
A decision matrix to better identify repeatable physiological variation 1 

within individuals 2 

Yangfan Zhang1,2*, Chris M. Wood2, Colin J. Brauner2, Anthony P. Farrell2  3 

1Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, USA, 02138 4 

2Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, VT6 1Z4 5 

 6 

 7 

 8 

 9 

Short title: The repeatability of physiological variation in individuals. 10 

 11 

Keywords: individual variation, physiological performance, cardiorespiratory system, Bland-Altman 12 

analysis, standardized protocols, stable trait, precise measurement 13 

The corresponding author’s email: yangfan_zhang@fas.harvard.edu 14 

 15 

 16 

 17 
 18 

 19 

 20 

 21 

 22 

 23 

  24 

 25 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2025. ; https://doi.org/10.1101/2025.07.14.664826doi: bioRxiv preprint 



Summary 26 

The performance of an individual has remained at the heart of evolutionary biology since the 27 

time of Darwin. Physiologists are equally drawn to the implications of individual variation 28 

for health and sporting endeavours, and specifically, whether or not a physiological trait is 29 

repeatable within an individual. Experimental biologists are especially interested in 30 

temporally stable physiological traits that are relevant to an individual's lifetime fitness for 31 

natural selection to act upon. Experimental noise, however, confounds the measurement of 32 

such repeatability, even though validated protocols exist for measuring many meaningful 33 

physiological performance traits. Missing is a decision matrix that helps distinguish 34 

individual variation from experimental noise. We propose a precision-&-repeatability 35 

assessment matrix (PRAM) that integrates established assessments of individual variability 36 

and repeatability. This matrix places metrics that are more repeatable and precise in the 37 

quadrant closest to the origins of Cartesian coordinates; those farthest away are less 38 

acceptable in terms of both repeatability and precision. As a case study, PRAM is applied to 39 

whole-organism aerobic and non-aerobic metabolic performance metrics from fish that were 40 

measured with the same protocols. The analysis illustrates that aerobic metabolic metrics can 41 

be more repeatable and precise than non-aerobic ones. Consequently, PRAM helps 42 

physiologists to better understand whether the observed variability is due to non-repeatable 43 

metrics or true individual variation. 44 

 45 

Glossary 46 

Absolute aerobic scope (AAS): the numerical difference between maximum and standard 47 

metabolic rate, defining the aerobic capacity of animals for their activities [1]. 48 

Aerobic metabolism: metabolic pathways supported by oxidative phosphorylation under a 49 

steady-state condition. 50 

Aerobic metric: a metric measured with a standardized test at the organismic level that 51 

estimates either the rate, performance or capacity of aerobic metabolism. 52 

Accumulated oxygen deficit (AOD): Accumulated oxygen deficit is the anaerobic capacity of 53 

an animal in oxygen equivalents to be comparable with absolute aerobic scope [2]. It can be 54 

measured as the cumulative oxygen deficit when animals are in a severely low oxygen level 55 

below critical oxygen saturation and before the animals lose their upright equilibrium. 56 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2025. ; https://doi.org/10.1101/2025.07.14.664826doi: bioRxiv preprint 



3 
 

Anaerobic metabolism: metabolic pathways temporarily supported by substrate-level 57 

phosphorylation. Also referred to as non-aerobic at the whole-animal level. 58 

Non-aerobic metric: a metric measured with a standardized test at the organismic level that 59 

reflects the performance or capacity of anaerobic pathways. The metric is measured at the 60 

organismic level with a standardized test that reflects the performance and capacity based on 61 

high-energy phosphate stores, oxygen stores in tissues and substrate-level phosphorylation 62 

metabolic pathways. 63 

Bland-Altman analysis: an established statistical method that quantifies measurement 64 

variability when a metric is remeasured on the same individual [3]. 65 

Critical oxygen saturation: minimum O2 saturation (critical O2 saturation, O2crit) needed to 66 

sustain standard metabolic rate [4] [5]. 67 

Ectotherm: an animal whose body temperature conforms to ambient temperature. 68 

Experimental noise: experimental noise that is attributable to operational, instrumental, 69 

methodological, and/or analytical variability. Experimental noise is reduced through better 70 

controls (either methodologically or statistically), better testing equipment and better training 71 

of personnel who make the measurements.  72 

Excess post-exercise oxygen consumption (EPOC): O2 requirement to restore tissue O2 stores 73 

and high-energy phosphate stores, and to metabolize the end products of substrate-level 74 

