and
229  ecophysiologists working in field settings who face a greater challenge than laboratory-based
230  experimental biologists concerning the ability/inability to control important environmental
231  variables, e.g., temperature, rainfall, humidity, salinity, oxygen levels, and photoperiod.

232 Uncontrolled environmental variables add to experimental measurement “noise”. In this case,
233 a Generalized Linear Mixed Model (GLMM) statistical approach can account for the impacts
234 of variables that cannot be controlled [90] [91] [92] and the contribution of the experimental
235  noise [93] [94] when testing the repeatability of measured metrics. A GLMM, however, does
236  not attempt to separate experimental measurement noise from true individual variation.

237

238  Precision-&-Repeatability Assessment Matrix (PRAM)

239 In view of the limitations for each of the statistical approaches noted above (Table
240  S2), we propose a Precision-&-Repeatability Assessment Matrix (PRAM) that graphically
241  combines a parametric test of repeatability (the Pearson correlation coefficient) with a

242  normalized COR. This theoretical framework then provides a quantitative approach for

243  experimental biologists to better visualize the repeatability and variability of metrics (Fig. 3).
244 PRAM statistically quantifies variability within the individual-based measurements
245  using the well-established Bland-Altman analysis [95] [3] [96] [30]. Also, correlation

246  analysis (e.g. Pearson’s correlation coefficients) assesses the repeatability of a given metric
247  measured twice on the same individual using a balanced design [97] [90]. These two

248  statistical analyses are then placed on Cartesian coordinates to arrive at a decision matrix with

249  four quadrants (Fig. 3) that inform the quality of the performance metric by parsing out the
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250  biological variation among a group of individuals and experimental noise. For example, the
251  quadrant closest to the origin identifies a metric that is stable and measured by precise

252 protocols (i.e., resulting in low experimental noise). These repeatable metrics would be best
253  suited for testing hypotheses, developing theories, and building models with strong predictive
254  power. Moving away from the origin of the quadrant, the other quadrants represent metrics
255  that are less repeatable for different reasons, i.e., precise measurements applied to unstable
256 traits, imprecise measurements applied to stable traits, and imprecise measurements applied
257  to unstable traits (Fig. 3). Therefore, the decision matrix of PRAM helps distinguish

258  experimental noise from individual variation, enabling a better understanding of

259  physiological variation.

260

261 A case study: applying PRAM to whole-animal metabolic metrics for fish

262 The data used for the case study were those collected from two independent repeated-
263  measure design studies with two genetically distant athletic fish species, Atlantic salmon

264 (Salmo salar) and European sea bass (Dicentrarchus labrax) [98] [99] [100]. Both studies
265  retested the same individuals after ~4 weeks (see Supplementary Materials for animal

266  information). Moreover, both used IRAP, which holistically characterizes an individual fish’s
267  respiratory phenotype by measuring up to 13 metrics for the performance and capacity of
268  aerobic and anaerobic metabolism [8] (see Glossary for full definitions of terms &

269  supplementary material for details of their measurement, Fig. S3, S4). Consequently, the

270  same practitioners performed the standardized IRAP procedure under controlled laboratory
271 conditions and with similar equipment (Table S3), which minimized operator variability (see
272 Table 1). Also, phenotype stability assessment was conducted over a 1-2 month time frame,
273  acknowledging that fish can partially or fully acclimate to new environmental conditions over
274 several weeks [101] [102] [103] and that only similar life stages should be compared in the
275  first instance.

276 In principle, the temporally stable traits measured precisely should be repeatable

277  across species. Otherwise, the targeted trait either does not have a consistent stability among
278  individuals within in species, or the measurement is imprecise. PRAM was then applied to
279  identify which individual traits were stable, which were not and which were noisy (Fig. 4).
280 When COR was less than 53%, a metric was nearly three times likely to be repeatable
281  (the peak of the frequency distribution of arbitrary p-value < 0.05 was nearly triple the peak
282  ofthe frequency distribution of p-value > 0.05, Fig. 4a). When COR was greater than 53%,

283  the chance of a metric being unrepeatable increased (Fig. 4a). Therefore, we used COR of

9
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284  53% as a nominal line of reference for the measurement precision in this analysis (Note: 53%
285 s applicable for this dataset and a work in progress). The working criteria to set the threshold
286  value are 1) the transition point in the frequency distribution of COR where metrics start to
287  shift from a higher chance (e.g. 2-3 times more likely) being repeatable to a lower (e.g. 0.5
288  times) chance being repeatable. We then set the quadrants for PRAM arbitrarily as COR of
289  53% for measurement precision (green vertical dashed line on the x-axis) and repeatability
290  (green horizontal dashed line on the y-axis) (Fig. 4b). As perhaps expected, the more

291  precisely measured metrics (i.e. smaller COR values) tended to be more repeatable

292 (correlation test: p-value < 0.01, Fig. 4b), but with some exceptions, e.g., FSOD was

293  measured precisely and was not repeatable (Fig. 4b).

