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Abstract. —The fitness function frelates fitness of individuals to the quantitative trait under natural
selection. The function is useful in predicting fitness differences among individuals and in revealing
whether an optimum is present within the range of phenotypes in the population. It may also be
thought of as describing the ecological environment in terms of the trait. Quadratic regression will
approximate the fitness function from data (e.g., Lande and Arnold, 1983), but the method does
not reliably indicate features of f such as the presence of modes (stabilizing selection) or dips
(disruptive selection). I employ an alternative procedure requiring no a priori model for the function.
The method is useful in two ways: it provides a nonparametric estimate of f, of interest by itself,
and it can be used to suggest an appropriate parametric model. I also discuss measures of selection
intensity based on the fitness function. Analysis of six data sets yields a variety of forms of fand
provides new insights for some familiar cases. Low amounts of variation and a low density of data
points near the tails of many phenotype distributions emerge as limitations to gaining information
on fitness functions. An experimental approach in which the distribution of a quantitative trait is
broadened through manipulation would minimize these problems.
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Measurements of natural selection are in-
valuable in studies of adaptation. Recent
theoretical work in this area has successfully
addressed two main goals: first, to develop
coefficients of selection intensity for quan-
titative traits, disentangling direct from in-
direct effects (Lande and Arnold, 1983;
Manly, 1985), and second, to predict evo-
lutionary response to observed selection
events (Lande, 1979). Data on natural se-
lection can also be used for a third purpose:
to estimate the selection surface or fitness
function, the unknown function f relating
survival and/or reproductive success of in-
dividuals (W) to the phenotypic character
z under selection:

W = fz) + random error

(Pearson, 1903; Simpson, 1953; Lande,
1979; Lande and Arnold, 1983).

The fitness function is of interest because
itis a complete description of selection pres-

sures on individuals. For example, individ-
uals may differentially survive according to
body size, in which case W is survival (1 or
0) and f{z) is the probability of survival as
a function of size. An estimate of f would
thus allow the quantitative prediction of
survival probabilities of individuals, the
comparison of probabilities among individ-
uals differing in size, and the assessment of
whether an optimum body size exists within
the range of phenotypes present in the pop-
ulation.

A knowledge of f over a broader range of
phenotypes than is actually found in any
one population also leads to an estimate of
the “adaptive landscape,” describing mean
fitness in the population W as a function of
Z, the mean value of the phenotypic trait
under selection (Wright, 1932; Lande, 1979).
When the trait is heritable and uncorrelated
with other traits under selection, then the
direction of change in Z leading to the max-
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imum increase in mean fitness will usually
be the direction of evolutionary change in
the population.

The fitness function is additionally valu-
able in other research. For example, opti-
mality theory is employed in many fields to
predict features of a fitness surface from hy-
potheses about how a given trait may be
advantageous in a particular environment.
DeAngelis et al. (1985) predicted fitness in
bivalves as a function of growth strategy, as
determined by predation. Schluter and
Grant (1984) estimated adaptive landscapes
for mean beak size in Galapagos finch pop-
ulations on the hypothesis that these are
determined by seed supply. Powerful tests
of such adaptive hypotheses could be made
by quantitatively comparing the predicted
form of the selection surface with indepen-
dent estimates based on survival or repro-
ductive success.

Similarly, if the ecological significance of
a trait under selection is known, then the
form of the fitness function will provide a
useful description of the ecological environ-
ment in relevant units of fitness. For ex-
ample, beak size in populations of Gala-
pagos ground finches determines the
efficiency with which foods of different size
and hardness can be consumed and, con-
sequently, determines diet. Multiple modes
in the mean fitness landscapes for mean beak
size describe a distribution of alternative
feeding niches along a corresponding mean
seed size/hardness axis (Schluter and Grant,
1984; Schluter et al., 1985).

A variety of regression methods may be
used to estimate f or features of ffrom data
on natural selection. Lande and Arnold
(1983) suggested the use of quadratic regres-
sion to approximate the fitness function, the
coefficients of which correspond to direct
measures of selection intensity. This meth-
od can give misleading results, such as in
indicating the presence of a dip or mode
(see below). A more flexible approach would
be to compare several regression models
(e.g., Manly, 1976, 1985; Mitchell-Olds and
Shaw, 1987). Choosing the best model will
often be difficult, particularly when error
distributions are nonnormal (e.g., survival
data). Also, one cannot be assured that the
appropriate model is among those initially
fitted.
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Here, I explore an alternative method to
estimate the individual fitness function from
data on natural selection, one not requiring
that the parametric form of f be specified.
The method has two uses: first, it provides
a nonparametric estimate of f, of interest by
itself, and second, it can suggest an appro-
priate parametric model if one is desired. I
use the method to analyze several familiar
data sets involving selection on a single
variable and show where new insights are
gained. Estimates of selection intensity based
on nonparametric estimates of fitness func-
tions are also discussed. Finally, I consider
how to measure the sampling variability of
the estimate f. The more difficult problem
of estimating surfaces involving two or more
characters is ignored here but will be dis-
cussed in a forthcoming paper.