phosphorylation after exhaustive exercise [6]. EPOC is another form of accumulated oxygen 75 

deficit. 76 

Factorial aerobic scope (FAS): Factorial aerobic scope measures the aerobic capacity as the 77 

ratio to the minimum maintenance oxygen demands (maximum O2 uptake / standard 78 

metabolic rate) [7]. 79 

Factorial scope for oxygen deficit (FSOD): the ratio between critical oxygen saturation and 80 

incipient lethal oxygen saturation [8]. 81 

Incipient lethal oxygen saturation (ILOS): oxygen level when the fish loses its upright 82 

equilibrium, an assessment of hypoxia tolerance [9]. 83 

Individual repeatability: The degree to which a trait in an individual is statistically similar 84 

each time it is remeasured. While individual repeatability can be statistically tested, 85 

repeatability is typically considered within a specific and defined timescale.  86 
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Individual variability: The degree to which a trait numerically varies each time it is 87 

remeasured in an individual; The converse of individual repeatability. 88 

Maximum oxygen consumption rate (ṀO2max): the maximum attainable rate of oxygen 89 

uptake [6] [10]. 90 

Physiological metric: a physiological measurement made at one or multiple levels of a 91 

biological system. 92 

Precision: the variability of a repeated measurement; higher numerical variability reflects less 93 

precision. Therefore, identifying or improving the precision of measurement improves our 94 

confidence in assessing the repeatability of the trait by reducing the risk of Type-II statistical 95 

errors so that true biological variation can be detected [11].   96 

Routine metabolic rate (RMR): metabolic rate when animals are in a state of routine 97 

activities, which is very much situation-specific [12]. 98 

Scope for oxygen deficit (SOD): the numerical difference between critical oxygen saturation 99 

and incipient lethal oxygen saturation [8]. 100 

Stability: A condition of a metric or trait measured in an individual that exhibits high 101 

repeatability. A less variable trait has greater stability. Stability (see below) is inferred from a 102 

statistical test of a metric’s repeatability within an individual. 103 

Standard metabolic rate: the minimum maintenance metabolic rate in the postabsorptive state. 104 

Time instantaneous ṀO2 is above 50% absolute aerobic scope (T>50%AAS): The amount of 105 

time an animal spends above 50% of its absolute aerobic scope during measurement of 106 

standard metabolic rate [13]. 107 

Trait: a well-defined biological metric that has proven mechanistic underpinnings. 108 

Variation: describes the differences in values for a given metric among individuals  [14] [15]. 109 

Variation is a theoretical concept of frequency distribution pertaining to true biological 110 

differences seen among individuals within a population for a metric.  111 

Variability: Variability combines biological variation among a group of individuals and the 112 

influence of experimental noise on the values for a given metric, i.e., the full tendency of 113 

individual differences in a metric [14] [15] [16].  114 
* The abbreviations listed in the glossary will be directly referred to in the main text.   115 
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Conceptualizing the challenge 116 

 Individual variation in physiological performance traits is fundamental for evolution 117 

through natural selection [17] [18]. Thus, the performance of individuals ultimately 118 

influences the chance of success of a species, a strain, or a population, just as individual 119 

human athletes succeed in sports competitions. Consequently, the past century of science has 120 

emphasized the importance of individual variation in evolutionary processes [19], and 121 

individual-based models have become central in ecology for many decades [20] [21]. 122 

Likewise, performance studies in elite athletes have revealed why ‘winners’ are winners, and 123 

also provided insight into the upper limits of human physiological performance and the 124 

capacity of physiological systems to acclimatize [22]. Beyond human athletes, the 125 

physiological limits, capacities and acclimatization potential of other animals are beginning 126 

to unfold (e.g., [1] [23–25] [26] [27]). Ultimately, measurement systems that can reliably and 127 

precisely estimate the repeatable physiological variation among individuals remain at the 128 

heart of both biomedical research and evolutionary biology [17], despite the attraction of 129 

"The Golden Mean" and a long tradition in scientific culture of minimizing individual 130 

variation in our data to obtain a clear picture. 131 

 A core challenge for experimental biologists examining the repeatability of individual 132 

traits is experimental noise, which exists even when laboratory experiments are highly 133 

controlled (Fig. 1). Indeed, if experimental noise is too great when a physiologically 134 

meaningful trait is measured and then remeasured for an individual, a Type II statistical error 135 

