
Environmental Toxicology and Chemistry—Volume 39, Number 1—pp. 60–84, 2020
Received: 18 January 2019 | Revised: 13 February 2019 | Accepted: 22 July 2019 60

Metal Bioavailability Modeling: Critical Review

Metal Bioavailability Models: Current Status, Lessons Learned,
Considerations for Regulatory Use, and the Path Forward

Christopher A. Mebane,a,* M. Jasim Chowdhury,b Karel A.C. De Schamphelaere,c Stephen Lofts,d Paul R. Paquin,e

Robert C. Santore,f and Chris M. Woodg

aUS Geological Survey, Boise, Idaho
bInternational Lead Association, Durham, North Carolina, USA
cGhent University, Gent, Belgium
dUK Centre for Ecology and Hydrology, Bailrigg, Lancaster, UK
eHDR, New York, New York, USA
fWindward Environmental, Syracuse, New York, USA
gUniversity of British Columbia, Vancouver, British Columbia, Canada

Abstract: Since the early 2000s, biotic ligand models and related constructs have been a dominant paradigm for risk
assessment of aqueous metals in the environment. We critically review 1) the evidence for the mechanistic approach
underlying metal bioavailability models; 2) considerations for the use and refinement of bioavailability‐based toxicity
models; 3) considerations for the incorporation of metal bioavailability models into environmental quality standards; and
4) some consensus recommendations for developing or applying metal bioavailability models. We note that models
developed to date have been particularly challenged to accurately incorporate pH effects because they are unique with
multiple possible mechanisms. As such, we doubt it is ever appropriate to lump algae/plant and animal bioavailability
models; however, it is often reasonable to lump bioavailability models for animals, although aquatic insects may be an
exception. Other recommendations include that data generated for model development should consider equilibrium
conditions in exposure designs, including food items in combined waterborne–dietary matched chronic exposures.
Some potentially important toxicity‐modifying factors are currently not represented in bioavailability models and have
received insufficient attention in toxicity testing. Temperature is probably of foremost importance; phosphate is likely
important in plant and algae models. Acclimation may result in predictions that err on the side of protection. Striking a
balance between comprehensive, mechanistically sound models and simplified approaches is a challenge. If empirical
bioavailability tools such as multiple‐linear regression models and look‐up tables are employed in criteria, they should
always be informed qualitatively and quantitatively by mechanistic models. If bioavailability models are to be used in
environmental regulation, ongoing support and availability for use of the models in the public domain are essential.
Environ Toxicol Chem 2020;39:60–84. © 2019 SETAC
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EVIDENCE FOR THE MECHANISTIC
APPROACH

In 1996, the Society of Environmental Toxicology and
Chemistry (SETAC) held a workshop to evaluate how regu-
latory criteria for protecting aquatic life could better reflect
the science of metal bioavailability and toxicology (Bergman
and Dorward‐King 1997). This was followed by an irruption of

publications on biotic ligand models (BLMs), related mech-
anistic or quasi‐mechanistic models, and simpler empirical
approaches such as multiple linear regression (MLR) models.
Although some of these bioavailability models have been
incorporated into regulatory frameworks, many jurisdictions
retain 1980s vintage criteria. In December 2017, SETAC
sponsored a follow‐up workshop titled Bioavailability‐Based
Aquatic Toxicity Models for Metals in Pensacola, Florida,
USA. The purpose of the workshop was to consider the status
of different modeling approaches for predicting the bio-
availability and toxicity of metals in freshwaters and their
incorporation into regulatory water quality criteria. This is
one of 5 articles that evaluated the performance of the
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models and sought to identify best practices in the use of
these models for developing and applying bioavailability‐
based criteria, benchmarks, or guidelines for metals that are
intended to protect aquatic life (Adams et al. 2020; Brix et al.
2020; Garman et al. 2020; Van Genderen et al. 2020).

The concept of mechanistic models incorporating metal
bioavailability as a key factor governing toxicity (Paquin et al.
2002; Niyogi and Wood 2004) can be traced back to early
experimental studies. These studies established that toxicity
could vary considerably according to the water chemistry, re-
flecting influences of factors such as salinity, pH, hardness (i.e.,
Ca+Mg concentration), alkalinity, and dissolved organic
matter (DOM; Jones 1938; Holm‐Jensen 1948; Lloyd and
Herbert 1962; Zitko et al. 1973). Today we recognize that these
factors reflect competition by naturally occurring cations (e.g.,
Ca2+, Mg2+, Na+, H+) for the binding of free metal cations
(Men+) to ligands on target organisms and complexation of
these Men+ ions by waterborne anions (e.g., HCO3

–, Cl–, and
most importantly DOM). In both cases, the binding of the metal
to ligands on the organism is decreased, thereby offering
protection. The first regulatory tools incorporating this bio-
availability concept proposed different ambient water quality
criteria (AWQC) for freshwater and sea water and, in freshwater,
applied hardness as the key factor modifying metal toxicity
(e.g., Alabaster and Lloyd 1980; US Environmental Protection
Agency 1986; Canadian Council of Ministers of the Environ-
ment 2007). These approaches were empirically based and
either proposed different AWQC for waters in different hard-
ness ranges or else used equations to adjust AWQC for hard-
ness (US Environmental Protection Agency 1986). The latter
were forerunners to the current MLR models that incorporate
multiple toxicity‐modifying factors (Brix et al. 2017a, 2020). In
hindsight, it is now clear that hardness was often a surrogate for
other water chemistry variables (e.g., alkalinity, specific ions,
pH), which may have been equally or more important in the
regression data sets that were used to derive these AWQCs
and that another crucial water chemistry variable (DOM) was
completely overlooked.

Pagenkopf (1983) presented the first mechanistic model, the
gill surface interaction model (GSIM). This recognized that
metals could bind to biological ligands on the respiratory sur-
faces of target organisms, thereby causing toxicity. The GSIM
postulated that toxicity was attributable to free metal ions
(Men+) and used trace metal speciation, gill surface interaction,
and competitive inhibition to explain the protective effect of
water hardness. The model also recognized that pH and alka-
linity influenced metal speciation and that inorganic anions (the
role of DOM was curiously discounted) could complex metals,
decreasing their bioavailability. These reactions, including
those at the gills, were assigned conditional equilibrium con-
stant (log K) values, and steady‐state conditions were assumed,
allowing prediction of toxicity through equilibrium modeling.
Almost simultaneously, Morel (1983) formulated the free ion
activity model (FIAM), which focused on algae and made very
similar assumptions to the GSIM but in addition recognized the
importance of DOM in complexation reactions. Again, a similar
geochemical modeling framework was used, and chemical

equilibrium was assumed. In both the GSIM and the FIAM, the
degree of toxic response was related to the fraction of sites to
which Men+ was bound, a concept that became a key com-
ponent of future models. The GSIM and the FIAM can be
considered the parents of modern bioavailability models such
as the BLM. In this same era, the advent of geochemical
modeling programs (e.g., MINEQL+, MINTEQA2) facilitated
further progress. Subsequently, the development of the
Windermere Humic Aqueous Model (WHAM) (Tipping 1994)
incorporated multisite binding to deal with metal interactions
with DOM, an important breakthrough.

Pagenkopf (1983) had proposed that the cause of lethality
when Men+ bound to critical sites on the gill surface was res-
piratory toxicity. However, many studies over the next 2 dec-
ades demonstrated that the proximate cause of lethality was
interference with the active branchial uptake of either Na (Cu,
Ag) or Ca (Zn, Cd, Co, Pb) from the water, at least for fish at
metal levels causing acute toxicity (Paquin et al. 2002; Niyogi
and Wood 2004). These were associated with inhibition of
basolateral Na+, K+‐ATPase (for Na uptake) and Ca2+‐ATPase
(for Ca uptake), as well as blockade of apical Na+ and Ca2+

channels, and were compounded by increased diffusive losses
of these major nutrient ions at higher metal concentrations.
Thus, different metals targeted different specific sites (transport
proteins) on the gills, and measurements of net Na or Ca loss
rates to the water or net decreases in plasma or whole‐body
concentrations provided physiological evidence for this
mechanism of toxicity.

Subsequently, Playle and colleagues made a major con-
ceptual breakthrough based on experiments with fathead
minnow and trout exposed to Cu or Ag (targeting Na transport
sites) and Cd (targeting Ca transport sites) in ion‐poor synthetic
soft water of defined composition (Playle et al. 1993a, 1993b;
Janes and Playle 1995). Natural DOM decreased the binding of
metals to the gills. Through the analysis of gill metal burdens,
the use of competitive waterborne ligands with known log K
values, Langmuir isotherm analysis, and a geochemical mod-
eling program (MINEQL+), they were able to estimate distinct
log K (affinity) and Bmax (site density= capacity) values for these
metals at the gills in short‐term exposures (2–3 h). Calculated
metal accumulation on gills correlated well with measured gill
metal concentrations and adverse physiological effects (e.g., Na
loss attributable to Ag) in a number of different field‐collected
waters. These gill accumulation experiments likely reflect cor-
relates to the true accumulation on the “biotic ligand,” for there
is a wide range of possible binding sites on a gill surface
(including excreted mucus), with a wide spectrum of affinities
for different metals. Although it is incorrect to think that by
“titrating” a gill surface one can expect to probe and charac-
terize the “biotic ligand,” the strong relationships between
short‐term gill metal accumulation and toxicity gave operational
support to gill‐binding modeling.