Definitions

In the general model for natural selection,
survival and/or reproductive success of in-
dividuals is related to the phenotype z as
W = f(z) + ¢, where € is a random error. I
defined f{z) as individual fitness, because it
measures average survival or reproductive
success of all individuals having the phe-
notype z (e.g., Endler, 1986). W is often also
referred to as ““individual fitness’” (Falconer,
1981; Lande and Arnold, 1983; Endler,
1986), but I will refrain from doing so here
in order to prevent confusion. Relative fit-
ness is fitness scaled to have a population
mean of 1: f,(z) = f(z)/ W, where W is mean
survival and/or reproductive success.

Natural selection is defined as variability
among phenotypes in fitness. Three types of
univariate selection are commonly recog-
nized, on the basis of the form of fover the
range of phenotypes in the population (End-
ler, 1986 pp. 16—18). In directional selec-
tion, individuals on one side of the popu-
lation mean are favored over those on the
other. Directional selection may occur with
other types, but in pure directional selec-
tion, fitness is either nondecreasing or non-
increasing over the range of phenotypes (i.e.,
fis monotonic). In stabilizing selection, in-
termediate phenotypes are favored over ex-
tremes—the function has a mode, or opti-
mum. In disruptive selection, fitness of
extreme individuals is greater than that of
intermediates—the surface has a dip, or
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minimum. Lande and Arnold (1983) rede-
fined these three types of selection (see be-
low), but I use the more traditional mean-
ings here.

Selection Coefficients and the
Fitness Function

The most common procedure in the anal-
ysis of data on natural selection is to cal-
culate coefficients of selection intensity.
Here, I briefly review the most useful coef-
ficients, those of Lande and Arnold (1983),
in order to clarify their relationship to the
selection surface, f, and to show how their
incautious application can mislead.

The fitness function f can be thought of
as a feature of the environment, describing
the fitnesses of alternative phenotypes but
existing independently of their actual dis-
tribution. In contrast, selection coeflicients,
such as those of Lande and Arnold (1983),
measure the effects of f on the distribution
of phenotypes in the population. To sim-
plify calculations, assume that the single
character z under selection has mean u = 0
and variance o> = 1. The coefficient of di-
rectional selection is then

B = Cov(w, z2)

where w = W/W, and W is mean survival
and/or reproductive success. If, in addition,
z is normally distributed, then

v = Cov(w, z?)

is the “stabilizing” (y < 0) or “disruptive”
(v > 0) selection coefficient. The value of v
is equal to the difference between the vari-
ances of z before and after selection, cor-
rected by 32, the reduction in variance re-
sulting from directional selection alone:
= 0%0er — 0 perore T B2. The constants 3 and
v/2 are the linear and quadratic coefficients
from the quadratic regression of w on z,
when z is normally distributed (Lande and
Arnold, 1983).

However, the coefficient v does not nec-
essarily indicate stabilizing or disruptive se-
lection, as these terms are defined above,
when directional selection occurs (see also
Mitchell-Olds and Shaw [1987]). For ex-
ample, consider truncation selection in a
normally distributed population with mean
0 and variance 1 (Fig. 1). All individuals
having a phenotypic value z = a survive,
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Fic. 1. Misleading approximation of a relative fit-

ness function f,, using quadratic regression. Bell-shaped
curve and shaded area indicate truncation selection on
anormally distributed trait z with mean 0 and variance
1: all individuals above z = 1.0 survive, and all indi-
viduals below z = 1.0 die. The regression surface (in-
verted parabola) erroneously suggests the presence of
disruptive selection.

while individuals with z < a do not. Selec-
tion is purely directional, but it can be shown
that the coefficient v is nonzero whenever
a is not the mean phenotype: v = ae~*2/
q\/2x, where q is the fraction of individuals
in the population surviving. The truncation
point in Figure 1 is a = 1.0, and « is large
and negative, as indicated by the dip in the
best-fit quadratic regression of w on z. A
similar situation occurs in the multivariate
case, where pure directional selection can
result in a significant ““correlational” selec-
tion coefficient (cf. Lande and Arnold, 1983).

