Calcium regulation in the freshwater-adapted mummichog

M. L. Patrick†, C. M. Wood and W. S. Marshall*

Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1 and *Department of Biology, St Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 1C0

(Received 1 April 1996, Accepted 3 February 1997)

In light of recent findings of an unusual pattern of ionoregulation (high Na+ uptake and negligible Cl− uptake) in the freshwater-adapted mummichog Fundulus heteroclitus, the pattern of Ca2+ regulation was examined. Under control conditions (water Ca2+=200 µEq l−1), unidirectional Ca2+ influx was 11 ± 4 nEq g−1 h−1. A cute variation of external Ca2+ levels revealed a saturable Ca2+ uptake system with a relatively high affinity (Km=125 ± 36 µEq l−1) and a transport capacity (Jmax=31 ± 4 nEq g−1 h−1) comparable to those of other teleosts. Lanthanum (equimolar to [Ca2+]) significantly blocked Ca2+ uptake by 67% whereas magnesium had no effect. Chronic low Ca2+ exposure (50 µEq l−1) stimulated Ca2+ uptake almost three-fold above control values, whereas chronic high Ca2+ exposure (20 000 µEq l−1) had no effect. Lanthanum and chronic low Ca2+ treatments disturbed the normally positive Ca2+ and Na+ balances of the animals whereas acid-base balance and ammonia excretion were undisturbed. The results indicate that Ca2+ regulation by the mummichog conforms to the model for freshwater Ca2+ transport whereby chloride cells on the gills take up Ca2+ actively from the water. However, the absence of extra-intestinal Cl− uptake and the recent demonstration of significant Ca2+ uptake by opercular epithelia raise questions about the relative roles of branchial and opercular epithelial chloride cells in freshwater F. heteroclitus.

Key words: fish; mummichog; calcium; Fundulus heteroclitus; ion fluxes.

INTRODUCTION

In a recent study, Patrick et al. (1993) demonstrated that the freshwater-adapted mummichog Fundulus heteroclitus (L.) exhibits very high rates of Na+ turnover while Cl− influx from the water is essentially zero. These findings deviate substantially from the current model of ion transport established for freshwater teleosts (Mcdonald et al., 1989; Goss et al., 1992; Wood & Marshall, 1994; Kirschner, 1996) and may be associated with the high degree of euryhalinity exhibited by F. heteroclitus (Griffith, 1972). The lack of Cl− uptake was surprising considering the abundance of ‘chloride cells’ (mitochondria-rich cells) on both the gills and the opercular epithelium (Wood & Marshall, 1994). Current gill models attribute both Cl− uptake (Goss et al., 1992, 1995) and Ca2+ uptake (Flik & Verbost, 1993; Flik et al., 1993, 1995) to the chloride cells, so the absence of Cl− uptake raises questions about the nature and site of Ca2+ transport in the freshwater mummichog.

Only a few papers have examined Ca2+ uptake in the F. heteroclitus and of these, two in vivo studies (Pang et al., 1980; Mayer-Gostan et al., 1983), and a recent in vitro study, which utilized the opercular membrane (Marshall et al.,

†Present address: Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, U.S.A.
1995), are not consistent. The two former studies agree that Ca\(^{2+}\) enters the fish from the water via an extra-intestinal route and that the uptake rate increases after acclimation to lower environmental Ca\(^{2+}\) levels. However, in the more detailed study (Mayer-Gostan et al., 1983), uptake was related linearly to external concentration under normal conditions, suggestive of a passive mechanism. The stimulated uptake after acclimation to low [Ca\(^{2+}\)] was not related linearly to external concentration, but did not follow classical Michaelis-Menten kinetics. In contrast, in the in vitro study (Marshall et al., 1995) Ca\(^{2+}\) influx across the opercular epithelium of the F. heteroclitus exhibited saturable uptake kinetics.