(false negative) can emerge in both longitudinal and cross-sectional studies (because 136 

experimental noise equally influences control and treatment groups). Thus, both longitudinal 137 

and cross-sectional physiological studies often assume that a trait in an individual is 138 

temporally stable over the timescale of the experiment [28].  139 

Yet, physiological systems are dynamic, e.g., ontogeny and aging [29]. Moreover, 140 

comparative physiologists who study ectotherms routinely measure this dynamic when 141 

measuring acclimation or acclimatization responses to new environmental conditions. 142 

Therefore, while comparative physiologists have necessarily examined the temporal stability 143 

of a physiological trait in “control”  animals, the understanding of the repeatability of 144 

physiological traits under “experimental” conditions (where the animal is challenged to 145 

perform) lags well behind that of sports and biomedical physiology [e.g., exercise 146 

performance [30] [31], temperature regulation [32] [33] [34] [35], and overall metabolism 147 

[36] [37] [38] [39]. 148 
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Consequently, the major goal of this study is to propose and test an analytical 149 

approach that would help comparative physiologists better separate those traits within an 150 

individual that are repeatable, from those traits confounded by too much experimental noise. 151 

Herein, we propose a Precision-&-Repeatability Assessment Matrix (PRAM) that integrates 152 

established statistical methods that can measure variability and individual repeatability (see 153 

Glossary for important distinction). Furthermore, our case study, which focuses on whole-154 

organism physiological performance, is a suitable candidate for all animals because of its 155 

established relationship to locomotion performance [40], its important implications on 156 

lifetime fitness [41] [42], and its demonstrated genetic underpinnings in some ectothermic 157 

vertebrate systems [27] [43]. 158 

In particular, metabolic rate, typically estimated by measuring oxygen (O2) uptake 159 

under various conditions (e.g., basal, routine, or maximum sustainable O2 uptake rates) and 160 

environments, has been broadly used to assess the robustness of the vertebrate 161 

cardiorespiratory system [44] [45] and even linked to human longevity [46] [47] [48]. We 162 

also consider metrics of whole-animal anaerobic metabolism, the glycolytic pathways that 163 

utilize substrate-level phosphorylation to generate ATP, which in contrast, play a crucial role 164 

in shorter-term, life-promoting situations [6] [2] [49] [50] [51] [52] [53], such as 165 

environmental hypoxia [54] [2] [55], predation and predator-escape responses [56] [57] [58] 166 

[59], and difficult reproductive migration passages [60] [23]. Indeed, anaerobic metabolic 167 

metrics have received scant attention; just 12% of published repeatability studies in sports 168 

medicine and comparative physiology (summarized in Table S1) have examined indirect 169 

metrics to make largely inferential assessments of whole-animal anaerobic performance 170 

(Table S1). Here, we take advantage of the standardized Integrated Respiratory Assessment 171 

Protocol (IRAP, see supplementary materials for details) that measures both aerobic and 172 

anaerobic metabolic metrics on individual fish. No single study to date has compared the 173 

repeatability of aerobic and non-aerobic metabolic metrics. Therefore, our secondary goal is 174 

to compare the repeatability of aerobic and non-aerobic metrics for whole-animal metabolism 175 

measured by IRAP.  176 

 177 

The focus of comparative physiology on the metabolic rate of fishes 178 

Comparative physiologists study perhaps the most diverse biological system among 179 

all experimental biologists, which in turn is well poised to tackle the challenges of studying 180 

biological variations. Among all the physiological performance traits studied in vertebrates, a 181 

great deal is known about the precision and reliability of whole-animal metabolic 182 
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measurement techniques in fish [1] [6] [61] [62] [63] [4] [64] [65] [66] [67] [68] [10] [69] 183 

[70] [71] [72]. Moreover, fish species are the most diverse vertebrate lineage (over 30,000 184 

species), representing over 50% of vertebrate species by number and inhabiting almost every 185 

aquatic environment on the planet [73] [74]. Their physiological systems, as a result, are 186 

replete with biological variation and acclimation potential. Even a fundamental physiological 187 

trait such as blood O2 transport can vary enormously among fish species [75] [76], which 188 

have the only known vertebrate lineage without haemoglobin (e.g., icefish [77]). Within an 189 

individual, different haemoglobin isoforms can change over periods of three weeks [78], and 190 

factors that alter the oxygen affinity of hemoglobin can be modified within hours [79] [80].  191 

Yet, comparative physiologists have continued to package individual variation around 192 

a mean value bounded by the standard error bars rather than exploring the potential 193 

significance of this individual variation, namely the ‘Tyranny of the ‘Golden Mean’ [17]. 194 