294 PRAM also demonstrated that individual aerobic metabolism traits (AAS, FAS,

295  MOsmax, SMR, and RMR) were repeatable for both species of athletic fish. The only

296  unrepeatable aerobic metric was T>s0%aas, an index of spontaneous activity that is likely

297  context-dependent. MOzmax is an important independent metric to derive AAS & FAS. Bland-
298  Altman analysis on MOamax demonstrated that MOsmax has a limited measurement variability
299  (the narrow horizontal band in Fig. 2; Bland-Altman analyses of other metrics are in Fig. S5
300 & S6), a finding that may reflect past efforts to establish reliable measurement techniques for
301 MOomax [10] [69] [104] [45] and the tightly coupled steps of the O» transport cascade for peak
302  performance in vertebrates [105] [106]. When measured properly, MOzmax should have

303 limited intra-individual variation in a repeated measure design, as previously shown in

304  healthy humans [83] [107] [106] [22]. Thus, PRAM analysis confirmed that measurement
305  precision and trait stability were necessary features of the well-established independent

306  performance metrics. Indeed, studies with other animal taxa find strong repeatability of

307  aerobic metabolic metrics (Table S1). Also, SMR, MOomax, AAS and FAS have been related
308 to the lifetime fitness of vertebrate species in various environments [108] [109] [110] [111]
309 [27], with some but not all [112] studies finding stable traits within a life stage.

310 A novel discovery of the PRAM analysis was that whole-organism anaerobic

311  metabolism metrics were generally either unstable or were imprecisely measured. For

312 example, EPOC, a metric that predominantly measures the oxygen equivalents of glycolytic
313  metabolism during exhaustive exercise, was reported as both a stable and an unstable metric.
314  This discovery may reflect the many challenges that still exist to properly quantify anaerobic
315 metabolism at the organismal level (see reviews [113] [114] [115] [116]), those beyond the
316  extent to which glycolysis is affected by individual variation in cardiorespiratory robustness

317 [71][72][2][117][100]. For example, differences in phosphagen and metabolic substrate

10
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318  stores, as well as glycogenesis, can all potentially introduce variation [118] [119] [120].

319  Similar concerns also apply to the scope for oxygen deficit, a new performance proxy for the
320 anaerobic capacity of a fish in a hypoxia challenge test, [8] which quantifies the accumulation
321  of glycolytic end-products and different demands on glycolysis in severe hypoxia [8] [121].
322 The Bland-Altman analysis for the scope for oxygen deficit revealed large variability (a

323 wider horizontal band in Fig. 2; see Bland-Altman analyses for other metrics in Fig. S5 &
324  S6). Thus, assessment protocols for whole-animal anaerobic capacity and performance,

325  which remain in their infancy, perhaps should be given greater attention to develop more

326  precise methods, especially given that they fuel shorter-term, life-saving activities.

327 Surprisingly, PRAM analysis revealed important nuances for two widely used and
328  well-established metrics used to estimate hypoxia tolerance in fish, i.e., Oacrit and ILOS,

329  which were measured with the same standardized hypoxia challenge test [9]. While Oacrit was
330 precisely measured (i.e. low experimental noise) in both species, ILOS was precise only in
331  Atlantic salmon (Salmo salar) and not in European sea bass (Dicentrarchus labrax) (Fig. 4b).
332 Oqdit, as calculated here, benefits from an objective mathematical approach (SMR is the

333  Dbaseline to derive an intercept with a linear regression equation [64] [5]). In contrast, ILOS is
334  avisually subjective recording of the ambient Oz level when a fish loses its upright

335  equilibrium. Why Ozcrit demonstrated inter-specific variation [67] for its repeatability

336  between S. salar but not D. labrax is unclear.

337

338  Future directions for research on the repeatability of individual variation in

339  experimental biology

340 Our case study of PRAM using IRAP metrics for two species of ray-finned fish is

341  only a demonstration that informs us of a few key general principles for experimental

342 biology. An unstable trait can be unrepeatable even when precisely measured (Quadrant II in
343  PRAM; Fig. 3). Conversely, and as expected, a stable trait requires a standardized protocol to
344  generate precise measurements (i.e., low experimental noise) (Quadrant III in PRAM; Fig. 3).
345  Being able to distinguish the two scenarios is important for biological experiments, and this is
346 what PRAM achieved. The same principles likely apply to other performance metrics in other
347  animal and human models, and perhaps across multiple biological organizations.