The gill‐binding model for Ag (Janes and Playle 1995) was
later transformed into a physiologically based BLM by relating
the gill Ag burden on trout to the fractional inhibition of gill
Na+, K+‐ATPase activity associated with 96‐h mortality (McGeer
et al. 2000). This work provided the mechanistic step from

wileyonlinelibrary.com/ETC © 2019 SETAC

Metal bioavailability models—Environmental Toxicology and Chemistry, 2020;39:60–84 61



short‐term gill metal accumulation to the proximate cause of
acute toxicity. Similar studies by MacRae et al. (1999) with trout
more rigorously demonstrated that short‐term gill metal accu-
mulation (in this case Cu at 24 h of exposure) was a constant
predictor of acute toxicity (in this case percentage of mortality
at 120 h) among a range of test media containing different
copper‐binding ligands. In fathead minnow, Meyer et al. (1999)
demonstrated elegantly that the gill burden of Ni at 24 h as-
sociated with 50% mortality at 96 h was constant over a range
of water qualities, even though the concentration of the
free Ni2+ ion associated with 50% mortality was not. From
these studies arose the concept of the LA50, the short‐term
accumulation at the biotic ligand that is predictive of 50%
mortality at a later time. This is a key component of all
BLMs, now more commonly known as the intrinsic sensitivity
parameter, which can be varied in model fitting to compensate
for differences in sensitivity among species, strains, and clones.
The gill log K, Bmax, and LA50 concepts still underpin
all modern BLMs. The terminology varies, with the gill
accumulation log K values often referred to as biotic ligand log
K values because gills are not the sole site of ion exchange in
small animals such as cladocerans, and plants obviously do not
have gills. Likewise, LA50s can be related to fractional effects
other than 50% or to sublethal endpoints, and thus the LA50
term is often replaced by the more general term for a critical
accumulation associated with x% effects (CAx). But despite the
varied (and sometimes confusing) terminology, the underlying
concepts are fundamentally similar.

Building on these early results, subsequent investigations
have successfully correlated short‐term gill metal accumulation
with toxic effects in longer‐term exposures for a variety of metals
(Table 1). For example, Figure 1 shows how measured gill Ag
accumulation (first bar in each pair) can be predicted in 2 forms

(Ag+ and AgCl; second bar) as a function of water chemistry
(dissolved organic carbon [DOC], Cl, Na, Ca, pH) using a
chemical equilibrium model (Paquin and Di Toro 2008). Toxicity
data were then used to evaluate the expected LA50, and the
derived BLM could then be used in combination with the LA50
to predict dissolved Ag median lethal concentrations (LC50s)
over a wide range of water quality characteristics (Figure 2).

Moving from models based on physiological
mechanisms and gill metal burdens to models
based on toxicity only

A SETAC Pellston Workshop in Pensacola in 1996, and the
subsequent book that arose from it (Bergman and Dorward‐
King 1997), greatly accelerated the pace of BLM development.
Thereafter, landmark publications by Paquin et al. (2000),
Di Toro et al. (2001), and Santore et al. (2001) laid out the
formal technical framework for the BLM and demonstrated its
utility in predicting acute toxicity of Cu and Ag to fish (e.g.,
Figure 2) and invertebrates in a range of natural waters. Al-
though these papers were firmly rooted in the concept that the
short‐term metal burden on the biotic ligand was the key factor
causing longer‐term toxicity, they showed that this quantity did
not have to be measured but rather could be back‐calculated
(if required) from toxicity data for the purpose of model gen-
eration. The extensive results of Erickson et al. (1996) on acute
Cu toxicity to fathead minnow where single water chemistry
parameters were varied, one at a time, provided the key data
used to illustrate this principle.

Relative to the number of BLMs developed since that time,
there are relatively few studies where the physiological mecha-
nisms (e.g., gill enzyme inhibition, ion loss) and/or surrogates for
the actual metal burden at the biotic ligand (e.g., gill metal
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TABLE 1: Summary of studies in which physiological mechanisms (e.g., gill enzyme inhibition or body ion loss) and/or the actual metal burden at the
biotic ligand (e.g., gill metal concentration) have been measured

Metal Organism Physiological endpoints Toxicity endpoints Sources

Ag Daphnia magna 1‐h whole‐body accumulation,
gill enzyme inhibition

Mortality not measured (Bianchini and Wood 2003)

Ag Rainbow trout 2‐ to 3 h accumulations, gill
enzyme inhibition

Accumulation and 96‐h mortality
data related across different studies

(Janes and Playle 1995;
McGeer et al. 2000)

Ag Rainbow trout 3‐ and 24‐h gill accumulation Mortality at 96 h (Morgan and Wood 2004)
Al Atlantic salmon 140‐h accumulation Mortality at 140 h (Santore et al. 2018)
Cd Rainbow trout 3‐h gill accumulation Mortality at 96 h (Niyogi et al. 2008)
Cd, Cu Fathead minnow 2‐ to 3‐h gill accumulations Mortality at 96 h (Playle et al. 1993a, 1993b)
Cd, Cu, Pb, Zn Rainbow trout 0.75‐ to 24‐h gill accumulation Accumulation and 96‐h mortality

data related across different studies
(Balistrieri and Mebane 2014)

Cd, Pb Rainbow trout 3‐ and 24‐h gill accumulation;
Ca2+ and Na+ influx

Mortality at 96 h (Birceanu et al. 2008)

Cu Rainbow trout 24‐h gill accumulations Mortality at 120 h (MacRae et al. 1999)
Cu Rainbow trout 24‐h gill accumulations Mortality at 96 h and 30 d (Ng et al. 2010)
Cu Rainbow trout 24‐h gill accumulations from

previous work
Mortality at 96 h and 30 d (Crémazy et al. 2017)

Ni, Cu Fathead minnow 2‐ to 3‐h gill accumulation Mortality at 96 h (Meyer et al. 1999)
Pb Rainbow trout 3‐h gill accumulation Time to mortality of a single

concentration in different waters
(Macdonald et al. 2002)

Pb Rainbow trout 0‐ to 96‐h Pb accumulation, enzyme
inhibition, ion flux rates

Mortality not measured (Rogers et al. 2005; Rogers
and Wood 2004)

Zn Rainbow trout 0.5‐ to 72‐h gill accumulations Mortality at 96 h (Alsop and Wood 2000)
Zn Rainbow trout 0.75‐ and 3‐h gill accumulations Mortality at 96 h (Todd et al. 2009)
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concentration) have been measured (see summary in Table 1). This
move to model fitting to toxicity data only maintains the con-
ceptual mechanistic framework (that a theoretical critical metal
burden at the biotic ligand causes a critical level of toxicity); it has
arisen partly as a matter of convenience and partly as a matter of
necessity. The former reflects the time‐consuming, technically de-
manding, and costly nature of the measurements, whereas the
latter reflects the fact that in many cases the measurements simply
cannot be done. Even when metal concentrations in a tissue or an

organ are measured, the concentration of metal at the site of toxic
action most likely is not the only accumulation being measured.
Instead, it is usually assumed that the measured concentration in a
tissue or organ is proportional to the currently unmeasurable
concentration at the site of action. With Ni, the mechanism of
chronic toxicity remains unresolved (Brix et al. 2017b); and indeed
for most metals, the mechanism(s) of chronic toxicity, and therefore
the target biotic ligands, remains poorly understood. Furthermore,
the most sensitive organisms which “drive” AWQC are usually very
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FIGURE 1: An example of a biotic ligand model calibrated to measure rainbow trout gill Ag accumulation data, over a variety of water chemistry
conditions. In most cases, the patterns of measured and calculated accumulations matched well (redrawn from Janes and Playle 1995).
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small (e.g., daphnids, snails, algae), in which the biotic ligands are
unknown and the metal burdens difficult to measure. However in
daphnids, acute Ag toxicity, active Na uptake inhibition, whole‐
body Na decrement, whole‐body Ag burden, and whole‐body
Na+, K+‐ATPase inhibition were well correlated (Bianchini and
Wood 2003); and chronic Ag toxicity seemed to result from a
failure of Na regulation in both fish (Naddy et al. 2007) and
daphnids (Bianchini and Wood 2002). These data provide some
confidence that the conceptual framework remains valid.

In approximately 2001, the rate of BLM development was
greatly accelerated by the shift from modeling based on gill
metal burden/physiological effects to modeling based on tox-
icity data alone. De Schamphelaere, Janssen, and colleagues
have exploited this approach to the greatest extent, particularly
for chronic BLMs, which have been in high demand for
European regulations (De Schamphelaere and Janssen 2002,
2004a; De Schamphelaere et al. 2005a, 2005b). The chemical
submodel remains identical and mechanistic, whereas on the
biological/ toxicity side of the model, the implicit mechanistic
assumption is that toxicity results faithfully reflect an imaginary
metal burden at an imaginary biotic ligand. Studies on chronic
(30‐d) toxicity of Cu to trout represent one of the rare cases
where this assumption has been tested (Ng et al. 2010;
Crémazy et al. 2017). These studies concluded that the 24‐h gill
LA50 predictive of 30‐d mortality remained constant from pH
6.0 to 8.0 but not at extreme pH values (5.5, 8.5). However,
De Schamphelaere et al. (2005b) reported that both surface‐
bound Cu and internal Cu concentrations were relatively good
predictors of chronic toxicity (48–72 h) in algal growth tests
across a slightly smaller pH range (5.9–8.5). Possible scenarios

for such anomalous effects at extreme pH values are explored in
the section Dealing with extreme waters. Regardless, if the
model is calibrated with data in the water chemistry range of
interest (and hybrid model strategies for doing so are outlined
in the section Complexity versus simplicity: Use of mechanistic
and hybrid models to inform development of simpler models),
the model predictions should be reliable.