Although the reasons for the emphasis on the ‘Golden Mean’ in comparative physiology 195 

remain valid and multifaceted [81], gains are being made in acknowledging individual 196 

variation, reporting the precision of measurements [11] and reporting experimental conditions 197 

to better assess the methodologies [81]. (Table 1 summarizes the challenges of pursuing high-198 

quality experimental studies of physiological performance alongside immediate and long-199 

term solutions.). Therefore, we propose that comparative physiology and fish physiology 200 

specifically can benefit from the application of PRAM, which incorporates some of the key 201 

operational principles used in biomedical physiology and animal ecology.  202 

 203 

Approaches used by other disciplines to account for individual variation  204 

Biomedical physiologists typically identify a healthy human state within a range of 205 

values for a given parameter that is normal for individuals (rather than a single mean of a 206 

population), an approach not systematically explored by comparative physiologists [82] [11]. 207 

The presumption with this approach is that the parameter can be measured precisely. 208 

A Bland-Altman analysis, a statistical approach to assess individual variation [3] [83], 209 

is often used in sports physiology. It calculates the percentage difference between two 210 

measurements taken from the same individual, divided by their average [3]. The percentage 211 

difference measured on the same individual and the average value become a single data point 212 

on a Bland-Altman plot (Fig. 2). Experimental noise, however, is incorporated into a Bland-213 

Altman analysis of individual variation.  214 

The normalized coefficient of repeatability (COR) for a group of individuals 215 

quantifies the variability of a metric (Fig. 2) (Eqn. 1) [83]. 216 
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Eqn. 1:   Normalized COR = !	×	$[∑((𝔦)*)^!] (.)/)⁄
(1	2	3)/	!

	× 	100%      217 

where 𝜒𝔦 is each value of the difference between two repeated measurements from 218 

each individual, 𝜇 is the mean of the difference between the two repeated measurements, N is 219 

the sample size, 𝛼 is the value of a metric measured in the 1st test, and 𝛽 is the value of a 220 

metric measured in the 2nd test. 221 

Repeatability of rank order in a repeated measurement design has been used by 222 

comparative physiologists to examine if the individuals maintain their relative rank within a 223 

population despite a shift in the population average (Also see the rank order analyses of our 224 

dataset in Figs. S1, S2) [84] [85] [86] [87] [88] [89]). Analysis of rank order, however, loses 225 

the quantitative aspect of the metric under consideration: the winner can remain the winner, 226 

but information on the absolute performance is lost. 227 

 Generalized Linear Mixed Models (GLMM) are often used by animal ecologists and 228 

ecophysiologists working in field settings who face a greater challenge than laboratory-based 229 

experimental biologists concerning the ability/inability to control important environmental 230 

variables, e.g., temperature, rainfall, humidity, salinity, oxygen levels, and photoperiod. 231 

Uncontrolled environmental variables add to experimental measurement “noise”. In this case, 232 

a Generalized Linear Mixed Model (GLMM) statistical approach can account for the impacts 233 

of variables that cannot be controlled [90] [91] [92] and the contribution of the experimental 234 

noise [93] [94] when testing the repeatability of measured metrics. A GLMM, however, does 235 

not attempt to separate experimental measurement noise from true individual variation. 236 

 237 

Precision-&-Repeatability Assessment Matrix (PRAM)  238 

In view of the limitations for each of the statistical approaches noted above (Table 239 

S2), we propose a Precision-&-Repeatability Assessment Matrix (PRAM) that graphically 240 

combines a parametric test of repeatability (the Pearson correlation coefficient) with a 241 

normalized COR. This theoretical framework then provides a quantitative approach for 242 

experimental biologists to better visualize the repeatability and variability of metrics (Fig. 3). 243 

PRAM statistically quantifies variability within the individual-based measurements 244 

using the well-established Bland-Altman analysis [95] [3] [96] [30]. Also, correlation 245 

analysis (e.g. Pearson’s correlation coefficients) assesses the repeatability of a given metric 246 

measured twice on the same individual using a balanced design [97] [90]. These two 247 

statistical analyses are then placed on Cartesian coordinates to arrive at a decision matrix with 248 

four quadrants (Fig. 3) that inform the quality of the performance metric by parsing out the 249 
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biological variation among a group of individuals and experimental noise. For example, the 250 

quadrant closest to the origin identifies a metric that is stable and measured by precise 251 

protocols (i.e., resulting in low experimental noise). These repeatable metrics would be best 252 