The value of « fails to indicate the pres-
ence of a mode or dip in f'because the quan-
tity 52 does not correct for changes in vari-
ance resulting from directional selection. For
example, if z is normally distributed as p(z),
with u = 0 and ¢?> = 1, and if the fitness
function f'is smooth (i.e., is twice-differen-
tiable ["]), then the total change in variance
caused by selection, directional or other-
wise, is actually

azafter - = __ﬁZ + E[fw”(z)]

where f,,(z) = f{z)/ W. The quantity E[f,"(z)]
= [ 1,,”(2)p(z) dz measures mean curvature
of the surface f, over the distribution of
phenotypes (Lande and Arnold, 1983). Thus,
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B? will measure the change in variance re-
sulting from directional selection only if the
purely directional (monotonic) fitness sur-
face f, is without mean curvature (e.g., is
linear). Many directional fitness surfaces are
curved, such as those having an asymptote,
and in such cases v will be nonzero even
though stabilizing and disruptive selection
are absent.

The absence of a straightforward corre-
spondence between selection coefficients and
features of the selection surface does not
detract from the importance of the Lande
and Arnold (1983) results. Correctly applied
and interpreted, their coefficients can suc-
cessfully measure direct and indirect selec-
tion and can relate phenotypic patterns to
evolutionary change; knowledge of fis nei-
ther necessary nor sufficient to carry out
these goals. In order to avoid confusion, vy
should merely be renamed (e.g., as the coef-
ficient of nonlinear or quadratic selection).
However, the problems underscore the view
stressed here, that identification of stabiliz-
ing and disruptive (and correlational) selec-
tion and identification of other features of
f'should always be made with reference to
a direct estimate of the fitness function. In
the following sections, I apply a nonpara-
metric technique to make such an estimate.

MATERIALS AND METHODS

Nonparametric Estimation of Fitness
Functions

The Cubic Spline.—In order to estimate
the fitness function f from individual data
on survival and/or reproduction (W) and
phenotypic measurements (z), a reasonable
approach is to begin with maximum-like-
lihood. Select an estimate f from the set of
all possible continuous fitness surfaces to
maximize the log likelihood

Af) = _E (Wi zi, f)

where the sum is over the » individuals in
the sample. The term [(W;; z, f) is the log,
probability that W = W, when z = z, under
the particular choice of f. In the case that
W is normally distributed around f{z) with
constant variance, [(W}; z, f) is proportional
to — [W, — fiz)]? and the f that maximizes
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2(f) is the familiar least-squares estimate.
Unfortunately, any function connecting all
n data points will maximize the likelihood.
Such a curve would be extremely rough, zig-
zagging repeatedly among the different val-
ues of W, and would have low predictive
value. It would also offend our prejudice
that the true fitness surface is smoother and
simpler.

The failure of the above method has led
to the modified technique of penalized max-
imum likelihood (Good and Gaskins, 1971).
We select the function f to maximize the
penalized log likelihood

0N =2 MWz ) = i) (1)

where X is a nonnegative constant and J(f)
is the summed (squared) curvature of f, a
measure of “roughness”:

JO) = f [f"(2) dz. (@)

Note that the functions considered in the
maximization of (1) cannot have sharp
creases, or the operation within square
brackets in (2) (double differentiation) will
not be possible.

Assume for the moment that W is nor-
mally distributed around f{z) with constant
variance (nonnormal errors are discussed
below). For a given A, the fthat maximizes
(1) is a cubic spline, a function comprising
n + 1 cubic polynomials joined seamlessly
at points corresponding to the » phenotypic
values. The value of A controls the impor-
tance of the roughness penalty J(f) to the
sum in (1) and, thereby, determines the ex-
act form of the estimate £ A value for A\
must therefore be chosen wisely. When A is
small, little price is paid for roughness, and
the best function [the one that maximizes
(1)] will nearly fit the individual data points.
The penalty term assumes greater weight as
A gets larger, and so to compensate, the best
Jfmust be smoother. This effect is illustrated
using Houde’s (1987) data on sexual selec-
tion in guppies (Fig. 2), assuming normal
errors. In the limit, as A approaches infinity,
the best function will be the linear regres-
sion of Won z. The constant \ is often called
the “smoothing parameter.”
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An excellent choice for A is one providing
maximal predictive power in the given data
set, computed using the method of cross-
validation. For a given A\ and an individual
I, let f* be the function that maximizes (1),
but with individual 7 excluded from the sum.
The function f* is computed for all » indi-
viduals in the sample, yielding the sum of
squared prediction errors 2(fi(z;) — W)>2
Short-cut methods approximate the sum of
squared prediction errors and yield the gen-
eralized cross-validation (GCV) score (Cra-
ven and Wahba, 1979). The value for A that
minimizes the GCV score is known to min-
imize approximately the sum of squared de-
viations between the estimate fand the true
fitness surface f. The GCV score is therefore
an appropriate criterion for estimating f.
Such a GCV estimate is shown in Figure 2
(solid line) and indicates a possible mode
in the sexual-selection surface.