In the present study, Ca\(^{2+}\) uptake from the water was characterized in vivo in freshwater-adapted mummichog to determine if it, like Cl\(^{-}\) uptake, is unusual in this fish and departs from the currently accepted model and secondly, to help clarify the inconsistencies between the studies mentioned above. Calcium influx rates were determined by the appearance of radiolabelled Ca\(^{2+}\) in the fish (cf. Hogstrand et al., 1994). Various experiments examined the external concentration dependence of calcium influx (‘kinetics’), the influence of adaptation to high and low [Ca\(^{2+}\)], the effects of two known inhibitors of Ca\(^{2+}\) transport—La\(^{3+}\) (Verbost et al., 1987, 1989; Perry & Flik, 1988) and Mg\(^{2+}\) (Hartzel & White, 1989), and possible linkages with Na\(^{+}\), ammonia, and acid-base balance.

MATERIALS AND METHODS

EXPERIMENTAL ANIMALS

Mummichogs weighing 2·7–11·7 g were collected in summer from a brackish estuary near Antigonish, Nova Scotia and were held in 500-l fibreglass tanks containing aerated, charcoal-filtered 10% sea water at ambient temperature (18–25°C) and a 15L : 9D photoperiod. Ten days prior to the experiment, a maximum of 25 fish was placed in 80-l glass aquaria containing acclimation water which was aerated and filtered. Composition (all in µEq l\(^{-1}\)) was: Na\(^{+}\), 1000; Cl\(^{-}\), 1000; Ca\(^{2+}\), 200; Mg\(^{2+}\), 120; K\(^{+}\), 20; titration alkalinity to pH = 4·0, 280 µEq l\(^{-1}\); pH = 6·8–7·3. Water was replaced every 3 days. Fish were fed daily (a 1:2 mixture of Tetramin/Tetramarin) until 4 days before the experiment. All experiments were performed in the month of July.

EXPERIMENTAL METHODOLOGY

Calcium uptake kinetics

The rate of whole body Ca\(^{2+}\) influx (J\(^{Ca}\) \(_{in}\)) was measured in seven Ca\(^{2+}\) concentrations ranging from 50 to 3200 µEq l\(^{-1}\), following a protocol developed by Hogstrand et al. (1994, 1995). Each of seven 3-l black polypropylene flux chambers, equipped with individual aeration, were filled with 1·5 l of Ca\(^{2+}\)-free water (distilled water supplemented with NaCl, KCl and NaHCO\(_3\) to approximate the levels of these ions in the acclimation water). Appropriate aliquots of a \(^{45}\)Ca/Ca(NO\(_3\))\(_2\) stock solution (608 µEq l\(^{-1}\) specific activity = 74 kBq µEq\(^{-1}\)) were added to adjust the water Ca\(^{2+}\) levels to 50, 100, 200, 400, 800, 1600, and 3200 µEq l\(^{-1}\), and allowed to mix for 15 min. The experiment was initiated by placing eight fish into each of the seven flux chambers. Water samples (30 ml) were taken from each chamber at 0, 2 and 4 h for subsequent analysis of \(^{45}\)Ca and [Ca\(^{2+}\)]. After 4 h, fish were placed, one at a time, into a freshwater medium containing 20 000 µEq l\(^{-1}\) Ca(NO\(_3\))\(_2\), to displace any surface bound \(^{45}\)Ca, and a terminal overdose of M S-222 (1·0 g l\(^{-1}\) M S-222). After 1 min, the fish were removed, blotted dry, weighed, wrapped in aluminum foil, and either processed immediately or stored at \(-20^\circ\)C.
The effects of external La$^{3+}$, Mg$^{2+}$ and exposure to high and low [Ca$^{2+}$]$_{ext}$ on whole body Ca$^{2+}$ uptake was measured during acute exposure to 100 µmol l$^{-1}$ MgSO$_4$ or LaCl$_3$ (equimolar to the Ca$^{2+}$ level in the medium) and following chronic (10 day) high and low Ca$^{2+}$ exposure. Net Ca$^{2+}$, Na$^+$ ammonia, and acid-base fluxes were monitored also. The holding conditions for control, La$^{3+}$, and Mg$^{2+}$ treatment groups were the same as described above. The low Ca$^{2+}$ holding medium was prepared from distilled water and supplemented with NaCl, Ca(NO$_3$)$_2$, KCl and NaHCO$_3$ to approximate the composition described earlier except Ca$^{2+}$ concentration was set to 50 µEq l$^{-1}$. High Ca$^{2+}$ holding water was achieved by supplementing the defined freshwater medium with Ca(NO$_3$)$_2$ to raise the Ca$^{2+}$ level to 20 000 µEq l$^{-1}$. Batches of control, Mg$^{2+}$, and La$^{3+}$ experimental water (all with 200 µEq l$^{-1}$ Ca$^{2+}$), and low Ca$^{2+}$ experimental water (50 µEq l$^{-1}$ Ca$^{2+}$) were made by adding the appropriate amount of the 45Ca/Ca(NO$_3$)$_2$ stock solution to the Ca$^{2+}$-free medium (above), supplemented with 100 µmol l$^{-1}$ MgSO$_4$ or 100 µmol l$^{-1}$ LaCl$_3$ as appropriate.