Incorporating dietary metal exposure into
bioavailability models: The importance of
equilibration

The question of whether chronic toxicity of metals in aquatic
environments is the result of waterborne, dietary, or combined
exposures has generated much study and extensive reviews
(Clearwater et al. 2002; Meyer et al. 2005; DeForest and Meyer
2015). In nature, ingestion may be a significant route of metal
uptake, and for nutrient metals (e.g., Cu, Fe, Zn) it is undoubtedly
the major route. Acute models do not take this into account
because testing protocols dictate that the organisms must be
fasted during the exposure. Because it is almost impossible to
envisage a natural situation where dietary metal would cause
acute toxicity to aquatic organisms, this is not an issue of concern.
However, during chronic exposures, dietary metal may contribute
to toxicity or acclimation, and this may occur by both direct (metal
poisoning) and indirect (metals affecting the nutritional quality of
the diet or causing food aversion) routes (e.g., Irving et al. 2003;
Niyogi and Wood 2003; Besser et al. 2005; De Schamphelaere
et al. 2007; Golding et al. 2013; Tomczyk et al. 2018). Hook and
Fisher (2001, 2002) reported extremely low waterborne effect
levels for reproductive impairment when metal–exposed algae
(Ag, Hg, Cd, Mn, and Zn) were fed to zooplankton; for Ag, the
threshold was below the chronic AWQC. These notable results
stimulated subsequent investigations, which confirmed that, in
some settings, algae could accumulate metals to harmful levels
from low waterborne concentrations (Bielmyer et al. 2006) but, in
other settings, metal bioaccumulation occurred without obvious
adverse effects (Kolts et al. 2009). Similarly, discordant results
were obtained with mayflies fed Cd‐exposed algae in repeated
experiments (Xie et al. 2010). The reasons for the differing re-
sponses are unclear. Further, the literature is not consistent on
whether metals incorporated into natural diets by chronic water-
borne exposure of the prey organisms are more or less bio-
available than metal salts or prey dipped in metals (DeForest and
Meyer 2015).

In the real world, we expect that a natural diet will be in some
sort of dynamic equilibrium with the metal in the water column.
Direct evidence for this is sparse, and metal accumulation
studies have shown that time to reach constant tissue burdens
ranges from hours for algae to >28 d for predatory insects and
oligochaete worms (Timmermans et al. 1992; Stephenson and
Turner 1993; Roy and Hare 1999; Meylan et al. 2003). Never-
theless, DeForest and Meyer (2015) argued that “exposure of
test organisms to matched water‐borne and diet‐borne metal
concentrations is perhaps the most relevant for evaluating
the protectiveness of water‐borne metal guidelines.” In this
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FIGURE 2: The biotic ligand model (BLM) used to predict gill
accumulation in Figure 1 also predicts toxicity well. Median lethal
concentrations of Ag experimentally obtained with Ceriodaphnia
dubia from laboratory (open symbols) or natural (closed symbols)
water exposures compare well with calculated BLM predictions.
Solid diagonal is line of perfect agreement; dashed lines denote
a factor of ±2 deviations from the 1:1 line. (Bielmyer et al. 2007;
Paquin and Di Toro 2008; Naddy et al. 2018). LC50 =median lethal
concentration.
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context, “matched” means that the test organisms were ex-
posed to the same waterborne‐metal concentration to which its
food was exposed. This was also a key recommendation of the
2002 SETAC Pellston workshop on this topic (Meyer et al. 2005).
However, this has rarely been done. There are 2 aspects to this
equilibration: 1) physicochemical equilibration reflecting the
slow kinetics of diffusion into and sorption onto the food item,
which is mainly a concern when dead organisms or artificial food
(e.g., trout pellets) are used as the diet—in this case, the same
kinetic constraints as for equilibration of metal with DOM will
likely apply, a process that can take 24 h or more (see section
Equilibrium issues), and 2) biodynamic equilibration (achieve-
ment of constant concentrations) with a live diet, where the prey
organisms may concentrate the metal many fold above that in
the water column, which may take days to weeks.

Two recent studies assessed dietary impacts of Pb with
matched waterborne and diet‐borne metal exposure concen-
trations. These examined the interactive effects of waterborne

and dietary Pb exposure in daphnids (Ceriodaphnia dubia; Nys
et al. 2013) and rainbow trout (Alsop et al. 2016) and concluded
that dietary Pb exposure to these freshwater organisms may
not be of concern under the scenarios tested.

At present, there is insufficient evidence to conclude that
chronic bioavailability models would be underprotective if based
on waterborne‐only exposures or on combined exposures with
insufficient equilibration. Therefore, this should not be a reason
for rejecting the large amount of otherwise high‐quality data
available for use in model generation or for current models that
exist based on such data. However, we recommend, for best
practice in the future, that during chronic tests combined
waterborne and dietary matched exposures should be per-
formed. These should be based on natural live diets that have
undergone full biological equilibration with the waterborne
metal through pre‐exposure. If it becomes apparent during such
tests that whole‐body and target organ–specific metal concen-
trations are not at equilibrium with ambient metal concentrations

wileyonlinelibrary.com/ETC © 2019 SETAC

FIGURE 3: Effect of pH on dissolved zinc (upper left) and copper toxicity (upper right) to Daphnia magna and Pseudokirchneriella. The figure for
zinc shows the originally reported 72‐h median effect concentration (EC50) for algae biomass (Heijerick et al. 2002) and the 21‐d reproductive EC50
(Heijerick et al. 2005). The figure for copper shows simulated toxicity data for the same endpoints, using multiple linear regression models fitted to
data from a multivariate test design, as reported for algae (De Schamphelaere et al. 2003) and D. magna (De Schamphelaere and Janssen 2004b).
The 2 upper panels show a clearly distinct effect trend of pH on dissolved metal toxicity and form clear examples that strongly suggest that merging
algae and animal bioavailability models into a single model is not appropriate. The lower left panel shows that, when expressed on a free ion activity
basis (data also from Heijerick et al. 2002, 2005), the direction of the effect of pH on zinc toxicity is the same for algae and Daphnia, but the
magnitude of the effect is clearly stronger for algae than for daphnids. The strong effect on free zinc ion toxicity for algae dominates over the
speciation effect of pH, overall resulting in increased toxicity at higher pH for algae. In contrast, at higher pH, the speciation effect dominates for
Daphnia, explaining the decreasing toxicity toward higher pH levels. A similar reasoning applies to copper (not shown). Data in the lower left panel
have been used to construct and apply separate bioavailability models for algae and invertebrates in normalizing toxicity data for criteria and
predicted‐no‐effect concentration derivation in Europe. The lower right panel shows possible regulatory implications of the different bioavailability
relationships with pH (data taken from Supplementary 5 in Van Sprang et al. [2009]). The sensitivity ratio of algae versus invertebrates (geometric
mean of normalized no‐observed‐effect concentration of all invertebrates/algae) is simulated as a function of pH for 2250 water samples. This panel
shows that, although on average algae show similar sensitivity as invertebrates at low pH (~6.5), algae become by far more sensitive with increasing
pH, up to approximately 10‐fold and more at pH 8 and above. Algae also become increasingly more sensitive than invertebrates at higher pH for
copper and lead (not shown). NOEC= no‐observed‐effect concentration.
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in water and food, a biodynamic modeling framework that in-
corporates uptake (via water and food) and elimination kinetics
may be needed.

Incorporating behavioral endpoints (e.g.,
olfaction, mechanoreception) into bioavailability
models

In most jurisdictions, mortality, growth inhibition, and re-
productive inhibition are the only toxicity endpoints that can be
used in a regulatory framework. Nevertheless, there is increasing
evidence that disruptions of behavior caused by metal exposure
may be equally or more sensitive endpoints and that these dis-
ruptions are mediated by disturbances in olfaction and/or me-
chanoreception (reviewed for many metals in Wood et al. 2012a,
2012b). If organisms cannot navigate properly, sense predators
or prey, maintain social hierarchies, or find mates, population
impacts will likely occur. Furthermore, the limited information
available suggests that mechanisms governing olfactory toxicity
are rather different from those governing toxicity for other
endpoints. For example, for waterborne Cu, inhibitory effects are
almost immediate, Ca provides little protection, the log K value
for Cu at the olfactory rosette is lower than at the gill, and there
is evidence of recovery/acclimation from olfactory inhibition
during chronic exposure (e.g., McIntyre et al. 2008; Mirza et al.
2009; Green et al. 2010; Dew et al. 2012). Furthermore, there are
different viewpoints (e.g., Green et al. 2010 and Dew et al. 2012
vs Meyer and Adams 2010, DeForest et al. 2011, and Meyer and
DeForest 2018) on whether or not mechanistic bioavailability
models based on concepts of ionoregulatory disturbance, such
as the BLM‐based US Cu criterion (US Environmental Protection
Agency 2007), are protective against olfactory effects such as
behavioral disturbance. If they are protective, it would appear
that this is because highly sensitive taxa are included (e.g., cla-
docerans) for criteria derivation, not because the bioavailability
models are mechanistically correct for behavioral endpoints (i.e.,
the comparison is of apples vs oranges). The matter remains
unresolved, but moving forward, as argued by Pyle and Wood
(2007), we recommend that mechanistically based bioavailability
models for behavioral toxicity should be developed. These
should be built from the ground up using behavioral endpoints,
rather than by adjusting the intrinsic sensitivity parameter in
existing BLMs. The areas of agreement and disagreement with
models built on traditional endpoints will then be highly in-
formative, and there will be a stronger foundation for deciding
whether models based on behavioral endpoints should be used
in environmental regulation.