The cubic-spline approach is flexible, al-
lowing the estimation of a wide variety of
fitness surfaces. Standard linear, quadratic,
and higher-order polynomial functions (e.g.,
cubic regression) are themselves cubic
splines, and such functions will result if the
data warrants, but the method is in no way
restricted to these forms. Intuition as to how
the cubic spline actually yields a smooth
estimate of f is provided by Silverman
(1984), who shows that the method is ap-
proximately equivalent to the weighted
moving average, where the number of points
included in the average varies with the local
density of data points.

The relationship to the moving average
clarifies some of the properties of the cubic
spline. The spline provides a more local es-
timate of the regression surface than stan-
dard polynomial regression, which yields a
global fit to the data. For example, both
methods may be applied to a given data set
involving a cluster of (W,z) values. If a sin-
gle outlying point is then added and the
regressions are recomputed, the form of the
regression within the original cluster of
points may be substantially altered in the
polynomial case, but not in the spline. A
second, less desirable, property is that the
spline, like the moving average, can be
biased in that the estimate of ftends to be
too smooth where the slope of the true fit-
ness function changes rapidly (e.g., at the
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Fig. 2. Effect of A on the estimate of the fitness
function. Data are mating success of male guppies (Poe-
cilia reticulata; inferred from data on female behavior)
and the percentage of their body area that is colored
with orange (taken from figure 3 in Houde [1987]; N
= 32). Alternative estimates of f represent A = 0.002
(dotted), A = 8.2 (solid), and A = 150 (dashed). The
solid line minimizes the GCV score.

apex of a narrow peak). Gu (1987) suggests
a bootstrap procedure to correct partly for
bias. Estimated bias was very small in the
data sets that I analyzed, and so I do not
correct for it in my results.

Nonnormal Errors. —Measures of surviv-
al and reproductive success are often not
normally distributed. For example survival
is binomial and takes on values O or 1. The
distribution of number of offspring may, for
a given value of z, be approximately Pois-
son. The main problem with these alter-
native distributions is that fitness is restrict-
ed (0 =< flz) = 1 in the binomial case, and
f(z) = 0 for a Poisson distribution), and that
the variance ¢,2 of the errors around f'is not
constant but depends on f(z): 6.2 = f(z)(1 —
f(2)) in the binomial case and ¢.2 = f(z) in
Poisson. Data transformations to stabilize
the variance are not the answer; for exam-
ple, the log,-transformation cannot be used
on zeros.

These problems can be solved using stan-
dard iterative methods of generalized linear
models (McCullagh and Nelder, 1983) in
combination with the cubic spline (O’Sul-
livan et al., 1986). In this case, the modified
goal is to maximize the penalized log like-
lihood R(g) rather than 2(f), where g(z) =
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log,[f(z)/{1 — f(z)}] for binomial data and
g(z) = log,[f(2)] for Poisson data. The meth-
od can be thought of as a nonparametric
equivalent to logistic and log-linear regres-
sion. Note that no regression technique for
estimating f, including the cubic spline, re-
quires that the distribution of the pheno-
typic trait z be normal.

The ability to handle nonnormal errors
also allows the method to be used for ““cross-
sectional” or other data involving two in-
dependent samples. For example, Hagen and
Gilbertson (1973) made a collection of
sticklebacks when individuals were aged 2'2
months, and another when they were one
year old. Estimates of f can be made by
scoring individuals in the first sample as W
= 0 and those in the second as W = 1 and
regressing this variable on the trait of in-
terest. The regression will not estimate the
actual fitness function, but a function /4 that
is monotonically related to fitness (survival
probability) and has all of the same features
(log.[A(2)/{1 — h(2)}] will differ from g(z)
= log.[f(z)/{1 — f(z)}] by a constant). Only
traits not subject to growth can be analyzed
in this fashion.

Computer Routines. —Efficient FOR-
TRAN77 routines for computing fwith nor-
mal, binomial and Poisson data were kindly
provided by Douglas Nychka (Department
of Statistics, North Carolina State Univer-
sity, Raleigh). An easy-to-use, interactive
program employing his routines is available
from me on request. The program also in-
cludes an option to generate bootstrap sam-
ples randomly, which is useful in assessing
accuracy of f (see below). The program is
designed to run on a PC-compatible micro-
computer, but it should work on any sys-
tem.