suited for testing hypotheses, developing theories, and building models with strong predictive 253 

power. Moving away from the origin of the quadrant, the other quadrants represent metrics 254 

that are less repeatable for different reasons, i.e., precise measurements applied to unstable 255 

traits, imprecise measurements applied to stable traits, and imprecise measurements applied 256 

to unstable traits (Fig. 3). Therefore, the decision matrix of PRAM helps distinguish 257 

experimental noise from individual variation, enabling a better understanding of 258 

physiological variation.  259 

 260 

A case study: applying PRAM to whole-animal metabolic metrics for fish 261 

The data used for the case study were those collected from two independent repeated-262 

measure design studies with two genetically distant athletic fish species, Atlantic salmon 263 

(Salmo salar) and European sea bass (Dicentrarchus labrax) [98] [99] [100]. Both studies 264 

retested the same individuals after ~4 weeks (see Supplementary Materials for animal 265 

information). Moreover, both used IRAP, which holistically characterizes an individual fish’s 266 

respiratory phenotype by measuring up to 13 metrics for the performance and capacity of 267 

aerobic and anaerobic metabolism [8] (see Glossary for full definitions of terms & 268 

supplementary material for details of their measurement, Fig. S3, S4). Consequently, the 269 

same practitioners performed the standardized IRAP procedure under controlled laboratory 270 

conditions and with similar equipment (Table S3), which minimized operator variability (see 271 

Table 1). Also, phenotype stability assessment was conducted over a 1-2 month time frame, 272 

acknowledging that fish can partially or fully acclimate to new environmental conditions over 273 

several weeks [101] [102] [103] and that only similar life stages should be compared in the 274 

first instance.  275 

In principle, the temporally stable traits measured precisely should be repeatable 276 

across species. Otherwise, the targeted trait either does not have a consistent stability among 277 

individuals within in species, or the measurement is imprecise. PRAM was then applied to 278 

identify which individual traits were stable, which were not and which were noisy (Fig. 4).  279 

 When COR was less than 53%, a metric was nearly three times likely to be repeatable 280 

(the peak of the frequency distribution of arbitrary p-value < 0.05 was nearly triple the peak 281 

of the frequency distribution of p-value ≥ 0.05, Fig. 4a). When COR was greater than 53%, 282 

the chance of a metric being unrepeatable increased (Fig. 4a). Therefore, we used COR of 283 
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53% as a nominal line of reference for the measurement precision in this analysis (Note: 53% 284 

is applicable for this dataset and a work in progress). The working criteria to set the threshold 285 

value are 1) the transition point in the frequency distribution of COR where metrics start to 286 

shift from a higher chance (e.g. 2-3 times more likely) being repeatable to a lower (e.g. 0.5 287 

times) chance being repeatable. We then set the quadrants for PRAM arbitrarily as COR of 288 

53% for measurement precision (green vertical dashed line on the x-axis) and repeatability 289 

(green horizontal dashed line on the y-axis) (Fig. 4b). As perhaps expected, the more 290 

precisely measured metrics (i.e. smaller COR values) tended to be more repeatable 291 

(correlation test: p-value ≤ 0.01, Fig. 4b), but with some exceptions, e.g., FSOD was 292 

measured precisely and was not repeatable (Fig. 4b).   293 

 PRAM also demonstrated that individual aerobic metabolism traits (AAS, FAS, 294 

ṀO2max, SMR, and RMR) were repeatable for both species of athletic fish. The only 295 

unrepeatable aerobic metric was T>50%AAS, an index of spontaneous activity that is likely 296 

context-dependent. ṀO2max is an important independent metric to derive AAS & FAS. Bland-297 

Altman analysis on ṀO2max demonstrated that ṀO2max has a limited measurement variability 298 

(the narrow horizontal band in Fig. 2; Bland-Altman analyses of other metrics are in Fig. S5 299 

& S6), a finding that may reflect past efforts to establish reliable measurement techniques for 300 

ṀO2max [10] [69] [104] [45] and the tightly coupled steps of the O2 transport cascade for peak 301 

performance in vertebrates [105] [106]. When measured properly, ṀO2max should have 302 

limited intra-individual variation in a repeated measure design, as previously shown in 303 

healthy humans [83] [107] [106] [22]. Thus, PRAM analysis confirmed that measurement 304 

precision and trait stability were necessary features of the well-established independent 305 

performance metrics. Indeed, studies with other animal taxa find strong repeatability of 306 

aerobic metabolic metrics (Table S1). Also, SMR, ṀO2max, AAS and FAS have been related 307 

to the lifetime fitness of vertebrate species in various environments [108] [109] [110] [111] 308 