Flux measurements on the chronic low Ca$^{2+}$ fish were performed in the low Ca$^{2+}$ medium in order to determine the reference rate of J_{Ca} in at 50 µEq l$^{-1}$ Ca$^{2+}$. Fish acclimated to 200 µEq l$^{-1}$ Ca$^{2+}$ and acutely exposed to 50 µEq l$^{-1}$ Ca$^{2+}$ were used as a comparison to indicate flux rates in the absence of long-term exposure to low Ca$^{2+}$. Flux measurements on the chronic high Ca$^{2+}$ fish were performed in the control medium (200 µEq l$^{-1}$ Ca$^{2+}$) rather than at the holding Ca$^{2+}$ level (20 000 µEq l$^{-1}$) as the amount of isotope required to maintain a water specific activity (0·07 kBq µEq$^{-1}$) similar to the other experiments would have been prohibitive.

Eight fish were used in each treatment group except control (n = 7). For all treatments, the fish were placed in individual darkened flux chambers and held in a static, vigorously aerated 300-ml volume of the appropriate acclimation medium for no longer than 6 h. Following this overnight settling period, the flux chambers were flushed and 300 ml of fresh acclimation medium were added. Ninety minutes later, the chambers were flushed again. This time, 300 ml of the appropriate experimental media were added. Water samples (30 ml) were taken at 0-, 2- and 4-h intervals for subsequent analysis of 45Ca, Ca$^{2+}$, Na$^+$, titratable alkalinity, and ammonia concentrations, after which the fish were killed and processed as described for the uptake kinetics study.

ANALYTICAL METHODS AND CALCULATIONS

Flux measurements

Individual frozen fish were diced and then ashed in closed ceramic crucibles at 750°C for a minimum of 4 h. The ash was dissolved subsequently with 2 N HCl; duplicate aliquots of fish ash digest and water samples were added to 10 ml scintillation cocktail (ACS, Amersham) and assayed with a Packard 2000 CA liquid scintillation counter. A preliminary test indicated that quenching was uniform, obviating the need for quench correction.

Water calcium and sodium concentrations were determined by atomic absorption (Varian 375 AAS), water total ammonia (T_{Amm}) by a micro-modification of the salicylate-hypochlorite assay (Verdouw et al., 1978), water titratable alkalinity (TA) by titration of 10-ml volumes with 0·02N HCL using ml burettes, and subsequent calculation of acid-base fluxes (J^T_{net}, J^{Amm}_{net}, J^H_{net}) according to McDonald & Wood (1981). J^T_{net} and J^H_{net} measured in the LaCl$_3$ treatment are not reported as tests indicated that the water titration values were not reliable due to interference by LaCl$_3$.