Other programs also exist. The most gen-
eral, all-purpose routines are included in the
public package PGLMPACK (Yandell,
1987), obtainable from Brian Yandell (De-
partment of Statistics, University of Wis-
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consin, Madison). These will handle multi-
variate data, and splines other than the cubic.
However, they are inefficient in the univar-
iate case and have limited use on a micro-
computer. All analysis in the present paper
was done on an IBM-XT using Nychka’s
program.

RESULTS

Here I use the above methods to estimate
the fitness function in several other cases.
The purpose of the analysis is to see whether
new information might be obtained from
data that have previously been analyzed in
other ways and to indicate the diversity of
functions that may be observed in studies
of natural selection. I also describe mea-
sures of selection intensity based on esti-
mates of fand a way to assess the accuracy
of an estimate.

Fitness Functions

House Sparrows.—Bumpus (1899) re-
corded survival in relation to morphology
in 49 female and 87 male house sparrows
(Passer domesticus) during a New England
winter storm. Nine traits were measured,
including total body length, wing length,
body mass, head léngth, humerus length,
femur length, tibio-tarsus length, skull width,
and sternum length. Bumpus published his
raw data, and as a consequence they have
been frequently analyzed (Grant, 1972;
Johnston et al.,, 1972; O’Donald, 1973;
Lande and Arnold, 1983; Manly, 1985). Re-
sults have suggested directional selection in
males and stabilizing selection in females.

An estimate of the fitness function f in
relation to the first principal component in
female house sparrows (general size, based
on the covariance matrix of all nine traits,
log,-transformed) confirms the presence of
stabilizing selection (Fig. 3A). Probability
of survival was maximal at the mean phe-
notype (Z = 0), declining from 0.5 to about
0.1 at the tails of the phenotype distribution.

-

Fic. 3. Nonparametric estimates of fitness functions f'in six data sets. The “+” symbols indicate raw data
values, except in 3F, where sample size is very large and averages of sequential groups of 20 individuals are
given. A) Survival of female house sparrows (Bumpus, 1899; N = 49) in relation to standardized PC1. B) Survival
in the Galapagos finch Geospiza fortis (Boag and Grant, 1981; N = 642) in relation to beak size. The dashed
curve is the estimate of the surface using quadratic regression. C) Overwinter survival in juvenile female song
sparrows (N = 145) as a function of tarsus length. Data are from four winters combined (Schluter and Smith,
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1986). D) Reproductive success in female song sparrows in 1979 (N = 57) as a function of tarsus length (Schluter
and Smith, 1986). E) Overwinter survival in juvenile male song sparrows (N = 152) in relation to standardized
PC2. Data are from four winters combined (Schluter and Smith, 1986). Dashed curves indicate =1 SE of
predicted values f(z) from 200 bootstrap replicates of the fitness function. F) Survival in male human infants
(Karn and Penrose, 1951; N = 7,037) as a function of birth weight.
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The function is roughly parabolic and might
be approximated by a quadratic (e.g., Lande
and Arnold, 1983) or a normal model (e.g.,
O’Donald, 1973).

Galdpagos Finches. —Boag and Grant
(1981, 1984) described nonrandom surviv-
al in relation to various beak and body di-
mensions in 642 individuals (males and fe-
males combined) of the Galapagos ground
finch, Geospiza fortis, over a prolonged dry
season. Price et al. (1984), using the meth-
ods of Lande and Arnold (1983), showed
that directional selection was particularly
strong on beak depth, beak width, and body
mass. Schluter et al. (1985), also using the
methods of Lande and Arnold (1983), sug-
gested that some disruptive selection was
present in addition to directional selection,
as shown by a quadratic regression of sur-
vival against beak depth (Fig. 3B).

The spline estimate of the fitness function
in G. fortis showed probability of survival
increasing exponentially with increasing
beak depth over the entire range of phe-
notypes (Fig. 3B). Thus, selection was ap-
parently purely directional, and disruptive
selection was absent, in contrast to the ear-
lier result. The spline is probably closer to
the true function: inspection of the data
shows that the quadratic curve turns up-
ward at small beak sizes, even though the
very smallest individuals did not survive.
The upturn is a good illustration of the fact
that a quadratic regression may provide a
reasonable overall fit to the data, but its
form is not necessarily responsive to local
features (see also Fig. 1).

The revised estimate of fin G. fortis does
not alter a main conclusion of Schluter et
al. (1985), that the small and large seeds
favor different beak sizes in the population.
Large size was favored, but some small-
beaked individuals survived solely by effi-
ciently exploiting small seeds (Price, 1987).
Data from other life stages (Price and Grant,
1984) and years (Gibbs and Grant, 1987)
confirm that selection may at other times
favor small size instead of large size. How-
ever, the conclusion of disruptive selection
in Schluter et al. (1985) is not supported by
reanalysis.

