Welcome!

What ecological conditions or evolutionary changes are necessary for a species to transition from “introduced” to “invasive”? Plant species are constantly being transported to new habitats, largely through human activity, but only some species manage to establish self-sustaining populations, and only relatively few pose serious threats to their new habitats. My doctoral work addresses this fundamental question by examining possible mechanisms underlying the evolution of invasiveness using one of North America’s worst weeds, diffuse knapweed (Centaurea diffusa), as a model. If we can identify genetic changes associated with invasiveness, then we can better predict which plants pose the most threat, and better target prevention and mitigation efforts.

Please see my Research Interests page for descriptions of ongoing projects and possible collaborations. I am currently a Ph.D. candidate in the Department of Botany at the University of British Columbia in Vancouver, BC. I am also a member of the Rieseberg Lab and the Biodiversity Research Centre. I am currently seeking a post doc position to begin as early as Spring 2015. Please feel free to contact me if you know of any exciting prospects!

Previous work

I’ve worked most extensively with species from the Sunflower family (Asteraceae), such as high-throughput genotyping looking for selective sweeps in a hybrid sunflower species, adaptive radiation of seed oils in common sunflower, and my current work on the evolution of invasiveness in diffuse knapweed (Centaurea diffusa).  But my previous experience has been cosmopolitan, including the study of intron splicing in baker’s yeast mitochondria (Saccharomyces cerevisiae), population studies of New World warblers and vireos in central Texas, management of invasive salt cedar (Tamarix spp., Tamaricaceae), gravitropism in the triangle water fern (Ceratopteris richardii, Ceratopteridaceae), and the phylogenetics and evolution of a member of the mint family (Lamiaceae) on the Canary Islands.