J_{Ca} in (nEq g$^{-1}$ h$^{-1}$) was determined by the following equation:

$$J_{Ca} = \frac{c}{At}$$

where c is the average counts in the tissue samples (cpm/g) based on the volume of the fish ash-HCl solution counted, the amount of acid added to dissolve the ash and the weight of the fish prior to ashing, A is the mean specific activity of 45Ca in the water (cpm nEq$^{-1}$) and t is time (h). The measurements were interpreted as extra-intestinal uptake rates since reported drinking rates for F. heteroclitus (Potts & Evans, 1967) could account for only about 10% of the measured J_{Ca} in values.
The relationship between $[Ca^{2+}]_{\text{ext}}$ and Ca^{2+} uptake was examined using Michaelis-Menten analysis for first-order kinetics. Values of J_{max} (the maximum uptake rate) and K_m (the $[Ca^{2+}]_{\text{ext}}$ at which uptake is 50% of J_{max}) were calculated using Eadie–Hofstee regression analysis (Michal, 1985). To generate the curve fitted to the data, the J_{max} and K_m values were substituted into the Michaelis-Menten equation:

$$J_{\text{in}} = \frac{J_{\text{max}}[Ca^{2+}]_{\text{ext}}}{K_m[Ca^{2+}]_{\text{ext}}}$$

The net flux (J_{net}) for calcium, sodium, titratable alkalinity, and acidic equivalents was calculated by:

$$J_{\text{net}} = \frac{\text{volume}}{\text{weight}} \frac{1}{\text{time}} ([\text{ion}]_1 - [\text{ion}]_2)$$

where $[\text{ion}]_1$ and $[\text{ion}]_2$ are the water concentrations at the start and end of the flux period respectively. Net Ca^{2+} flux rate for the chronic high Ca^{2+} exposed fish was determined from the final 2-h flux period only so as to avoid possible contamination of the experimental medium with high Ca^{2+} water carried over by the fish.

STATISTICAL ANALYSES

All values are presented as mean ± 1 S.E. Multiple comparisons among treatment groups were performed by analysis of variance (ANOVA) followed by Fisher’s test of least significant difference (LSD) in cases where the F-value indicated significance ($P \leq 0.05$).

RESULTS

CALCIUM UPTAKE KINETICS

The rate of Ca^{2+} influx exhibited a hyperbolic relationship over the range of external $[Ca^{2+}]$ tested indicating that transport became saturated (Fig. 1). The
data were described satisfactorily by the Michaelis-Menten relationship. The maximum uptake rate (J_{max}) and affinity constant (K_m) were $31 \pm 4 \text{nEq g}^{-1} \text{h}^{-1}$ and $125 \pm 36 \mu\text{Eq l}^{-1}$ respectively.

La}^{3+}, \text{Mg}^{2+}, \text{HIGH AND LOW Ca}^{2+} \text{EXPOSURE}

Under control conditions, $J_{\text{Ca}^{2+}}^{\text{in}}$ was $11 \pm 4 \text{nEq g}^{-1} \text{h}^{-1}$. The addition of $100 \text{µmol l}^{-1} \text{La}^{3+}$ to the freshwater medium inhibited Ca^{2+} uptake by about 67%, while the same concentration of Mg^{2+} had no effect (Fig. 2). Chronic exposure to low Ca^{2+} ($50 \mu\text{Eq l}^{-1}$) produced a threefold elevation of $J_{\text{Ca}^{2+}}^{\text{in}}$ relative to fish transferred acutely to this same medium (Fig. 2); both groups were tested in this low Ca^{2+} medium. Notably, this elevated rate was significantly higher than even that of the fish tested in the control medium ($200 \mu\text{Eq l}^{-1}$). The rate in fish exposed acutely to low Ca^{2+} was only slightly lower (non-significant) than the control treatment and the chronic high Ca^{2+} group exhibited no change in $J_{\text{Ca}^{2+}}^{\text{in}}$.