CONSIDERATIONS FOR THE USE AND
REFINEMENT OF BIOAVAILABILITY‐BASED
TOXICITY MODELS
Types of bioavailability‐based models currently
available

Table 2 presents a representative summary of available
models, but a thorough listing of all models would be beyond

the scope of this article. The models include classic BLMs that
predict acute toxicity based on measured accumulations
(Table 1); models fitted to acute and chronic toxicity data;
models predicting toxicity using humic acid or surfaces as
surrogates for biotic ligands; and “generalized bioavailability
models,” which may be as simple as a single‐variable re-
gression such as pH against free metal ion toxicity (Table 2).
Metal bioavailability models directly fitted to acute or chronic
toxicity data such as those in Table 2 are often used to nor-
malize single‐species toxicity data to a target water chemistry
prior to inputting such data into species‐sensitivity distributions
for guideline development. The problem of relying on acute
models to predict chronic effects is further explored in the
Supplemental Data. Many recent models have also extended
single‐metal approaches to mixtures (Table 2).

Some themes become apparent from inspecting different
models. All include chemical speciation calculations, which
require as inputs at least major ion chemistry (e.g., Ca, Mg, Na,
K, Cl, SO4, and alkalinity or dissolved inorganic carbon), DOC,
pH, and temperature. For shorthand, we refer to these as the
“BLM” inputs. Some models, in addition, include Al and Fe.
Thus, even the generalized bioavailability models (gBAMs),
which predict free metal ion toxicity as a function of pH and/or
free major cation activities, require the full BLM water chemistry
to compute free ion activities. Further, pH is consistently in-
corporated as an important toxicity‐modifying factor, but the
direction of responses (i.e., whether an increase or a decrease
in pH would increase or decrease the effect concentrations of
dissolved metal) often differ between plant and animal models
(Figure 4). In addition to affecting speciation, pH affects the
bioavailability and toxicity of metals to plants by changing
membrane permeability (Boullemant et al. 2009; Lavoie et al.
2012). These are key reasons why it will likely never be feasible
to combine plant and animal bioavailability models into a
single model. The important but complex role of pH in bio-
availability models is discussed in the section Complexity
versus simplicity: Use of mechanistic and hybrid models to in-
form development of simpler models.

Alternatives to the conventional single‐site
unidentate BLM

When the BLM was first formulated (Di Toro et al. 2001), the
biotic ligand was considered a single unidentate binding site,
for reasons of simplicity and lack of support for a more com-
plicated formulation. It was later shown that this formulation
dictates a linear relationship between the chemical activity of a
competing cation and the x% effect concentration (ECx) of the
toxic metal expressed as free metal ion activity (i.e., ECx Men+)
and that stability constants of competitive cations could be
estimated directly from a linear regression (De Schamphelaere
and Janssen 2002). This prompted an explosion of studies
(both acute and chronic) that estimated log KBL values for
various organisms and metals directly from toxicity data, using
univariate test designs.

However, observed relationships often deviated from per-
fect linearity. Various potential mechanistic hypotheses have

© 2019 SETAC wileyonlinelibrary.com/ETC
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been put forward to explain these deviations, including binding
of metal species (e.g., MeOH+, MeCO3) other than the free
metal ion (De Schamphelaere et al. 2004), differences between
pH in bulk solutions and the organism microenvironment
(Playle and Wood 1989), multiple biotic ligand sites relating to
multiple uptake sites or multiple simultaneous mechanisms of
toxicity (Peters et al. 2011), bidentate biotic ligand sites (Farley
and Meyer 2015), and the influence of plasma membrane po-
tential on free metal ion activity at the biotic ligand (Kinraide
2006). In quite a few cases, researchers (including some
authors of the present study) have generated models providing
good fits and predictive capacities but at the expense of un-
realistic parameter estimates (e.g., assuming that MeOH+

species are almost equally as bioavailable as the free metal ion
[De Schamphelaere and Janssen 2004b; De Schamphelaere
et al. 2004]).

It is always possible to perform a linear regression and
derive classical log K values, often with still reasonably accu-
rate representation of observed bioavailability relations. Yet,
an increasing number of observations have shown such strong
deviations from linearity that alternative modeling approaches

have been pursued. Indeed, some of them have already been
implemented in European Union regulations, whereas others
have not been implemented. Deviations from linearity appear
to be greatest for H+ ions (i.e., pH), with some very obvious
examples where log‐linear relationships describe the ob-
servations much better than linear regressions (e.g., algae–Cu
[De Schamphelaere and Janssen 2006]; Daphnia–Ni
[Deleebeeck et al. 2008]; Daphnia–Cu [Van Regenmortel et al.
2015]). These observations have led to the formulation of
“hybrid models,” or gBAMs, that combine a log‐linear pH
effect (e.g., Figure 5) with the classic competition for other
cations. Although this practice can be perceived as less
mechanistic than the classic unidentate single‐site BLM, it
should be emphasized that 1) the BLM is also just a fitted
regression when the link between accumulation at a critical
site and toxicity is not made (e.g., Figure 3) and 2) various
alternative mechanisms may lead to log‐linear pH effects on
free metal ion toxicity (e.g., Figure 3).

The overall message of Figure 3 is that different mechanistic
theories and model formulations can generate either approx-
imately linear or log‐linear relations. In addition, assuming, for
instance, a bidentate binding model, the pKa values can gen-
erate a wide range of pH–ECx Men+ slopes (on a log scale) In
the absence of mechanistic evidence, such relationships are
equivalent to MLRs. Nevertheless, hybrid models which in-
corporate such regressions into a BLM framework are useful for
regulatory purposes, as long as they accurately predict toxicity
over a wide range of conditions.

A consequence of approaching the BLM as just equations to
be solved by using optimization routines to find the best values
for unknown parameters is that the fitted solutions may be
disconnected from the BLMs' mechanistic foundations. Prom-
inently, a fundamental BLM tenet is that toxicity follows accu-
mulation on the biotic ligand (Table 1). In model construction, if
the speciation model and log K values used successfully re-
produce measured accumulation values, then the model is
grounded in reality. However, if this step is bypassed, such as
when appropriate accumulation data are not available, it is
possible to successfully fit BLMs to toxicity values using binding
constants or LA50 values that appear to be chemically or
biologically unrealistic.

With Cu and Na, the apparent protective effect of Na+

against Cu toxicity has been incorporated into BLMs as a
competition between Na+ and Cu2+ for binding to the biotic
ligand. The binding constant for Na+ that can be extracted
from toxicity experiments tends to produce log K (biotic
ligand–Na) values of 2.5 to 3.5 in various BLMs. This agrees well
with the common observation that the binding affinity (Km)
values for unidirectional active Na+ uptake values in most
freshwater organisms are in the range of 10–3 M. It is curious
therefore that, in contrast, log K (organic acid–Na) stability
constants for various organic acids and Na are mostly between
0.7 and 1.9 (Stumm and Morgan 1996). This illustrates that
organismal biology is more complicated than simple chemistry.
Figure 5 illustrates a further example, comparing measured and
predicted Cd LC50s with rainbow trout from diverse studies
using 2 BLM constructs. In Figure 5, model A, the log K

© 2019 SETAC wileyonlinelibrary.com/ETC

FIGURE 4: Simulated relationships between toxicity of the free metal
ion and pH, presented on a log‐scale versus pH (upper panel) or on a
linear scale versus H+ ion activity, according to various assumed
mechanisms, that is, the classic biotic ligand model (BLM) with a un-
identate binding site (blue), a BLM with a bidentate binding site (or-
ange), contribution of the hydroxide complex to toxicity (gray), and
assuming that humic acid is a good multiple‐site surrogate for the
biotic ligand. This figure shows that, even if the emerging relationships
are not perfectly linear (except for the classic BLM in the lower panel
and the bidentate model in the upper panel), reasonably good linear
fits can be obtained. ECx= x% effect concentration; WHAM=Wind-
ermere humic aqueous model.
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Cd–biotic ligand binding affinity coefficient of 8.1 is similar to
those derived from gill accumulation experiments (e.g., 8.6
[Playle et al. 1993a]; 8.0 [Niyogi et al. 2008]). Yet in Figure 5,
model B, even when the Cd–biotic ligand binding affinity is
decreased 2 full orders of magnitude (2 log units), the fit of
the toxicity data is just as good, so long as the LA50 is recip-
rocally lowered 2 orders of magnitude to 0.03% (see online
Supplemental Data SI‐2 in Farley et al. 2015). However, fit
aside, both of these LA50 values are lower than experimentally
determined values, and an LA50 of 0.03% seems implausible,
assuming that binding to the site of toxic action is proportional
to binding sites on the gill. An LA50 of 0.03% implies that Ca
regulation would be fatally compromised with channels that are
99.97% intact, which does not seem physiologically plausible.
For comparison, experimentally derived LA50 values for Cd in
rainbow trout studies have been approximately 10 to 30% of
the strong binding sites on the gill (Birceanu et al. 2008; Niyogi
et al. 2008).

The reason for these modeling manipulations was to try to
find a combination of parameters that would mimic tests that
showed that Cd toxicity was reduced by adding Cu, implying
that Cu may have a higher affinity than Cd to the biotic ligand.
Although ungrounded from accumulation, such manipulations
have shown practical success across complex and varied ex-
posure conditions (Farley et al. 2015). The capacity of the BLM
structure to use widely available toxicity data to predict re-
sponses over a wide combination of waters, metals, and or-
ganisms is a major strength of the approach. However, too
much flexibility from many adjustable parameters can lead
to unconstrained models that would more accurately be

described as “mechanistically inspired” models, rather than
“mechanistic” models.