348 Striving for repeatability has been a common goal among experimental biologists in
349  recent literature [122] [123] [124] [125] [11]. The central idea behind the PRAM is to

350 characterize the repeatability and measurement variability of a metric on a decision matrix to

351  distinguish the true physiological variation from experimental noise. PRAM assesses the

11



bioRxiv preprint doi: https://doi.org/10.1101/2025.07.14.664826; this version posted July 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

352  quality of the metrics and informs the types of conclusions that can be drawn. Much work
353  remains, however, to identify the multifaceted physiological reasons for the differences in
354  repeatability for metabolic metrics, as well as further analyses of the PRAM framework in
355 acclimation (or acclimatization) studies. For example, how certain acclimation states can lead
356  to less stable traits (e.g. transition from quadrant I to quadrant II). Hence, we welcome future
357 improvements to the decision matrix, given that statistical assessment methods are constantly
358  evolving. For example, the quantification of variance can use the coefficient of variation or
359  covariance [126] [91], and the assessment of repeatability can use residual variance [90]. For
360 repeatability tests conducted on more than two time points (e.g. [127] [58] also see reviews
361  on this topic: [126] [128]), the decision matrix can identify the sources of the variability in a
362  pair-wise manner across multiple time sampling points. The criteria for the COR threshold
363  that determine a precise measurement are a work in progress. It remains to be tested with

364  future studies whether a more rigid COR threshold can be established (e.g., ~50% COR).

365 The PRAM framework can also contribute to two long-standing questions in

366  experimental biology: 1) How to mitigate the trade-offs between sample size and

367  measurement precision to improve statistical power at a limited experimental resource? 2)
368  How to account for the learning behaviours over multiple repeatability tests? First, if the

369  imprecise measurement (quadrant III) quantifies the stable traits, a large sample size can

370  potentially compensate for the statistical power. Still, increasing the sample size of imprecise
371  measurement would be less productive than trying to source and reduce the noise. If the

372  measurements are precise and targeting stable traits (quadrant I), a smaller sample size might
373 be needed to reach the desired statistical power. The precise metrics would better utilize the
374  limited research resources when quantifying the plastic traits (e.g., quadrant II). Moreover,
375 our PRAM framework could be used to retrospectively analyze existing data, as shown here,
376  to identify metrics that appear robust (quadrant I) and in need of some scrutiny (quadrants III
377 & 1V), as well as either rejecting those metrics in quadrant IV or investigating the underlying
378 issues. One potential issue worth investigating is the importance of learning behaviour in the
379  quality of a metric. Using the PRAM framework as part of an experimental design can help
380 answer the question of how many repeatability tests and over what time intervals are

381  necessary.

382 Overall, PRAM analysis will help comparative physiologists and experimental

383  biologists to objectively, quantitatively, visually and more systematically understand the

384  metrics they measure. PRAM can be applied well beyond the limited number of metrics used

385  here as a case study. Furthermore, PRAM can better calibrate the confidence placed in the

12
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386 indicators that we believe are metrics of fundamental metabolic traits. This analytical

387  approach can enable physiological metrics to be better integrated into studies of genomics,
388  molecular mechanisms, biomechanics, the life history of the organisms, and the

389  environmental selection pressure over the evolutionary history. After all, inter-individual

390 variation is the raw material for evolution through natural selection.
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Table 1. Challenges and solutions to improve data quality. Three general areas of challenge that collectively contribute to
experimental noise are instruments, biology and operators. For each area, suggestions for both short- and long-term solutions are

Challenge

Possible immediate solution

Possible long-term solution

Instrument error
Measurement error vs
Biological variation

Operator error

Standardize and improve experimental instrumentation
o [ess stressful and invasive measurement techniques
e Standardize approaches for data analysis

o Standardize protocols

Improve individual training

Funding of university-industry collaborations to improve instruments
More funding and less restrictions for exploratory research

Streamline training

414
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415  Fig. 1. Schematic of the effects of methodological errors on measuring stable traits.

416  When measuring a stable trait, the protocol, electronic, and analytical errors can inflate the
417  variability of the measurement (for simplicity, the experimental noise is assumed to be

418  equally distributed around the true mean in the schematic) and mask the real biological

419  variation. At a new steady state, the distribution of biological variation can shift to a different
420 level. If instrumental, protocol, and analytical errors are sufficient, measurement variability
421  can overlap amply to compromise the precision in quantifying the real biological variation.
422 The principal idea is to eliminate sources of error as best as possible to detect 1) what the real
423  biological variation is and 2) any shifts in the true value of an individual metric.