Although $J_{\text{Ca}^{2+}}^{\text{net}}$ did not differ significantly from zero in both the La^{3+} and Mg^{2+} groups, the fish were no longer in positive Ca^{2+} balance (Table I). The chronic high Ca^{2+} group, tested in normal Ca^{2+} media, showed a significant net Ca^{2+} loss as did the chronic low Ca^{2+} group tested in low Ca^{2+} media. While La^{3+} exposure did not reduce $J_{\text{Ca}^{2+}}^{\text{net}}$ significantly, it did affect Na^{+} balance negatively (Table I). Chronic exposure to low Ca^{2+} had a similar effect on $J_{\text{Na}^{+}}^{\text{net}}$, but none of the other treatments disrupted Ca^{2+} or Na^{+} balance. None of these treatments altered ammonia excretion significantly or induced a disturbance of net acid-base flux (Table I).
Table I. Net Ca2+, Na+, titratable alkalinity (TA), ammonia (Amm), and acidic equivalent (H+) fluxes (nEq g-1 h-1) measured during various exposures.

<table>
<thead>
<tr>
<th></th>
<th>$J_{\text{Ca}^{2+}}$</th>
<th>$J_{\text{Na}^{+}}$</th>
<th>J_{TA}</th>
<th>J_{Amm}</th>
<th>$J_{\text{H}^{+}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>40·5 ± 6·6 (6)</td>
<td>159·8 ± 82·3 (7)</td>
<td>694·7 ± 67·3 (5)</td>
<td>638·8 ± 67·2</td>
<td>55·8 ± 112·8</td>
</tr>
<tr>
<td>MgSO\textsubscript{4}</td>
<td>2·6 ± 29·0 (8)</td>
<td>34·8 ± 97·4 (8)</td>
<td>947·9 ± 98·0 (5)</td>
<td>867·7 ± 133·1</td>
<td>142·6 ± 142·8</td>
</tr>
<tr>
<td>LaCl\textsubscript{3}</td>
<td>1·2 ± 18·6 (8)</td>
<td>-185·9 ± 74·7*</td>
<td></td>
<td>446·7 ± 60·9 (8)</td>
<td>-</td>
</tr>
<tr>
<td>Chronic high Ca2+</td>
<td>-77·7 ± 40·9 (8)*</td>
<td>67·8 ± 54·9 (8)</td>
<td>480·7 ± 66·4 (8)</td>
<td>620·9 ± 46·8</td>
<td>-137·5 ± 57·7</td>
</tr>
<tr>
<td>Chronic low Ca2+</td>
<td>-20·5 ± 61 (8)</td>
<td>-186·6 ± 66·9 (8)*</td>
<td>788·3 ± 103·9 (8)</td>
<td>640·0 ± 101·7</td>
<td>186·5 ± 115·6</td>
</tr>
</tbody>
</table>

Means ± s.e. (n). n for J_{TA} is the same for J_{Amm} and $J_{\text{H}^{+}}$.

*Significant difference from control ($P \leq 0.05$).
Although the pattern of Na\(^+\) v. Cl\(^-\) uptake is most unusual in the freshwater-adapted mummichog (Patrick et al., 1993), the present study indicates that the pattern of Ca\(^{2+}\) uptake is similar to that of other freshwater fish in that: (i) it is a saturable process conforming to standard Michaelis–Menten kinetics; (ii) uptake can be blocked by a known calcium channel blocker, La\(^{3+}\); and (iii) it can be stimulated by long-term, low Ca\(^{2+}\) exposure. A recent in vitro study using opercular epithelial preparations (rich in chloride cells) of F. heteroclitus (Marshall et al., 1995) reported results in agreement with (i) and (ii). Thus despite the absence of detectable Cl\(^-\) uptake from the water, Ca\(^{2+}\) uptake proceeds in a manner characteristic of chloride cell function in other freshwater teleosts (Flik et al., 1993, 1995).