Song Sparrows. —Schluter and Smith
(1986) described natural selection at differ-
ent life stages over a five-year period for the
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resident song sparrow (Melospiza melodia)
of Mandarte Island, British Columbia.
Strong selection was found in females, par-
ticularly for tarsus length and beak length.
Estimates are given in Figure 3C and D of
the relation between fitness (probability of
juvenile recruitment and mean number of
young produced) and tarsus length in fe-
males. Recruitment was a binomial vari-
able, while the number of young produced
by a given female was assumed to have a
Poisson distribution. The two curves show
the opposing relations between fitness and
the trait at different life stages (Schluter and
Smith, 1986). They also show the enormous
differences in fitness accompanying slight
differences in tarsus length. Over a 3.6-mm
range, estimated probability of recruitment
declined from nearly 1.0 to 0.2, while es-
timated reproductive success increased more
than seven-fold. Selection was purely direc-
tional in both cases, but f was not quite
linear, particularly in survival, where an as-
ymptote was approached at low values of
tarsus length (Fig. 3C).

Analysis of male song sparrows had sug-
gested the presence of stabilizing selection
on the second principal component (PC2)
in association with juvenile survival (Schlu-
ter and Smith, 1986). PC2 was obtained
from the covariance matrix of six external
morphological traits and indicated wing
length, tarsus length, and body mass relative
to length, depth, and width of the beak. A
nonparametric estimate of f (Fig. 3E) con-
firms the presence of a mode to the left of
the mean of the phenotype distribution (Z
= (0.0). However, the function was not sym-
metric but slowly equilibrated to an inter-
mediate value of fitness at the large end of
the phenotype distribution. A tiny second
mode, probably not real, was also present
at large values of PC2.

Human Infants. —Karn and Penrose
(1951) presented data on survival to 28 days
in newborn humans and its relation to weight
at birth. They fitted the data to a logistic
regression model with a quadratic term,
which indicated an optimum birth weight
at about 8 1b (3.6 kg) in both males and
females. Their result is a classic example of
stabilizing selection in our species. Similar
studies are reviewed by Van Valen and Mel-
lin (1967) and Ulizzi and Terrenato (1987).
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The relation between probability of sur-
vival and weight at birth in 7,037 male in-
fants was estimated using the cubic spline
(Fig. 3F). I was initially unable to obtain a
sensible result using this method —no min-
imum value for the GCV score was ob-
served. The problem probably resulted in
part from the small number of unique val-
ues for weight (23), since Karn and Penrose
(1951) presented their observations round-
ed to the nearest half pound. Rounding
seems to render the method especially sen-
sitive to values at the ends of the distribu-
tion, where data are sparse and, as a result
of rounding, separated from the remaining
data by gaps. The problem disappeared when
Igrouped the largest three infants (11.5, 11.5,
and 13 1b) with those in the 11.0-1b class.

The nonparametric estimate of f agreed
with the earlier analysis and indicated sta-
bilizing selection (Fig. 3F). However, the
mode in f was very broad, and probability
of survival exceeded 0.90 over the range
5.0-10.0 Ib. Estimated fitness declined only
slightly at larger infant sizes, in contrast to
very low probabilities of survival accom-
panying the smallest birth weights. Thus,
most selection appeared to be directional.
Maximum probability of survival (0.97) was
observed at 7.5 Ib, but this must be consid-
ered a very tentative estimate, given the flat-
ness of the mode.

Selection Intensity

The present paper is mainly concerned
with estimating the selection function, but
such an estimate can be employed further.
For example it can be used to estimate se-
lection ““intensity,” a useful quantity for
comparing different selection episodes. Se-
lection intensity is usually defined as a func-
tion of intrapopulation variation in fitness
(Haldane, 1954; Van Valen, 1965; O’Don-
ald, 1970; Manly, 1977) or of covariation
between fitness and the phenotypic traits
(Lande and Arnold, 1983). Intensity is not
a property of the fitness function alone, but
of both the function and the distribution of
phenotypes in the population.

Natural selection is defined as variation
in fitness, and hence, a straightforward mea-
sure of total selection intensity is variance
in relative fitness itself,

V = Var(f,(2)).
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TaBLE 1. Estimated selection intensity ¥ in six epi-
sodes (cf. Fig. 3).