Complexity versus simplicity: Use of mechanistic
and hybrid models to inform development of
simpler models

The broad influence of metal bioavailability models within
science communities has not always translated to their broad
adoption by regulatory authorities (e.g., Wood et al. 2012a,
2012b). The necessity of determining the full composition
of each water sample and the complexity underlying
bioavailability–based models has proven to be a limitation for
their wide application. To broaden access to potential users,
various functional interfaces and simplified versions have been
developed. In the early 2000s, Robert Santore and colleagues
developed and freely shared an intuitive, spreadsheet‐style
software interface that executed the BLM structure developed
by Di Toro et al. (2001) and Santore et al. (2001). The software
provided users a flexible platform to explore toxicity data and
water chemistry and to expand on the work of the developers
with new models. The influence and utility of this modeling
platform are evidenced by approximately 300 literature cita-
tions to the software to date and by its incorporation into the
US Environmental Protection Agency's national recom-
mended aquatic life criteria for copper (US Environmental
Protection Agency 2007). At the time of writing, the software
was on its fourth major version. In the European Union, envi-
ronmental quality standards under the Water Framework

wileyonlinelibrary.com/ETC © 2019 SETAC
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Directive and risk assessments under the policy Registration,
Evaluation, Authorisation and Restriction of Chemicals employ
computationally intensive applications of multiple BLMs
developed to protect algae/plants, invertebrates, and fish (see
Nys et al. (2016) for Ni; Van Regenmortel et al. (2017) for Cu
and Zn; and Van Sprang et al. (2016) for Pb). Various simplified
proxies have been developed including Bio‐Met, which em-
ploys look‐up tables that approximate BLM calculations for
Cu, Ni, Zn, or Pb with over 20 000 values covering a wide
range of environmentally relevant water chemistries, using
fewer parameters (Ca, pH, and DOC) than the full BLMs.
Similar algorithm‐based approaches that simplify inputs and
user calculations include the Metals Bioavailability Tool and
PNEC‐Pro (Peters et al. 2016; Verschoor et al. 2017). For Pb, a
separate tool simplifying speciation and toxicity predictions is
also available (Van Sprang et al. 2016). All these resources can
readily be found through internet searches.

Because mechanistic and hybrid models typically integrate
the effects of water chemistry on geochemical speciation as
well as interactions of toxic metal species (mostly Men+) with
the organism, obvious roles of these models are to populate
look‐up tables and to inform the development of MLRs (Brix
et al. 2017a; DeForest et al. 2018). For example, a statistical
approach to developing MLRs using stepwise automated rou-
tines to maximize partial regression coefficients may yield a
good fit between effects and predictor variables. Yet, variables
that are only important in a subset of the data or that have

subtle effects may be missed, and a statistical approach alone
cannot distinguish between causative and correlative variables.
In the case of MLRs for Cu and Al, the choice of potential
toxicity predictor variables (DOC, pH, and water hardness or
Ca) was informed by associated BLMs (e.g., Santore et al. 2001,
2018), not by statistical explorations.

To further illustrate how mechanistic bioavailability models
can inform simpler approaches, we have used a chronic gBAM
for fish (De Schamphelaere 2018) to predict how the 30‐d
LC20(dissolved) of Cu in soft water (hardness ~10mg/L) for fish
varies as a function of the DOC, species sensitivity, and pH
(Figure 6). This gBAM accounts for geochemical speciation
effects, competition of Cu2+ with Ca2+ and Mg2+, and effects of
pH on Cu2+ ion toxicity. The simulations provide relationships
between ECx and DOC that “emerge” from the joint effects of
these 3 processes in the hybrid gBAM model. These simu-
lations illustrate 3 important points: 1) the relation between
ECx and DOC is nearly perfectly linear, on both linear and
logarithmic scales; 2) on a linear scale, the slope of the ECx
versus DOC relation is higher for less sensitive organisms and
at higher pH; and 3) on a logarithmic scale, slopes appear
nearly independent of species sensitivity or pH. This indicates
that an MLR on a linear scale should contain not only a linear
DOC term but also an interaction term between pH and DOC
and furthermore that an MLR slope derived on the basis of an
insensitive species should not be extrapolated to a more sen-
sitive species. Similar simulations can be performed for other

© 2019 SETAC wileyonlinelibrary.com/ETC
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FIGURE 6: (A) Modeled 30‐d 20% lethal concentrations (LC20s) as a function of dissolved organic carbon (DOC; at pH 7) for rainbow trout (more
sensitive) and a 10 times less sensitive hypothetical fish species, presented on linear and log scale, and (B) 30‐d LC20s as a function of DOC for
rainbow trout at pH 6 and 8, presented on linear and log scale. ECx= x% effect concentration.
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species, water quality variables, and metals, resulting in specific
recommendations for MLR construction.

Equilibrium issues
From both chemical and biological perspectives, BLMs and

related constructs all assume equilibrium conditions. If this is
not the case, the predictive abilities of the model may be
compromised. Instances where equilibrium may not occur in-
clude laboratory exposures with incompletely equilibrated
diet and/or DOC and environmental exposures such as pulse
exposures from stormwater or meltwater runoff (Kayhanian
et al. 2008; Nimick et al. 2011; Balistrieri et al. 2012; Figure 7)
and exposures within mixing zones downstream of point‐
source releases (Vandenberg et al. 2005). Nonequilibrium
conditions can cause metals which equilibrium‐based speci-
ation calculations assign to complexes to actually be bio-
available, whereas equilibrium models such as BLMs generally
assume that complexed metals are not bioavailable (Zhao
et al. 2016).

Reactions of metal ions with dissolved inorganic ligands
typically reach equilibrium in seconds to minutes. However,
equilibration of metals with DOC can take hours to days. This
issue was initially manifested in fathead minnow Cu toxicity data
reported by Erickson et al. (1996). In nonrenewal static trials, the
96‐h test duration was sufficient for any disequilibrium asso-
ciated with Cu–DOC complexation to be effectively eliminated
during the early part of the exposure. However, in flow‐through
tests, a Cu stock solution was mixed with unamended Lake Su-
perior water in the diluter head tank just prior to entering the
45‐min residence time test chamber. In this case free Cu was

continuously elevated relative to equilibrium conditions, and
toxicity was increased relative to static tests at the same dis-
solved Cu concentration. Model‐predicted LC50s were almost
identical in the 2 flow regimes, but in the flow‐through tests,
they were consistently higher than observed values (i.e., toxicity
was underestimated by the model), whereas in the static
tests they were consistently lower than observed values (i.e.,
toxicity was overestimated), under otherwise similar conditions
(Figure 8A,B; Santore et al. 2001). This interpretation is con-
sistent with tests that found that Ceriodaphnia dubia Cu LC50s
were directly related to equilibration time with DOC (Kim et al.
1999; Ma et al. 1999). A caution, however, is that DOC tends to
increase over time during static tests, as a result of accretion of
organic carbon from the test organisms. For Ag and Cu, metals
with strong affinities for DOC, small increases in DOC in the
range of 0.2 to 0.5mg/L can produce noticeable changes in
modeled or measured toxicity (Erickson et al. 1998; Welsh et al.
2008). Thus, the pattern of greater toxicity of Cu in flow‐through
tests than static tests could be influenced by both incomplete
equilibration in the former and increasing DOC over the course
of the latter tests.

At high humic acid (>5mg/L DOC) and Cu (>1 µM) con-
centrations, up to 30 h were required to reach equilibrium
(Ma et al. 1999). Under more dilute conditions with DOC
<1mg/L, Cu more rapidly equilibrated in 0.1 to 4 h (Louis et al.
2009; Meyer and Adams 2010). As an example, the kinetic data
of Ma et al. (1999) were used to calculate that at the start of a
static exposure the free Cu (Cu2+) concentrations might be
elevated as much as 10‐fold relative to the concentration at
equilibrium (Figure 9A). After the first 24 h, the deviation from
equilibrium is small; and after 30 h, equilibrium is achieved
(Figure 9B). Similarly, in static‐renewal tests, the solution is re-
freshed at regular intervals, resulting in elevated free Cu with
each renewal unless pre‐equilibration is used (Figure 9C). Most
seriously, in flow‐through tests with a short hydraulic residence,
free Cu will be elevated throughout the test (Figure 9D). Sim-
ilarly, Meyer and DeForest (2018) invoked the Ma et al. (1999)
kinetic model to argue that a lack of adequate equilibration
could explain the apparently very low threshold effect con-
centrations (<2 μg Cu/L) reported by Dew et al. (2012) for ol-
factory impairment in fathead minnows exposed to Cu for short
durations (1–24 h), as an alternative to the damage‐repair
hypothesis proposed by Dew et al. (2012) for explaining the
decrease of olfactory impairment as exposure time increased.

Reports on the importance of pre‐equilibration as a factor
modifying metal toxicity have been inconsistent. For instance,
although Glover et al. (2005) found that Ag was more toxic to
Daphnia magna (lower 24‐h LC50s) in tests initiated after 3‐h
metal–DOM contact time than in tests initiated after 24 h
contact time (Figure 10), Erickson et al. (1998) found little
effect on Ag toxicity from aging solutions for 72 h before
testing. Further, in contrast to the Ma et al. (1999) results,
Wang et al. (2011) found little differences in Cu toxicity
between tests initiated with freshly mixed exposures versus
solutions that had been aged for 24 h.

