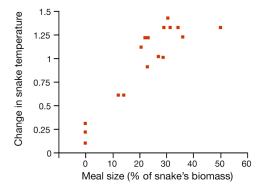
Two variables: Which test?

		Explanatory variable			
		Categorical	Numerical		
Response variable	Categorical	Contingency analysis	Logistic regression Survival analysis		
	Numerical	t-test	Regression		
		Analysis of variance	Correlation		

Correlation

Chapter 16

Scatter plot



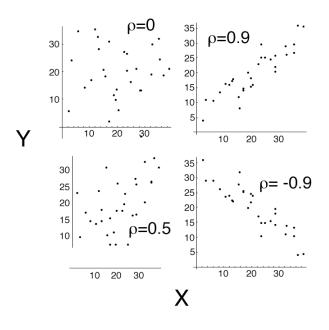
Correlation: r

r is called the "correlation coefficient"

Describes the relationship between two numerical variables

Parameter: ρ (rho) Estimate: r

 $-1 < \rho < 1$



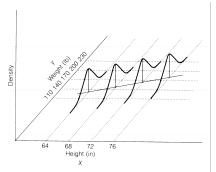
https://shiney.zoology.ubc.ca/whitlock/Guessing_correlation/

Correlation assumes...

Random sample

X is normally distributed with equal variance for all values of Y

Y is normally distributed with equal variance for all values of X



Coefficient of determination

 r^2

Describes the proportion of variation in one variable that can be predicted from the other variable

Correlation coefficient

Covariance

$$r = \frac{\text{Covariance}(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

Covariance
$$(X,Y) = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

Estimating the correlation coefficient

$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$ "Sum of cross products"

Standard error of *r*

$$SE_r = \sqrt{\frac{1 - r^2}{n - 2}}$$

If
$$\rho = 0,...$$

r is normally distributed with mean 0

$$t = \frac{r}{SE_r} \quad \text{with } df = n - 2$$

Godwit arrival time data

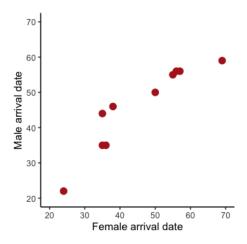
(units: days after March 31)

Female arrival date (X)	Male arrival date (Y)		
24	22		
36	35		
35	35		
35	44		
38	46		
50	50		
55	55		
56	56		
57	56		
69	59		
$\sum X = 455$	$\sum Y = 458$		

Example

Black-tailed godwits are migratory and socially monogamous.

Are the males and females in a pair correlated in their arrival dates after migration?



Hypotheses

 H_0 : Arrival date of female and arrival date of male are not related $(\rho = 0)$.

 H_A : Arrival date of female and arrival date of male are correlated $(\rho \neq 0)$.

Finding *r*

$$\sum (X - \bar{X}) (Y - \bar{Y}) = 1386$$

$$\sum (X - \bar{X})^2 = 1734.5$$

$$\sum (Y - \bar{Y})^2 = 1287.6$$

$$r = \frac{\sum (X - \bar{X}) (Y - \bar{Y})}{\sqrt{\sum (X - \bar{X})^2 \sum (Y - \bar{Y})^2}} = \frac{1386}{\sqrt{1734.5 \times 1287.6}} = 0.927$$

Godwit arrival time data

(units: days after March 31)

Female arrival date (X)	Male arrival date (Y)	$X - \bar{X}$	$Y - \bar{Y}$	$(X-\bar{X})^2$	$(Y - \bar{Y})^2$	$(X - \bar{X}) \times (Y - \bar{Y})$
24	22	-21.5	-23.8	462.25	566.44	511.7
36	35	-9.5	-10.8	90.25	116.64	102.6
35	35	-10.5	-10.8	110.25	116.64	113.4
35	44	-10.5	-1.8	110.25	3.24	18.9
38	46	-7.5	0.2	56.25	0.04	-1.5
50	50	4.5	4.2	20.25	17.64	18.9
55	55	9.5	9.2	90.25	84.64	87.4
56	56	10.5	10.2	110.25	104.04	107.1
57	56	11.5	10.2	132.25	104.04	117.3
69	59	23.5	13.2	552.25	174.24	310.2
Sum		0	0	1734.5	1287.6	1386

$$r = 0.927$$

$$SE_r = \sqrt{\frac{1-r^2}{n-2}} = \sqrt{\frac{1-0.927^2}{8}} = 0.1322$$

$$t = \frac{r}{SE_r} = \frac{0.927}{0.1322} = 7.01$$

$$df = n - 2 = 10 - 2 = 8$$

t=7.01 is greater than $t_{0.05(2), 8}$ = 2.31, so we can reject the null hypothesis and say that female and male arrival times are correlated.

Shortcuts

$$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y}) = \left(\sum X_i Y_i\right) - \frac{\sum X_i \sum Y_i}{n}$$

$$\sum_{i=1}^{n} (X_i - \overline{X})^2 = \sum_{i=1}^{n} (X_i)^2 - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n}$$

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i^2) - \frac{\left(\sum_{i=1}^{n} Y_i\right)^2}{n}$$

X is female arrival date, Y is male arrival date

0.9274395

$$\sum X = 455$$
 $\sum Y = 458$
 $\sum X^2 = 22437$ $\sum Y^2 = 22264$
 $\sum XY = 22225$ $n = 10$

Spearman's rank correlation

An alternative to correlation that does not make so many assumptions

Example: Spearman's r_s

VFRSIONS:

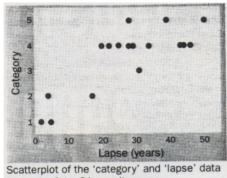
- 1. Boy climbs up rope, climbs down again
- 2. Boy climbs up rope, seems to vanish, re-appears at top, climbs down again
- 3. Boy climbs up rope, seems to vanish at top
- 4. Boy climbs up rope, vanishes at top, reappears somewhere the audience was not looking
- 5. Boy climbs up rope, vanishes at top, reappears in a place which has been in full view

Hypotheses

H₀: The difficulty of the described trick is not correlated with the time elapsed since it was observed.

 H_{Δ} : The difficulty of the described trick is correlated with the time elapsed since it was observed.

Example: Spearman's r_s



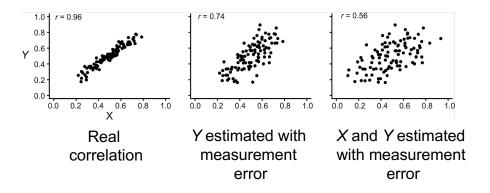
for each of the 21 evewitnesses.

$$r_{\rm s} = 0.712$$

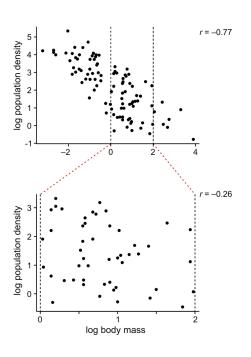
P < 0.05

Attenuation:

The estimated correlation will be lower if *X* or *Y* are estimated with error



Correlation depends on range



Species are not independent data points