The present hyperbolic relationship between \(J_{Ca}^{Ca}\) and external Ca\(^{2+}\) (Fig. 1) is typical of the saturable, carrier-mediated process seen in most freshwater fish (Hogstrand et al., 1994; Flik et al., 1993, 1995). The \(K_m\) and \(J_{max}\) values estimated for F. heteroclitus indicate a transport system that has a relatively high affinity and a transport capacity that is comparable to that reported for rainbow trout Oncorhynchus mykiss (Walbaum) (Table II). In contrast, Mayer-Gostan et al. (1983) found a linear, non-saturable relationship in mummichogs held at a Ca\(^{2+}\) level of 3000 µEq l\(^{-1}\), and a curious biphasic relationship in mummichogs acclimated to the same Ca\(^{2+}\) level as in the present study (i.e. 200 µEq l\(^{-1}\)). Furthermore, Mayer-Gostan et al. (1983) reported Ca\(^{2+}\) uptake rates of between 80 and 100 nEq g\(^{-1}\) h\(^{-1}\) in the two groups of fish at 3000 and 200 µEq l\(^{-1}\) Ca\(^{2+}\), in contrast to present values of 11–19 nEq g\(^{-1}\) h\(^{-1}\) at the latter concentration. Pang et al. (1980) reported a rate of 65 nEq g\(^{-1}\) h\(^{-1}\) for F. heteroclitus held at 1300 µEq l\(^{-1}\) Ca\(^{2+}\). The reason(s) for these differences are unknown, but variations in holding conditions, stocks and methodology could all contribute. A nother factor could be cycles of regulating hormones such as stanniocalcin which are thought to be associated with fivefold variations of Ca\(^{2+}\) uptake in juvenile rainbow trout occurring over several weeks (Wagner et al., 1993; Hogstrand et al., 1994, 1995). In the present study, the potential for this effect was minimized by performing the various experiments (i.e. kinetics, blockers and low or high Ca\(^{2+}\) exposure) more or less simultaneously.

Marshall et al. (1995) examined Ca\(^{2+}\) transport in vitro in opercular epithelia of F. heteroclitus which were from the same stock and held under similar conditions as in the present study. The higher in vitro \(K_m\) relative to the present in vivo data (Table II) may represent the difference between the \(K_m\) of the apical membrane events (in vivo data) v. the transcellular events of apical and basolateral events in series (in vitro data). Alternatively, it may reflect a difference between transport sites on the opercular epithelium alone and those on the gills. A reasonable agreement was found between the present whole body estimate of \(J_{max}\) and our calculation of \(J_{max}\) using the in vitro value (Table II) suggesting that most or all of Ca\(^{2+}\) uptake in vivo could occur through the chloride cells of the opercular epithelia rather than those of the gills in freshwater F. heteroclitus.

The pronounced inhibition of Ca\(^{2+}\) uptake by external La\(^{3+}\) in vivo (Fig. 2) is in agreement with in vitro results on mummichog opercular membrane (Marshall...
Lanthanum is thought to block apical Ca2+ channels on the chloride cells (e.g. Perry & Flik, 1988). While Mg2+ can inactivate Ca2+ channels in other systems (e.g. Hartzell & White, 1989), it was ineffective on intact F. heteroclitus (Fig. 2), and only weakly effective at a 10-fold higher concentration on Ca2+ uptake across the opercular membrane in vitro (Marshall et al., 1995). The only evidence that Mg2+ influences Ca2+ uptake in fish in vivo is a report that high water Mg2+ levels cause hypocalcaemia in tilapia Sarotherodon mossambicus (Peters) (Wendelaar Bonga et al., 1983).

The threefold stimulation of J\textsuperscript{Ca\textsubscript{in}} caused by long-term exposure to low Ca2+ water was in agreement (at least on a qualitative basis) with the earlier results of Mayer-Gostan et al. (1983) on freshwater mummichog, as well as studies on freshwater rainbow trout in vivo (Perry & Flik, 1988), and freshwater tilapia both in vivo (Flik et al., 1986) and in vitro (McCormick et al., 1992). Perry & Wood (1985) reported that upregulation of Ca2+ transport in trout held at low Ca2+ occurs by increasing the number of transport sites (i.e. increased J\textsubscript{max}) rather than altering affinity (K\textsubscript{m}) (see Table II for values), and there is now general accord that chloride cell proliferation is an important element of this response (Flik et al., 1995). However following long-term exposure of mummichogs to high Ca2+ there was no reciprocal downregulation of J\textsuperscript{Ca\textsubscript{in}} (Fig. 2), suggesting that the transport capacity of the uptake system was already at a low level under control conditions.