Equilibrium models are a reasonable simplification of real‐
world systems in many cases, such that simple relationships

wileyonlinelibrary.com/ETC © 2019 SETAC

FIGURE 7: Biotic ligand models (BLMs) assume equilibrium conditions,
which may not be true with metal–dissolved organic carbon (DOC)
binding that can take up to 24 h to reach equilibrium in some tests. The
data shown here for Cu and DOC sampled in a stream during a rain-
storm show that concentrations can change rapidly and not necessarily
in synchrony. Copper is expected to have greater bioavailability
and toxicity in nonequilibrium conditions than would be predicted by
equilibrium‐based BLMs. Data from Balistrieri et al. (2012).
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have been obtained that relate metal speciation to biological
effects (e.g., the present review; Zhao et al. 2016). This sim-
plification is probably necessary when using bioavailability
models, whether mechanistic or empirical, to inform regulatory
applications. Nevertheless, the controversies over equilibrium
assumptions and contrasting results preclude conclusive gen-
eralizations to resolve the apparent equilibration dilemma. Still,
unless time‐varying conditions are the focus of testing, we

suggest a 24‐h pre‐equilibration period in experimental de-
signs to allay concerns of nonequilibrium.

Toxicity test design considerations for
developing mechanistic and hybrid
bioavailability models

Historically, mechanistic and hybrid metal bioavailability
models have been developed from 1) multiple univariate tox-
icity experiments, where each factor (e.g., Ca, Na, DOC, pH) is
varied alone; 2) full‐factorial test designs (which can be con-
sidered a series of univariate experiments at various con-
ditions); 3) multivariate toxicity experiments, where factors are
varied in various combinations; or 4) a combination of 1) and 2).
Regardless of the design, well‐informed selection of the water
chemistry variables is crucial. This selection should be based on
prior knowledge of suspected influential variables, using in-
formation on other organisms, other metals, previous metal
uptake and toxicity data, and physiological understanding.

Multivariate experiments are particularly useful as a first step to
discriminate the more from the less important toxicity‐modifying
variables. However, on their own, they are not necessarily the most
useful for mechanistic model development, as illustrated in the
following example. De Schamphelaere and Janssen (2004b)
performed chronic D. magna toxicity experiments with Cu in a
multivariate design with pH, DOC, and hardness as the factors.
They found that DOC and pH were significant factors but that
hardness was not. They subsequently used the data to calibrate a
chronic Cu‐BLM for Daphnia, in which Ca or Mg competition was
not included. Also, Na was included in the model because of
evidence from a parallel univariate experiment with Na that
showed a correlation with Cu toxicity. Later, Rodriguez et al. (2012)
performed univariate experiments and did find protective effects
of Ca and Mg. Van Regenmortel et al. (2015) developed an op-
timized chronic Cu bioavailability model by reformulating it as a
gBAM and including biotic ligand constants for Ca and Mg. This
optimized model accurately predicted the toxicity observed in
both data sets.

This example indicates that non‐full‐factorial multivariate test
designs can “miss” toxicologically significant modifying factors,
especially when the design is run over multiple test series where
between‐batch variability may play a role (see Supplemental Data).
On the positive side, the example illustrates that, over time, ex-
isting models can be improved if new data become available and
that data sets from different sources can be used jointly for model
calibration. It also suggests that univariate test designs are best for
calibration of individual model parameters (e.g., biotic ligand
stability constants for competing cations in BLMs or pH slopes
in gBAMs). Furthermore, the mathematical method to estimate
log K values is well known and relatively straightforward (De
Schamphelaere et al. 2002). Full‐factorial designs (the special case
of multiple univariate experiments) have been rarely used in
generating bioavailability models because they are the most costly
and labor‐intensive, but they are particularly useful to detect in-
teractive effects. Using this design, Deleebeeck et al. (2009) were
able to show no interactions between pH and Mg on chronic Ni
toxicity to algae, allowing them to formulate a model that was
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FIGURE 8: Comparisons of biotic ligand model (BLM)–predicted and
measured fathead minnow median lethal concentrations (LC50s) in
flow‐through and static test designs. (A) Repeated tests of same‐age
fish from the same broodstock in constant exposure water (unamended
Lake Superior reference water) varied by a factor of approximately ±2,
which is the origin of the “factor‐of‐2” rule of thumb for evaluating
BLM performance. (B) Measured and BLM‐predicted LC50s from tests
amending Lake Superior water with added major ions or dissolved
organic carbon. Both comparisons show that Cu tended to be more
toxic in flow‐through than static test designs, which is likely at least
partially related to nonequilibrium conditions in the flow‐through tests.
Original data from Erickson et al. (1996) plotted after Santore et al.
(2001) but using the US Environmental Protection Agency's (2007)
updated fathead minnow species mean critical accumulation value of
2.97 nmol/g wet weight. The solid diagonal line is the line of 1:1
agreement; the dotted and dashed diagonal lines are a factor of ±2
deviations from the 1:1 line.

74 Environmental Toxicology and Chemistry, 2020;39:60–84—C.A. Mebane et al.



successful at predicting Ni toxicity in a range of spiked field waters.
In summary, all sorts of designs can help in initial model devel-
opment, but univariate or full‐factorial designs are the best for
calibration of individual model parameters.

Consideration of other toxicity‐modifying factors
Although pH, DOC, and major ions have been incorporated

into most bioavailability models (Table 2), other factors have
received much less attention by bioavailability model

developers. We are not aware of any current regulatory
framework that explicitly incorporates effects of other metal
toxicity factors such as acclimation to prior metal exposure,
temperature, nutrients, suspended solids, or iron hydroxides in
the assessment of metal toxicity. Yet we now know that such
factors may strongly affect metal toxicity, and in the case of
nutrients and temperature, for example, a wealth of empirical
data is available.

Acclimation to chronic metal exposures can have major ef-
fects on responses to subsequent acute exposures, through

wileyonlinelibrary.com/ETC © 2019 SETAC

FIGURE 9: Kinetic patterns of free Cu concentrations over the course of a toxicity test in the presence of 5mg/L dissolved organic carbon in 4
different hypothetical experimental conditions. In each simulation, the dissolved Cu concentration is 10 µg/L. In each panel, the free Cu concen-
tration at equilibrium is shown as a horizontal dashed blue line, and the simulated free Cu in the experiment as a function of time is shown as a red
line. For a static exposure with no pre‐equilibration (A), the free Cu (Cu2+) at the start of the test is elevated but decreases over time until it is near
equilibrium at approximately 30 h. For a static exposure with a 24‐h pre‐equilibration period (B), the free Cu is close to equilibrium for the entire test
duration. For a static test with daily renewals (C), the free Cu is elevated at the beginning of each renewal and then decreases but never reaches
equilibrium. In a flow‐through test (D) with a 1‐h residence time, the free Cu is constant but far from equilibrium.
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acquired tolerance. During long‐term, low‐level exposures, gill
metal burdens may increase above the concentrations usually
associated with acute toxicity (reviewed by Niyogi and Wood
2003). This has been explained by the “damage‐repair hy-
pothesis,” whereby the repair processes increase the tolerance
of the organism to a particular metal burden (McDonald and
Wood 1993). Likewise, the log K and Bmax conditional binding
constants of the metal biotic ligand and of the various
cation–biotic ligand complexes will be markedly changed fol-
lowing acquired tolerance, yet these constants are considered
to be unchangeable with the changes in environmental con-
ditions in BLMs (Niyogi and Wood 2003). Although acquired
tolerance from exposure to elevated metals has long been
recognized (Chapman 1985), acclimation to soft or hard water,
or differences in the composition of the diet (e.g., high calcium
or sodium content) may also have profound effects on metal
tolerance and modeling (e.g., Niyogi and Wood 2003; Franklin
et al. 2005; Todd et al. 2009; Mebane et al. 2010). In criteria
development, acclimation is considered a confounding, false
protection to be guarded against because acquired pro-
tections may not be persistent and, furthermore, the energetic
costs of tolerance may lead to other adverse effects (Stephan
et al. 1985; Brinkman and Woodling 2014). However, the
implications of variations in binding constants depending on
earlier metal exposure, water hardness, diet, and other envi-
ronmental or physiological conditions seem to be under-
recognized in the development and application of metal
bioavailability models (Niyogi and Wood 2003).

Most studies on temperature effects have investigated
acute toxicity. These have reported both increasing metal
toxicity with increasing temperature (Rao and Khan 2000;
Heugens et al. 2003) and increasing toxicity with decreasing
temperature (Hodson and Sprague 1975; Hansen et al. 2002).
Much more limited data are available on chronic metal

toxicity, but a recent study showed that chronic metal toxicity
to D. magna varied by approximately 2‐fold, with a clear
pattern of higher toxicity at lower temperature, opposite to
what is most commonly expected for acute toxicity (Pereira
et al. 2017). Interestingly, for Cu, the response pattern could
be explained by the computed effect of temperature on
speciation but not for Ni and Zn. Until now, most BLMs and
hybrid models do include temperature as an input parameter,
but they only compute the effect of temperature on inorganic
speciation, whereas DOC interactions, which rely on WHAM
V, VI, or VII, are not temperature‐adjusted. Most importantly,
any temperature effects at the biological receptor are not
incorporated. More empirical and mechanistic research is
clearly needed to better integrate temperature into bioavail-
ability models and AWQC.