424  Fig. 2. Bland-Altman analyses of repeatable and unrepeatable metabolic metrics

425  characterized by the standardized Integrated Respiratory Assessment Protocol (IRAP),
426  which measures whole-animal aerobic and non-aerobic metabolic metrics. Metrics were
427  remeasured 4 weeks apart on the same individuals of European sea bass (Dicentrarchus

428  labrax) at 25 °C (~30 ppt, ~60 g, n=16) and Atlantic salmon (Sa/mo salar) at 11 °C (~30 ppt,
429  ~75 g, n=16). Metrics in blue were repeatable; metrics in red were unrepeatable (as

430  determined by the Pearson correlation coefficient test using p < 0.05 (r-value: p-values

431  appeared in the upper right corner of each figure). Coloured shading indicates 95% limits of
432 agreement, a measure of the metric variability (twice its standard deviation and accounting
433 for the mean difference of the two measurements). Here, as representatives, an aerobic

434  metabolic metric is the maximum oxygen uptake rate (MOzmax) and a non-aerobic metabolic
435  metric is scope for oxygen deficit (SOD). The repeatable aerobic metabolic metric has a

436 much narrower band of intra-individual variability (a smaller value of 95% limits of

437  agreement) than the unrepeatable non-aerobic metabolic metric. The data were adapted from
438  the published studies [98] [100].

439  Fig. 3. Theoretical framework for measurement precision and trait stability using a
440  Precision-&-Repeatability Assessment Matrix (PRAM). The decision matrix is an

441  analytical concept and approach based on the association between the variability of metrics
442  and the repeatability of the metrics. The utility of the decision matrix is to distinguish the
443  stability of traits in individuals from the experimental noise. The normalized coefficient of
444  repeatability (COR) is a proxy for measurement precision at the x-axis, and the p-value from
445  correlation coefficient tests is a proxy for repeatability at the y-axis. This forms quadrants of
446  interest: 1) precise measurements and stable traits; ii) precise measurements and unstable

447  traits; iii) imprecise measurements and stable traits; iv) imprecise measurements and unstable
448  traits. The area of transition for repeatability is a p-value of 0.05 using correlation coefficient
449  tests. The area of transition for precision is the normalized coefficient of repeatability value
450  with threshold values corresponding to a higher probability for the metrics to become

451  repeatable (e.g. p-value < 0.05).

452  Fig. 4. An examination of the relationship between the variabilities of metabolic metrics
453  with the repeatability of the metabolic metrics. (a) The frequency distributions of the p-
454  value of Pearson correlation coefficient tests (categorized into groups of Pearson p < 0.05 and
455  Pearson p > 0.05) informed the formation of quadrants in the Precision-&-Repeatability

456  Assessment Matrix (PRAM; see Fig. 3). The green vertical dashed lines [normalized

457  coefficient of repeatability (COR) = 53%] are based on the frequency distribution of the p-
458  value of Pearson correlation coefficient tests. When the metrics have COR values of less than
459  53% (between the origin and the green vertical dashed lines), the metrics have nearly three
460  times higher probabilities of being repeatable (p < 0.05). When COR is larger than 53%

461  (beyond the green vertical dashed lines), the metrics had a lower chance of being repeatable.
462  (b) The green vertical dashed lines annotate the threshold (COR = 53%) where metrics
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463  change from being precise to imprecise. The p-value of 0.05 is annotated by the green

464  horizontal dashed lines to indicate the area where the metrics gradually become unrepeatable
465  from being repeatable. Using these arbitrary threshold values of repeatability and precision,
466  quadrants were formed in panels using the theoretical framework of PRAM: 1) precise

467  measurements and stable traits; ii) precise measurements and unstable traits; iii) imprecise
468  measurements and stable traits; iv) imprecise measurements and unstable traits. Different

469  symbols denote different metabolic metrics. To understand the general relationship between
470  variabilities and repeatability, the analyses combined the measurements obtained from

471  European sea bass (Dicentrarchus labrax) at 25 °C (~30 ppt, ~60g, n=16; filled symbols) and
472 Atlantic salmon (Salmo salar) at 11 °C (~30 ppt, ~75g, n=16; half-filled symbols). Metrics in
473 blue measure traits when animals predominantly rely on aerobic metabolism (i.e. aerobic

474  traits), and metrics in red measure traits when animals engage in a substantial amount of

475  glycolysis (i.e. non-aerobic traits). Aerobic metabolic metrics (in blue) include absolute

476  aerobic scope (AAS), factorial aerobic scope (FAS), maximum oxygen uptake (MO2max),

477  standard metabolic rate (SMR), routine metabolic rate (RMR), and time spent above 50%
478  AAS (T>50% aas). Non-aerobic metabolic metrics (in red) include excess post-exercise

479  oxygen consumption (EPOC), scope for oxygen deficit (SOD), the factorial scope for oxygen
480  deficit (FSOD), incipient lethal oxygen saturation (ILOS), accumulated oxygen deficit

481  (AOD) and critical oxygen saturation (Oacrit). In general, less variability in measuring the

482  metrics is positively related to the higher probabilities of being repeatable metrics. The data
483  were adapted from the published studies [98] [100].
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