Branchial permeability to ions was apparently compromised by chronic high and low Ca2+ exposures and the La3+ treatment. The chronic low Ca2+ group were in negative Na+ and Ca2+ balance (Table I) despite a significant elevation in the uptake of the latter cation (Fig. 2). The high Ca2+ exposed fish, which were tested in a lower Ca2+ water, maintained J\textsuperscript{Ca\textsubscript{in}} (Fig. 2) yet experienced a net Ca2+ loss (Table I) suggesting that efflux had increased.

<table>
<thead>
<tr>
<th></th>
<th>[Ca2+] (\textmu EEq l-1)</th>
<th>K\textsubscript{m} (\textmu EEq l-1)</th>
<th>J\textsubscript{max} (nEq g-1 h-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mummichog (in vivo)*</td>
<td>200</td>
<td>125 ± 36</td>
<td>31 ± 4</td>
</tr>
<tr>
<td>Mummichog (in vitro)†</td>
<td>200</td>
<td>~969</td>
<td>~75†</td>
</tr>
<tr>
<td>Rainbow trout (21 g)§</td>
<td>2000</td>
<td>184 ± 16</td>
<td>106 ± 5</td>
</tr>
<tr>
<td>Rainbow trout (244 g)¶</td>
<td>2000</td>
<td>280 ± 70</td>
<td>12 ± 2</td>
</tr>
<tr>
<td>Rainbow trout¶</td>
<td>50</td>
<td>230 ± 10</td>
<td>66 ± 13</td>
</tr>
</tbody>
</table>

Means ± s.e.

*Present study (n=7 groups of 8 fish).
†Marshall et al. (1995); (n=8-12 opercular epithelia).
‡Estimate based on J\textsubscript{max} = 188 nEq cm-2 h-1 and assuming a 2-cm2 total area (two opercular epithelia) for an average fish weighing 5 g.
§Hogstrand et al. (1994) (n=6 groups of 8 fish).
¶Perry & Wood (1985) (n=7 for 2000 \textmu EEq l-1 acclimated, n=6 for 50 \textmu EEq l-1 acclimated for 7 days).
(1972) suggested that during low Ca²⁺ exposure, elevated branchial ion loss occurs through the paracellular pathways. Lanthanum exposure resulted in a negative \(J_{\text{Na}}^{\text{net}} \) (Table I) which agrees with earlier studies that reported increased paracellular permeability to ions with La³⁺ treatment (Eddy & Bath, 1979; Freda & M cDonald, 1988). Net ammonia and acid excretion were unaffected by those agents which altered \(J_{\text{Ca}}^{\text{in}} \) and/or net Ca²⁺ and Na⁺ balance. At present, current models do not link Ca²⁺ uptake directly to acid-base balance, though there have been no previous direct tests on this topic to our knowledge.

Finally, based on the present measurements and the calculations in Table II, much or all of Ca²⁺ uptake could occur via chloride cells on the opercular epithelia (Marshall et al., 1995), cells which appear to be at best only weakly active in Cl⁻ uptake (Wood & Marshall, 1994). This raises the possibility that opercular chloride cells are retained in fresh water primarily for the purposes of calcium regulation, and that gill chloride cells in freshwater mummichogs are essentially non-functional. Clearly, these ideas are speculative, and future experiments in which rates of Ca²⁺, Cl⁻, and Na⁺ uptake are partitioned between gills and opercular epithelia should help prove or disprove them.

The authors thank S. Bryson for her assistance with the research and R. G Gonzalez for his helpful comments on the manuscript. This study was supported by NSERC research grants to CMW and WSM.

References

Wagner, G. F., Farger, R. C., Miliiken, C., McKean, B. A. & Copp, D. H. (1993). The gill calcium transport cycle in rainbow trout is correlated with plasma levels of...
bioactive, not immunoactive, stanniocalcin. Molecular and Cellular Endocrinology 93, 185–191.
