Biol 404: Regression and multiple comparisons – Basic concepts
Topics of  this overview:

1. Multiple comparisons

2. Bonferroni corrections

3. Multiple regression

4. General linear models

5. Logistic regression

1. Multiple comparisons.

Suppose you have carried out a one-way ANOVA on an experiment with three levels of a factor and have found a significant effect of the factor. Before you submit your paper to Nature, you will want to know how the exact levels differ from each other. Remember, a significant effect in ANOVA just means that at least one of the treatments (here I use the word “treatment” to mean level of the factor) differs from the others. It does not tell us how the treatments differ. We need to carry out different tests to determine this, and there are two general ways in which we can do this: via planned comparisons (also called planned contrasts) of treatments, or via post hoc tests (post hoc is a latin phrase meaning, roughly, after the fact).

A planned comparison means that, prior to even collecting the data, we have reasons for being particularly interested in certain comparisons. For example, suppose we have the following treatments which we will analyze with a one-way ANOVA:

Treatment A: No insects (total insect biomass =0g)

Treatment B: One species of insect (total insect biomass = 10g)

Treatment C: Two species of insect (total biomass = 10g)

We might be particularly interested in whether insect presence affects our response variable (say decomposition). To answer this question we would like to compare treatment A with treatments B and C, since A differs from the rest in the presence of insects (What do I mean by “B and C”? I mean the average of B and C, not their sum). We might also be particularly interested in whether insect diversity affects decomposition, when biomass is held constant. This would be a comparison between B and C. Both of these are planned comparisons, since our interest in them can be established even before the results are in. In fact, these particular comparisons happen to be orthogonal, or independent from each other: the comparison of B vs, C is independent of whatever difference exists between A and the other treatments.

Thought question 1: What would a non-orthogonal comparison be? (Answer at end).

It is quite possible to have non-orthogonal planned comparisons. One just needs to correct for their non-independence by using a Bonferroni procedure (described later in lecture). Although we won’t cover the details of planned comparisons in this course, it is ridiculously easy: just divide up the factor SS into the various comparisons, and use F tests to test the significance of each comparison.

On the other hand, suppose we had the following treatments:

Treatment A: nitrogen addition

Treatment B: phosphate addition

Treatment C: potassium addition

There is nothing in the design of the experiment that makes us more interested in any particular comparison than any other. For example, A vs. B and C is just as interesting as B vs. C and A. Once the results are in, however, we would like to know which one(s) affects our response variable more than the others. For this, we use post hoc tests. There are many different types of post hoc test, but they are almost all based on the humble t-test (or it’s non-parametric twin, Mann-Whitney U). Here are some post hoc tests that you may come across: SNK, Duncan’s, multiple t, Tukey’s, LSD (that stands for least significant difference, of course!), Scheffe’s,  Nemenyi Joint Rank, Steel-Dwass, Conover’s T,  adjusted Mann-Whitney. Don’t worry! We are not going to derive formulas for any of these tests. But if you ever need formulas for these tests, or guidance on which or the many is best to use, I recommend looking at: 

Day, R.W. and G.P. Quinn. 1989. Comparison of treatments after an analysis of variance in ecology. Ecological Monographs 59: 433-463.

There is only one thing you need to know about post hoc tests: they are, by definition, non-independent from each other. To do post hoc tests, we look at all possible pairs of treatments, for example A vs B, B vs C, A vs C in our three treatment example. If A happens to be much bigger than B, and B is the same as C, we already know more or less that A will also be much bigger than C: that is, the results of one pairwise comparison are not independent from the results of other comparisons. The solution is to adjust the alpha values (i.e. make them less than 0.05), and different tests do this in different ways.

2. Bonferroni corrections.

In the above we looked at some cases of non-independence of tests. This is a problem that is not particular just to multiple comparisons, but to any statistical test. Suppose we did a regression analysis on a large dataset and then decided to examine a subset of it with a second regression. Well, we already have an idea of what the trends might be from the first regression, right? As the two regressions are not independent we might want to correct for that. You could imagine that otherwise someone could just try analyzing multiple, overlapping subsets of the data until something finally comes out significant (expected to happen by chance alone once in twenty times). This is called “trawling your data for results” and is to be avoided.