Population Fitness measure Intensity
Female house sparrows survival 0.054
Galapagos finches survival 0.453
Female song sparrows survival 0.049
Female song sparrows reproduction  0.114
Male song sparrows survival 0.031
Male human infants survival 0.012

Variance in relative fitness as defined here
should not be confused with Var(w), the
variance in relative survival or reproductive
success, known as the opportunity for se-
lection (Arnold and Wade, 1984). V is es-
timated as the squared coefficient of vari-
ation among individuals in the predicted
values f{z). The measure will work for non-
parametric as well as parametric forms of f,
provided that the function is based on the
entire population or a random sample. Vis
similar to Manly’s (1977) index, but is not
wedded to a particular selection model and
is measured directly on f{z) and not on a
transformed scale. The measure does not
reflect selection on specific parameters (mo-
ments) of the phenotype distribution, as do
those of Lande and Arnold (1983), and
hence, it cannot be used to predict evolu-
tionary change in the parameters. Rather, it
reflects selection on all the moments of the
phenotype distribution combined and is
purely descriptive.

Estimated selection intensities for the
populations illustrated in Figure 3 are given
in Table 1. Values show weak selection in
human infants and male song sparrows and
relatively intense selection associated with
survival in Galapagos finches and with re-
production in female song sparrows. I did
not calculate V for the guppy data (Fig. 2),
since the distribution of the phenotypic trait
in the males tested differed from that in a
random sample of males (Houde, 1987).

It is further possible to calculate an in-
tensity of stabilizing (or disruptive) selec-
tion by measuring the contribution of a
mode (or dip) in fto the total selection ex-
perienced by a population. The simplest ap-
proach is to compare total selection inten-
sity V' with variance in relative fitness
recomputed after the mode is removed (V).
The difference between ¥ and V, will mea-
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TasLE 2. The intensity of stabilizing selection ¥V in
two populations (cf. Figs. 3A,F). Total selection inten-
sity V' is provided for comparison.

Human infants

0.000
0.012

Measure

Vs 0.027
vV 0.056

House sparrows

sure the fraction of the total variance in rel-
ative fitness among individuals that results
directly from the mode:

V.=V -V,

As with total selection intensity, the mea-
sure is purely descriptive and cannot be used
to predict evolutionary change.

One way to remove a mode in f is to
increase the value of the smoothing param-
eter A [Eq. (1)] until the observed mode has
barely disappeared. An advantage of this
method is that if a mode is symmetric about
Z, the constrained fwill be a horizontal line,
and V= V. A disadvantage is that the vari-
ances are not additive: ¥V, may exceed V
and give negative values of V.. I used an
alternative approach, taking the predicted
values f(z) from the GCV estimate of fand
fitting the maximume-likelihood monotonic
function using the “pool adjacent violators™
algorithm of Barlow et al. (1972) (of the two
monotonic functions that can be fit, non-
decreasing and nonincreasing, choose the
one yielding greater variance in predicted
relative fitness). One disadvantage of this
method is that if a mode is symmetric about
Z the constrained f will not be flat, and V,
< V (in practice, ¥, will be roughly V7/2).

I calculated V in female house sparrows
and male human infants, which show al-
ternative extreme effects of a mode in f on
a population (Table 2). In house sparrows,
the mode is nearly symmetric about Z (Fig.
3A), and V is large relative to V (i.e., is
V/2), indicating that variability among in-
dividuals in fitness resulted primarily from
stabilizing selection. In contrast, the mode
in fis broad in human infants, and fitness
shows a substantial decline only at the lower
end of the phenotype distribution (Fig. 3F).
Thus, V; is small relative to V, indicating
that stabilizing selection was very weak and
that most variability in fitness in the pop-
ulation was the result of directional selec-
tion.
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The above method can be generalized to
other measures of selection and other fea-
tures of /. For example, the intensity of se-
lection associated with a second of two
modes can be estimated by fitting a function
constrained to have only one. The amount
of “quadratic” selection in the population
v = Cov(w, z?) = Cov(f,, z?) (Lande and
Arnold, 1983) attributable to the presence
of a mode can similarly be computed.

Accuracy

Finally, it is desirable to consider the
sampling variability in a nonparametric es-
timate of the fitness function. A simple way
to judge variability is by using the bootstrap
(Efron, 1982; Efron and Tibshirani, 1986),
where regression surfaces are repeatedly es-
timated on data resampled from the original
set. The performance of the bootstrap in the
case of splines has not yet been tested using
simulation. Hence, bootstrap results should
be considered approximate and interpreted
cautiously.

Two hundred bootstrap regressions were
calculated using survival in male song spar-
rows (Fig. 3E). Each repetition involved two
steps: 1) the random generation of a new W,
(0 or 1) for each observed z, where Pr(W,
= 1) = flz;) and where f(z,) is the predicted
value in the original estimate of f: ii) a search
for the cubic spline minimizing the GCV
score. Standard errors for the 200 resulting
predicted values for each z, are shown in
Figure 3E. Standard errors are not sym-
metric about f since they were computed
on the logistic scale log,[f(z)/{1 — f(z)}]

The bootstrap results illustrate two points.
First, estimates of f may be quite variable,
although this depends on sample size and
the proximity of f{z) to the endpoints (0 and
1). Nonparametric estimates have more
sampling variation than parametric regres-
sion surfaces, and this is the price paid for
not knowing a priori the parametric form
of f. Second, uncertainty is greatest at the
ends of the phenotype distribution, a con-
sequence of a reduced density of data points.
This is not a limitation specific to the non-
parametric method: in all regressions, the
data are most informative where they are
most abundant. However, it is a feature of
many natural phenotype distributions that
the fitness function can be estimated with
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accuracy over only a limited phenotypic
range.