Effects of nutrient concentrations, especially phosphate,
on metal toxicity have been studied extensively and can be
relatively strong but are inconsistent across various studies.
Notably, phosphate concentrations in natural freshwaters
(European annual mean in rivers as of 2012 was 65 µg PO4‐P L–1

[European Environment Agency 2018]) are typically considerably
lower than those applied in standard algae toxicity test
protocols (310–1550 µg PO4‐P L−1 [Organisation for Economic
Co‐operation and Development 2011; US Environmental
Protection Agency 2002]). Thus, a better mechanistic under-
standing of nutrient effects on metal toxicity, and associated
incorporation into models, is urgently needed to improve
laboratory‐to‐field extrapolation. Gao et al. (2016), for example,
developed a mechanistic dynamic model that integrated effects
of external phosphate, algal cell P content, and Zn on instanta-
neous algal growth rate. Their model was able to explain why
different exposure scenarios (duration, phosphate supply, and
initial P content of algae) can lead to opposite apparent effects
of phosphate on Zn‐induced declines of algal biomass in
standard toxicity tests. As bioavailability modeling expands into
metalloids and plants, we expect nutrients will have an important
role as a modifying factor, especially with pairs such as phos-
phate and arsenate (Zhao et al. 2016).

The role of organic ligands that bind metals and form
lipophilic complexes has received little attention in metal
bioavailability modeling. Similarly, the potential role of
low–molecular weight metabolites such as thiosulfate or
citrate (which can bind metals and then transport them
across epithelial surfaces as the intact metal–ligand com-
plex via anion transporters) has received little attention
(Zhao et al. 2016). Although BLMs and related constructs
usually treat complexed metals as nontoxic, attributing
toxicity only to the free ion metals, we now know that
complexed metals can be bioavailable and toxic under
some circumstances (Erickson et al. 1996; Zhao et al. 2016).

Other trace metals, such as Fe and Al, may also influence
metal toxicity, notably via 1) competition with the toxic metal
ion for binding on DOC, and 2) by providing an adsorption
phase when in the colloidal hydroxide‐precipitated form (Cain
et al. 2016). It would be worthwhile to explore how effects of
these and other bioavailability‐modifying factors could be
added to metal bioavailability models.

© 2019 SETAC wileyonlinelibrary.com/ETC

FIGURE 10: Laboratory toxicity testing of metals with increased dis-
solved organic matter (DOM) should consider metal–DOM equilibrium
time. Silver was more toxic to Daphnia magna (lower 24‐h LC50s) in
tests initiated after 3‐h metal–DOM contact time than in tests initiated
after 24‐h contact time (Glover et al. 2005). DOC= dissolved organic
carbon; LC50=median lethal concentration.
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The choice of speciation modeling platforms
for BLMs

Given the importance of DOM (natural organic matter,
DOC) in metal speciation, the speciation modeling component
of a mechanistic bioavailability model must be capable of ac-
curately predicting metal–DOM complexation. Several mech-
anistic models exist for computing metal binding to humic and
fulvic acid, which are the dominant components of DOM in
freshwaters. These include the humic ion–binding family
(Models V, VI, and VII; Tipping and Hurley 1992; Tipping 1998;
Tipping et al. 2011), the nonideal competitive absorption
(NICA)‐Donnan model (Kinniburgh et al. 1996) and the
Stockholm humic model (Gustafsson 2001). These are com-
bined with inorganic speciation codes in tools such as WHAM,
Visual MINTEQ, and the Hydroqual/Windward BLM software.
These inorganic speciation models differ somewhat in the
binding affinity values used and even the presence of equili-
brium constants in their code. Some speciation models do not
account for precipitation/dissolution reactions. The absence of
the relevant equilibrium constants can lead to the use of un-
stable metal exposure regimes in experiments, where the
metal's solubility limit is exceeded.

A number of speciation models have been used in BLM
development. Di Toro et al. (2001) implemented WHAM V
within the CHESS framework, and many subsequent studies
(e.g., De Schamphelaere and Janssen 2002; Heijerick et al.
2005) also used WHAM V. Others have used WHAM VI (e.g.,
Deleebeeck et al. 2008; Peters et al. 2011), WHAM VII (Vukov
et al. 2016), or NICA‐Donnan (Van Sprang et al. 2016). The
choice of speciation model platform may be informed by a
number of factors, particularly the availability of binding con-
stants for the metal of interest. Derived BLM binding constants
(i.e., log K values) are conditional on the choice of speciation
model, and different BLM binding constants can be obtained
from the same data set using different speciation models. This
has implications for metal‐mixture BLMs—here, a single spe-
ciation model should be used for all metals to account for in-
termetal competition on DOM binding sites, and the
provenance of any binding constants used should be carefully
evaluated. We did not reach consensus whether any single
speciation model for either DOM binding or inorganic speci-
ation could be considered optimal. The choice of models may
be informed by a number of factors, particularly the availability
of binding constants for the metal of interest.

Specification of DOM (DOC) in models
All of the DOM‐binding models listed require concen-

trations of humic and/or fulvic acid to be specified. This re-
quires the use of “activity factors”—the ratio of measured DOC
concentration to the concentrations of humic and/or fulvic acid
that reproduce the metal‐binding properties of that DOC. The
activity factor is composed of 3 components, each of which
may be assumed or estimated: the carbon content of DOM, the
metal‐binding properties of that DOM, and the attribution of
the binding properties of that DOM to humic and/or fulvic acid.

Development of a BLM has usually used a global activity factor,
sometimes derived from metal–DOM binding studies (Dwane
and Tipping 1998; Bryan et al. 2002). Early developments (e.g.,
Di Toro et al. 2001) assumed DOM to be 50% carbon, with
100% activity and comprising 10% humic and 90% fulvic acid.
Because the activity factor is in reality water‐specific, some
have researched whether the activity correlates to measurable
DOM properties. De Schamphelaere et al. (2004) found that
optimizing water‐specific BLM predictions of acute Cu toxicity
to D. magna produced activities (as fulvic acid only) that cor-
related significantly with the specific absorbances of the DOM
samples at 350 nm (SAC350). Al‐Reasi et al. (2012) found sig-
nificant correlations between acute Cu toxicity to D. magna and
a number of optical and physicochemical properties of DOM,
with SAC340 being the most significant predictor of protective
ability. They suggested that the predictive capability of BLMs
could be improved by the use of SAC340 to adjust the activity
factor on a water‐by‐water basis. In general, larger, more lip-
ophilic, more aromatic DOMs of terrigenous origin, with higher
humic acid‐like content, and therefore higher SAC values, ap-
pear to be more protective against Cu toxicity. Despite these
findings, however, many BLM studies still use a global activity
factor in model development because this has the advantage
of requiring only measurement of absolute DOC concentration
for application.

Evaluation of speciation models
The ability of models to predict metal speciation, for the

chemical conditions relevant to BLM development and appli-
cation, needs to be fully evaluated. Because BLM parameter-
ization employs predicted free metal ion activity, testing should
ideally be done on measurements of the free activity. Speci-
ation measurement is complex, and many methods remain
under active development rather than in routine use. Relatively
well‐established methods (e.g., ion‐selective electrodes [ISEs])
are challenging to apply at the dissolved metal and DOC
concentrations encountered in natural waters because of issues
such as membrane dissolution and fouling (Eriksen et al. 1999),
although they can be highly useful in toxicity tests, particularly
acute toxicity studies (e.g., Al‐Reasi et al. 2012; Crémazy et al.
2016). Some have used DOC preconcentration (Ahmed et al.
2013) or continuous‐flow (Tait et al. 2016) systems to enable
measurement at the metal:DOM ratios encountered in natural
waters. Competitive ligand exchange voltammetry (Xue and
Sigg 1999; Cao et al. 2006) has also been used, though its
validity has been criticized (van Leeuwen and Town 2005; Lofts
and Tipping 2011). Nonetheless, continued research in this
area is essential, alongside critical assessment of speciation
models against such data. Of particular note is a pair of land-
mark studies comparing the reliability and performance of
different trace metal speciation analytical methods and com-
parative model performance to modeling of metal speciation
(Sigg et al. 2006; Unsworth et al. 2006). Examples of model
predictions compared against recent measurements using ISEs
(for Cu) and an ion‐exchange technique (for Co, Ni, Zn, and Cd)
are shown in Supplemental Data, Figures S1 through S6.
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CONSIDERATIONS FOR THE
INCORPORATION OF METAL
BIOAVAILABILITY MODELS INTO
ENVIRONMENTAL QUALITY STANDARDS
Dealing with extreme waters

The occurrence of extreme natural water conditions (e.g.,
unusual pH, hardness, DOC levels, or combinations thereof) is
a common reality for almost all geographical regions. These
situations have been recognized in working with BLMs (Van
Genderen et al. 2005; Natale et al. 2007; Hoppe et al. 2015a,
2015b) and pose a common challenge in terms of bioavail-
ability model development and application for regulatory cri-
teria. There are various reasons for this. First, the taxa typically
used for model development (i.e., organisms commonly used
in all laboratory testing) may not be tolerant of extreme water
conditions. All of the water conditions that modify metal tox-
icity are themselves environmental characteristics that limit
habitat suitability in ways that have nothing to do with metal
toxicity. For example, DOM has been called an ecological
driving force for aquatic ecosystems with well‐documented
effects on the pH and primary productivity of natural waters
(Steinberg et al. 2006). Furthermore, there is evidence that
DOC can bind to the gills (Campbell et al. 1997) and alter the
basic physiology of ion transport in a way which can beneficially
mitigate the damaging effects of metals and low pH (Galvez
et al. 2008; Wood et al. 2011; Duarte et al. 2016). These actions
of DOC are separate from their ability to reduce the bioavail-
ability of metals by complexation. Some crustaceans and snails
will not thrive in culture waters of very low hardness or pH (i.e.,
control performance will not be acceptable). Equally, they will
not be present in natural waters of low hardness (Lodge et al.
1987; Hooper et al. 2008; Cairns and Yan 2009). Second, the
available models are not generally validated for extreme water
conditions, and thus, the predictions can be erroneous and/or
generate uncertainty. And third, the extreme water types often
have specific ecological assemblages with organisms of dif-
ferent physiological characteristics, which may or may not show
similar sensitivities and/or metal–bioavailability relationships
(e.g., different log K values or pH slopes) to organisms typically
used for model development.