[27], with some but not all [112] studies finding stable traits within a life stage.  309 

A novel discovery of the PRAM analysis was that whole-organism anaerobic 310 

metabolism metrics were generally either unstable or were imprecisely measured. For 311 

example, EPOC, a metric that predominantly measures the oxygen equivalents of glycolytic 312 

metabolism during exhaustive exercise, was reported as both a stable and an unstable metric. 313 

This discovery may reflect the many challenges that still exist to properly quantify anaerobic 314 

metabolism at the organismal level (see reviews [113] [114] [115] [116]), those beyond the 315 

extent to which glycolysis is affected by individual variation in cardiorespiratory robustness 316 

[71] [72] [2] [117] [100]. For example, differences in phosphagen and metabolic substrate 317 
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stores, as well as glycogenesis, can all potentially introduce variation [118] [119] [120]. 318 

Similar concerns also apply to the scope for oxygen deficit, a new performance proxy for the 319 

anaerobic capacity of a fish in a hypoxia challenge test, [8] which quantifies the accumulation 320 

of glycolytic end-products and different demands on glycolysis in severe hypoxia [8] [121]. 321 

The Bland-Altman analysis for the scope for oxygen deficit revealed large variability (a 322 

wider horizontal band in Fig. 2; see Bland-Altman analyses for other metrics in Fig. S5 & 323 

S6). Thus, assessment protocols for whole-animal anaerobic capacity and performance, 324 

which remain in their infancy, perhaps should be given greater attention to develop more 325 

precise methods, especially given that they fuel shorter-term, life-saving activities.  326 

Surprisingly, PRAM analysis revealed important nuances for two widely used and 327 

well-established metrics used to estimate hypoxia tolerance in fish, i.e., O2crit and ILOS, 328 

which were measured with the same standardized hypoxia challenge test [9]. While O2crit was 329 

precisely measured (i.e. low experimental noise) in both species, ILOS was precise only in 330 

Atlantic salmon (Salmo salar) and not in European sea bass (Dicentrarchus labrax) (Fig. 4b). 331 

O2crit, as calculated here, benefits from an objective mathematical approach (SMR is the 332 

baseline to derive an intercept with a linear regression equation [64] [5]). In contrast, ILOS is 333 

a visually subjective recording of the ambient O2 level when a fish loses its upright 334 

equilibrium. Why O2crit demonstrated inter-specific variation [67] for its repeatability 335 

between S. salar but not D. labrax is unclear.  336 

 337 

Future directions for research on the repeatability of individual variation in 338 

experimental biology  339 

Our case study of PRAM using IRAP metrics for two species of ray-finned fish is 340 

only a demonstration that informs us of a few key general principles for experimental 341 

biology. An unstable trait can be unrepeatable even when precisely measured (Quadrant II in 342 

PRAM; Fig. 3). Conversely, and as expected, a stable trait requires a standardized protocol to 343 

generate precise measurements (i.e., low experimental noise) (Quadrant III in PRAM; Fig. 3). 344 

Being able to distinguish the two scenarios is important for biological experiments, and this is 345 

what PRAM achieved. The same principles likely apply to other performance metrics in other 346 

animal and human models, and perhaps across multiple biological organizations. 347 

Striving for repeatability has been a common goal among experimental biologists in 348 

recent literature [122] [123] [124] [125] [11]. The central idea behind the PRAM is to 349 

characterize the repeatability and measurement variability of a metric on a decision matrix to 350 

distinguish the true physiological variation from experimental noise. PRAM assesses the 351 
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quality of the metrics and informs the types of conclusions that can be drawn. Much work 352 

remains, however, to identify the multifaceted physiological reasons for the differences in 353 

repeatability for metabolic metrics, as well as further analyses of the PRAM framework in 354 

acclimation (or acclimatization) studies. For example, how certain acclimation states can lead 355 

to less stable traits (e.g. transition from quadrant I to quadrant II). Hence, we welcome future 356 

improvements to the decision matrix, given that statistical assessment methods are constantly 357 

evolving. For example, the quantification of variance can use the coefficient of variation or 358 

covariance [126] [91], and the assessment of repeatability can use residual variance [90]. For 359 

repeatability tests conducted on more than two time points (e.g. [127] [58] also see reviews 360 

on this topic: [126] [128]), the decision matrix can identify the sources of the variability in a 361 

pair-wise manner across multiple time sampling points. The criteria for the COR threshold 362 

that determine a precise measurement are a work in progress. It remains to be tested with 363 

future studies whether a more rigid COR threshold can be established (e.g., ~50% COR).  364 