The way to correct is by using a Bonferroni procedure. There are various ways to do this. One way is to divide your usual alpha (almost always 0.05)  by the number of tests (say 2 in our regression example) to yield your new alpha (in our example, 0.05/2 = 0.025).  The new alpha is used in all your tests (in our example, if one of our regressions had a p-value of 0.03, it would not be significant). Some people feel that this is an overly conservative approach, and rank their results in order of significance, and reduce each alpha progressively more: this is often called a layered Bonferroni technique. You will also see references to “controlling the experimentwise-error”; this means that a Bonferroni technique was used. Make sure in your peer review that people used a Bonferroni correction if they looked at the same data in multiple ways.

3. Multiple regression.

Multiple regression is just an expansion of simple linear regression. In simple linear regression, you fit a straight line using dependent (y) and independent (x) variables:

Y=m1x + b

In multiple regression, you simply throw in a second independent variable as follows:

Y=m1x1 + m2x2 + m3x1x2 + b

Note that one normally looks at the interaction between the two independent variables (x1x2) at the same time. In fact, all of you have carried out multiple regression in JMP already! Any two-way ANOVA you have done is a multiple regression: remember that ANOVA is a subset of regression, and that a two-way ANOVA involves testing the significant of two independent variables (x1 and x2) and their interaction (x1x2). 

Thought question 2: What is the other analysis you did that was actually multiple regression?

4. General linear models.
In some of your articles, you may come across general linear models. There are two main ways to do the math to generate regression lines. One way is called least squares, and this is the one which you learnt about in Biology 300 (and that I reviewed early in the course, with analogies to sticks and rubber bands). The other major method is called maximum likelihood, and asks a similar sort of question of the data in a slightly different way. The regression technique based on maximum likelihood is called a general linear model, or GLM. Here are the two points you need to know about these two methods:

· If the data are normally distributed, the two methods are identical. However, they diverge for other distributions (eg. Poisson). Trying to get non-normally distributed data analyzed properly with least squares statistics is like trying to get a square peg in a round hole! Either you obtain biased results, or you have to transform the data (eg. taking the logarithm of Poisson data), or you are forced to use non-parametric statistics (which are generally less powerful at detecting real differences). The elegant solution is to use a maximum likelihood technique, which allows you to specify the distribution.

· The output from a general linear model will look very familiar to you (simply take all your understanding of statistics, and replace the word “variance” with the word “deviance”). The only difference is the statistical machinery which generated those results. 

How do you know if someone used a general linear model? Look for programs like: PROC GLM in SAS, GLIM, Genstat, R and for words like deviance instead of variance. 

5. Logistic regression

Logistic regression is used in two circumstances:

· You have a response variable which can be coded as either 0 or 1 (for example, died or didn’t die), and you would like to examine the effect of a continuous independent variable (eg. dose of toxin) on affecting this response. Thought question number 3: how does this differ from ANCOVA?

· Your response variable can only vary between an upper and lower bound, usually because it is a proportion. For example, if you wanted to know how many birds in a clutch died as a function of DDT in their eggshells you would use logistic regression.

The reason we have a special subset of regression for these situations is because the upper and lower bounds on the data affect the error structure…it is definitely not normal! As you might guess, maximum likelihood techniques are modern way to deal with logistic regressions, but there are some least square methods (the probit and logit transformations). Logistic regression fits an S-shaped curve to the data, which looks similar to the logistic growth curves you learnt about in population ecology.

Answers

Answer to thought question 1: An example of a non-orthogonal comparison is A vs B and C followed by A and B vs C. If A is very different than B and C, odds are that A and B are also very different than C.

Answer to thought question 2: ANCOVA is a form of multiple regression. It is special kind where one variable is categorical (nominal) and the other continuous.

Answer to thought question 3: In ANCOVA it is one of the independent (x) variables which is nominal, not the dependent (y) variable.