The main target for model development should be the
central distribution of data, such as the 5th to 95th percentile of
the distribution of water chemistry parameters, rather than
undue focus on exceptions and extreme values. The following
options can be considered in deciding the derivation of a new
model or use of existing model for ecosystems with extreme
water parameters.

Extending the boundaries of existing models. This in-
cludes recalibration of an existing bioavailability model with
the testing of local waters and organisms to extend the
physicochemical boundaries of the model. A series of papers
has been published with methods describing how the vali-
dation boundaries of BLMs or hybrid models for Cu, Ni, Zn,
and Pb can be extended to also accurately predict metal

toxicity under more extreme pH and hardness (Van Genderen
et al. 2005; Deleebeeck et al. 2007; Nys et al. 2016, 2017; Van
Regenmortel et al. 2017).

Developing new bioavailability models. In general, bio-
availability models should be developed and tested in media
that resemble surface water conditions that are within the
natural limit of the test organism. Testing organisms outside
their usual physiological range of tolerance is inadvisable. Site‐
specific models should be developed using toxicity testing that
employs site waters and native organisms from the extreme
sites.

Metal mixtures
Our discussions so far have treated metals as if they occur

one by one in the environment. Likewise, regulatory criteria are
developed as if individual metals occurred in isolation, with no
interactive toxicities. Both are, of course, complete fiction. In
the real world, metals always occur in mixtures that are a
function of the mineral composition of the watershed. An-
thropogenic inputs will invariably produce mixtures of metals,
and some generalities about mixture occurrences in ambient
waters can be made. The most predictable metal combination
is probably Cd and Zn, which seem to naturally occur at close
to a 1:200 mass ratio around the world (Mebane et al. 2017).
Nickel and Co commonly occur in association with Cu, and Pb
is commonly associated with Zn; but the ratios and particular
combinations may be highly variable across geological do-
mains (Salminen 2005). Empirical models are not well suited to
such variable scenarios, whereas mechanistic bioavailability
and toxicity models do provide a flexible approach to handle
these combinations.

It has long been recognized that the single‐metal framework
for BLMs could logically be extended to metal mixtures
(Di Toro et al. 2001; Playle 2004), and much recent progress
has been made in this area (e.g., Farley et al. 2015; Meyer et al.
2015; Nys et al. 2018). These metal mixture modeling tools
may be highly useful in risk‐assessment scenarios. However,
because of the overwhelming diversity of possible combina-
tions, we expect that regulatory criteria to protect aquatic en-
vironments will continue to be developed for individual
substances for the foreseeable future. Toxic unit models as-
sume that potency‐normalized concentrations of metals can be
added together to predict the toxicity of a metal mixture; these
provide a simple approach to estimate mixture toxicity risks
from single‐metal toxicity models (concentration addition or
toxic unit models). Alternatively, predicted toxic responses
from single‐substance toxicity models can be added (response
addition or, more appropriately stated, independent action
models). The concentration addition approach tends to be
more conservative than the response addition approach; that
is, concentration addition may predict greater effects than
observed (Van Regenmortel et al. 2017; Crémazy et al. 2018).
Both approaches implicitly assume that chemicals in the mix-
ture do not physically, chemically, or biologically interact and
thereby overlook competition for metal binding sites on DOC
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and on the target biotic ligand, which could make metal mix-
tures more or less toxic than if there were no interactions. Re-
cent studies at acutely toxic metal levels indicate that such
binding interactions can occur at biotic ligands (Niyogi et al.
2015; Brix et al. 2016, 2017c). However, interactions between
metals for biotic ligand or DOC binding sites are not predicted
to be important at mixture concentrations at the low µg/L levels
relevant to most chronic regulatory criteria (Balistrieri and
Mebane 2014). We believe that mixture toxicity models are
ultimately needed for the application of metal criteria, and as
mentioned earlier, they should be developed using a common
DOM speciation platform. However, the development of
bioavailability‐based criteria on a single‐metal basis remains a
reasonable approach. Concerns over how to apply criteria in
the ubiquitous settings with metal mixtures present should not
hold back the development and application of single‐metal
bioavailability‐based criteria.

Ownership and maintenance of bioavailability
models

Setting up the reaction equations for bioavailability models,
writing code to execute them, developing software to provide
a functional user interface and interpretive output display,
documenting the construction and performance of the
package, and preparing detailed documentation for users is no
trivial undertaking. The expectations are particularly onerous
when bioavailability models are used to set regulatory water
criteria sufficient to protect diverse communities in diverse
environments with legally enforceable limits that drive costs for
engineering design, capital construction, operating, and mon-
itoring. Furthermore, the use of models in public policy settings
requires sustaining commitments by sponsors over the
long term.

It takes no ongoing effort to maintain regulatory criteria that
are expressed as simple mathematical functions of toxicity‐
modifying factors. For instance, some of the criteria values
based on hardness equations published by the US Environ-
mental Protection Agency (1986) are still in use 3 decades on.
In contrast, for criteria calculated with the aid of custom soft-
ware, that software needs ongoing maintenance to upgrade to
new operating systems, to fix bugs, and to modify the model
capabilities following advances in the underlying science.
These maintenance needs pose a challenge to regulatory au-
thorities. They must not just provide one‐time support for a
model to be used in criteria and then move on; an ongoing
commitment to maintain the model is needed. Further, the
opportunistic use of model software that is not fully in the
public domain to set environmental regulations raises in-
tellectual property ownership questions. Institutions supporting
chemical speciation models may sell licenses to partially offset
their development and maintenance costs and allow the de-
velopers to keep advancing their models. Regulatory author-
ities may hesitate to rely on a software application that is not in
the public domain and that cannot be guaranteed to be func-
tional indefinitely, and they may be unwilling or unable to

commit to ongoing support of model applications on behalf of
their affected dischargers. Until these practical model support
and public domain issues are addressed, the pragmatic path
forward is to use bioavailability models as research tools to
inform simpler, lower‐maintenance translational tools for reg-
ulatory adoption, such as MLRs and look‐up tables (see section
Complexity versus simplicity: Use of mechanistic and hybrid
models to inform development of simpler models).

CONSENSUS RECOMMENDATIONS FOR
DEVELOPING OR APPLYING METAL
BIOAVAILABILITY MODELS

Our workgroup reached consensus on the following points.
It would be prudent for scientists and environmental managers
to consider these when developing or applying metal bio-
availability models for environmental quality standards or risk
assessment.

1) Empirical bioavailability tools such as MLRs and look‐up
tables should always be informed qualitatively and quan-
titatively by mechanistic models.

2) Going forward, equilibrium speciation should be consid-
ered in the design of experiments for bioavailability
models. We recommend a 24‐h pre‐equilibration period in
experimental designs to allay concerns of nonequilibrium
test conditions. Care should be used to include speciation
models that encompass precipitation reactions so as to
ensure that the solubility limits are respected for the
metal(s) of interest and that no loss of solubility occurs.

3) The chemical speciation model used should be tested in-
dependently of its ability to predict toxicity.

4) Data obtained from tests conducted with organisms out-
side the chemistry boundaries from where they live should
not be used. The main target for model development
should be the central distribution of data, such as the 5th
to 95th percentile of the distribution of water chemistry
parameters, rather than undue focus on exceptions and
extreme values.

5) Some potentially important toxicity‐modifying factors are
currently not represented in bioavailability models and
have received insufficient attention in toxicity testing.
Temperature is probably of foremost importance; P is likely
important in plant and algae models.

6) Plant and animal bioavailability models should not be
combined because of the divergent influences of pH.

7) pH is a unique toxicity‐modifying factor, with multiple
possible mechanisms. These effects are currently best
captured by hybrid models, which can inform improved
mechanistic understanding and foster better mechanistic
models of pH effects. Failures of mechanistic models to
explain experimental data can advance our understanding
of actual mechanisms.

8) To develop models for mixture toxicity, a common chem-
ical speciation platform should be used. This is particularly
important for DOM.
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9) To estimate bioavailability model parameters, univariate or
full‐factorial designs are most useful because multivariate
designs may miss responses for variables with limited ef-
fect. In univariate test designs, nonsimultaneous testing
can introduce confounding variability. In real laboratories
in the real world, this may be unavoidable, but repeating
treatments between studies is important.

10) For best practice during chronic tests, combined water-
borne and dietary matched exposures should be per-
formed. These should be based on natural live diets
equilibrated with the associated waterborne metal con-
centration. However, the absence of such designs should
not be a criterion for rejecting currently available
chronic data.

11) There is a need to develop mechanistically based bio-
availability models for behavioral toxicity and to consider
these for future regulatory application. Such models
should be built from the ground up using behavioral
endpoints, rather than by adjusting the sensitivity param-
eter in existing BLMs.

12) If bioavailability models are to be used in environmental
regulation, ongoing support and availability for use of the
models in the public domain are essential. Until this can be
guaranteed, simpler, lower‐maintenance translational tools
based on bioavailability models, such as MLRs and look‐up
tables, may be preferable.

Supplemental Data—The Supplemental Data are available on
the Wiley Online Library at DOI: 10.1002/etc.4560.
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