The PRAM framework can also contribute to two long-standing questions in 365 

experimental biology: 1) How to mitigate the trade-offs between sample size and 366 

measurement precision to improve statistical power at a limited experimental resource? 2) 367 

How to account for the learning behaviours over multiple repeatability tests? First, if the 368 

imprecise measurement (quadrant III) quantifies the stable traits, a large sample size can 369 

potentially compensate for the statistical power. Still, increasing the sample size of imprecise 370 

measurement would be less productive than trying to source and reduce the noise. If the 371 

measurements are precise and targeting stable traits (quadrant I), a smaller sample size might 372 

be needed to reach the desired statistical power. The precise metrics would better utilize the 373 

limited research resources when quantifying the plastic traits (e.g., quadrant II). Moreover, 374 

our PRAM framework could be used to retrospectively analyze existing data, as shown here, 375 

to identify metrics that appear robust (quadrant I) and in need of some scrutiny (quadrants III 376 

& IV), as well as either rejecting those metrics in quadrant IV or investigating the underlying 377 

issues. One potential issue worth investigating is the importance of learning behaviour in the 378 

quality of a metric. Using the PRAM framework as part of an experimental design can help 379 

answer the question of how many repeatability tests and over what time intervals are 380 

necessary. 381 

Overall, PRAM analysis will help comparative physiologists and experimental 382 

biologists to objectively, quantitatively, visually and more systematically understand the 383 

metrics they measure. PRAM can be applied well beyond the limited number of metrics used 384 

here as a case study. Furthermore, PRAM can better calibrate the confidence placed in the 385 
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indicators that we believe are metrics of fundamental metabolic traits. This analytical 386 

approach can enable physiological metrics to be better integrated into studies of genomics, 387 

molecular mechanisms, biomechanics, the life history of the organisms, and the 388 

environmental selection pressure over the evolutionary history. After all, inter-individual 389 

variation is the raw material for evolution through natural selection.390 
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Table 1. Challenges and solutions to improve data quality.  Three general areas of challenge that collectively contribute to 410 
experimental noise are instruments, biology and operators. For each area, suggestions for both short- and long-term solutions are 411 
offered.   412 

 413 

  414 

Challenge Possible immediate solution Possible long-term solution 
Instrument error Standardize and improve experimental instrumentation  Funding of university-industry collaborations to improve instruments 
Measurement error vs 
Biological variation 

• Less stressful and invasive measurement techniques 
• Standardize approaches for data analysis   
• Standardize protocols 

 

More funding and less restrictions for exploratory research  
 

Operator error Improve individual training Streamline training 
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Fig. 1. Schematic of the effects of methodological errors on measuring stable traits. 415 
When measuring a stable trait, the protocol, electronic, and analytical errors can inflate the 416 
variability of the measurement (for simplicity, the experimental noise is assumed to be 417 
equally distributed around the true mean in the schematic) and mask the real biological 418 
variation. At a new steady state, the distribution of biological variation can shift to a different 419 
level. If instrumental, protocol, and analytical errors are sufficient, measurement variability 420 
can overlap amply to compromise the precision in quantifying the real biological variation. 421 
The principal idea is to eliminate sources of error as best as possible to detect 1) what the real 422 
biological variation is and 2) any shifts in the true value of an individual metric.  423 

Fig. 2. Bland-Altman analyses of repeatable and unrepeatable metabolic metrics 424 
characterized by the standardized Integrated Respiratory Assessment Protocol (IRAP), 425 
which measures whole-animal aerobic and non-aerobic metabolic metrics. Metrics were 426 
remeasured 4 weeks apart on the same individuals of European sea bass (Dicentrarchus 427 
labrax) at 25 °C (~30 ppt, ~60 g, n=16) and Atlantic salmon (Salmo salar) at 11 °C (~30 ppt, 428 
~75 g, n=16). Metrics in blue were repeatable; metrics in red were unrepeatable (as 429 
determined by the Pearson correlation coefficient test using p < 0.05 (r-value: p-values 430 
appeared in the upper right corner of each figure). Coloured shading indicates 95% limits of 431 
agreement, a measure of the metric variability (twice its standard deviation and accounting 432 
for the mean difference of the two measurements). Here, as representatives, an aerobic 433 
metabolic metric is the maximum oxygen uptake rate (ṀO2max) and a non-aerobic metabolic 434 
metric is scope for oxygen deficit (SOD). The repeatable aerobic metabolic metric has a 435 
much narrower band of intra-individual variability (a smaller value of 95% limits of 436 
agreement) than the unrepeatable non-aerobic metabolic metric. The data were adapted from 437 
the published studies [98] [100]. 438 

Fig. 3.  Theoretical framework for measurement precision and trait stability using a 439 
Precision-&-Repeatability Assessment Matrix (PRAM). The decision matrix is an 440 
analytical concept and approach based on the association between the variability of metrics 441 
and the repeatability of the metrics. The utility of the decision matrix is to distinguish the 442 
stability of traits in individuals from the experimental noise. The normalized coefficient of 443 
repeatability (COR) is a proxy for measurement precision at the x-axis, and the p-value from 444 
correlation coefficient tests is a proxy for repeatability at the y-axis. This forms quadrants of 445 
interest: i) precise measurements and stable traits; ii) precise measurements and unstable 446 
traits; iii) imprecise measurements and stable traits; iv) imprecise measurements and unstable 447 
traits. The area of transition for repeatability is a p-value of 0.05 using correlation coefficient 448 
tests. The area of transition for precision is the normalized coefficient of repeatability value 449 
with threshold values corresponding to a higher probability for the metrics to become 450 
repeatable (e.g. p-value < 0.05). 451 

Fig. 4. An examination of the relationship between the variabilities of metabolic metrics 452 
with the repeatability of the metabolic metrics.  (a) The frequency distributions of the p-453 
value of Pearson correlation coefficient tests (categorized into groups of Pearson p < 0.05 and 454 
Pearson p ≥ 0.05) informed the formation of quadrants in the Precision-&-Repeatability 455 
Assessment Matrix (PRAM; see Fig. 3). The green vertical dashed lines [normalized 456 
coefficient of repeatability (COR) = 53%] are based on the frequency distribution of the p-457 
value of Pearson correlation coefficient tests. When the metrics have COR values of less than 458 
53% (between the origin and the green vertical dashed lines), the metrics have nearly three 459 
times higher probabilities of being repeatable (p < 0.05). When COR is larger than 53% 460 
(beyond the green vertical dashed lines), the metrics had a lower chance of being repeatable. 461 
(b) The green vertical dashed lines annotate the threshold (COR = 53%) where metrics 462 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2025. ; https://doi.org/10.1101/2025.07.14.664826doi: bioRxiv preprint 



17 
 

change from being precise to imprecise. The p-value of 0.05 is annotated by the green 463 
horizontal dashed lines to indicate the area where the metrics gradually become unrepeatable 464 
from being repeatable. Using these arbitrary threshold values of repeatability and precision, 465 
quadrants were formed in panels using the theoretical framework of PRAM: i) precise 466 
measurements and stable traits; ii) precise measurements and unstable traits; iii) imprecise 467 
measurements and stable traits; iv) imprecise measurements and unstable traits. Different 468 
symbols denote different metabolic metrics. To understand the general relationship between 469 
variabilities and repeatability, the analyses combined the measurements obtained from 470 
European sea bass (Dicentrarchus labrax) at 25 °C (~30 ppt, ~60g, n=16; filled symbols) and 471 
Atlantic salmon (Salmo salar) at 11 °C (~30 ppt, ~75g, n=16; half-filled symbols). Metrics in 472 
blue measure traits when animals predominantly rely on aerobic metabolism (i.e. aerobic 473 
traits), and metrics in red measure traits when animals engage in a substantial amount of 474 
glycolysis (i.e. non-aerobic traits). Aerobic metabolic metrics (in blue) include absolute 475 
aerobic scope (AAS), factorial aerobic scope (FAS), maximum oxygen uptake (ṀO2max), 476 
standard metabolic rate (SMR), routine metabolic rate (RMR), and time spent above 50% 477 
AAS (T> 50% AAS). Non-aerobic metabolic metrics (in red) include excess post-exercise 478 
oxygen consumption (EPOC), scope for oxygen deficit (SOD), the factorial scope for oxygen 479 
deficit (FSOD), incipient lethal oxygen saturation (ILOS), accumulated oxygen deficit 480 
(AOD) and critical oxygen saturation (O2crit). In general, less variability in measuring the 481 
metrics is positively related to the higher probabilities of being repeatable metrics. The data 482 
were adapted from the published studies [98] [100].   483 
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