The bootstrap can also be used to test
hypotheses concerning features of f. For ex-
ample, the presence of a mode can be tested
by counting the frequency of repetitions in
which the mode is present. In carrying out
such tests, it is wisest to restrict the mode
search to a predefined region of z values, as
modes may occasionally appear as a result
of sampling error elsewhere, particularly in
the tails of the phenotype distribution. For
example, I carried out 200 bootstrap rep-
lications of the guppy data (Fig. 2), record-
ing the number of modes in fappearing be-
tween z = 10 and z = 26. The frequency of
replicates in which no mode appeared was
30%, suggesting that a null hypothesis of
purely directional selection would not be
rejected by these data.

_ When testing for accuracy of functions of

fand the data (e.g., variance in relative fit-
ness), an alternative resampling procedure
from the one suggested above should be em-
ployed, one which resamples also the z val-
ues, in order to account for sampling vari-
ability in z.

DiISCUSSION

Many questions about the workings of
natural selection on quantitative traits are
directly concerned with features of the fit-
ness function (Lande and Arnold, 1983;
Endler, 1986). Do modes in fitness com-
monly occur within the range of phenotypes
in the population? How frequent is disrup-
tive selection? Are multiple peaks present?
What is the range in fitness in a typical pop-
ulation? Do functions vary between life
stages, years, or geographic localities? I have
summarized a nonparametric method which
can be generally used to estimate fitness
functions and, thus, could be used to answer
the above questions.

Regression using splines can be highly re-
vealing, as demonstrated by insights into
some familiar and well analyzed cases of
natural selection. The Galapagos finch Ge-
ospiza fortis was previously thought to rep-
resent one of the few cases of disruptive
selection in nature (Schluter et al., 1985;
Endler, 1986), but the spline suggests that
selection was purely directional (mono-
tonic). Analysis of the human infant data of
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Karn and Penrose (1951) gave the unex-
pected result that very little stabilizing se-
lection was present and that the majority of
variance in fitness is attributable to direc-
tional selection. Other known cases of dis-
ruptive and stabilizing selection might be
reevaluated in this light. Another insight is
the range of fitnesses within populations.
The selection event in G. fortis may be the
most intense example from a vertebrate
(Boag and Grant, 1981; e.g., Table 1), yet
the estimated range in probability of sur-
vival was as high or higher in some other
species (Fig. 3). Strong selection in G. fortis
resulted mainly from a lower mean fitness.

In theory, fitness functions may assume
a variety of shapes, and surfaces predicted
from ecological or biomechanical consid-
erations often show a complex pattern of
peaks and valleys (Schluter and Grant, 1984;
DeAngelis et al., 1985). An advantage of the
nonparametric method is that estimates of
the function are not restricted a priori to a
particular model of selection —one that usu-
ally assumes the presence of at most a single
mode. If functions in fact have a complex
pattern of peaks and valleys, then a non-
parametric approach is the best way to re-
veal it. However, the present method will
also estimate simple forms of f and could
be used to suggest a parametric model for
the function, if one is desired. Several of the
estimates of fshown in Figure 3 might sub-
sequently be fit to a simple parametric mod-
el (e.g., normal, exponential, logistic, or
quadratic).

Though the spline is flexible, estimates of
fitness functions based on measurements of
natural selection were usually simple (Fig.
3), involving only directional and/or sta-
bilizing selection. This simplicity of ob-
served forms of f, when complex patterns
are possible and even expected, may result
from small sample size in some cases. It is
simply not possible to reveal a complex pat-
tern when the density of data points avail-
able to estimate a local feature of fis small.
Also, if the fitness function is indeed com-
plex and interesting, the range of pheno-
types in the population may be too narrow
to detect it. Most of my example data sets
are from birds, where coefficients of varia-
tion for morphological traits are typically
less than 5%. Frequency of individuals is
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generally low toward the ends of the phe-
notype distribution, and this further re-
stricts the range of phenotype values over
which accurate information might be gained
about the form of f (Fig. 3E).

If the form of fis of interest and if levels
of phenotypic variation are low, researchers
might consider alternative strategies, in-
cluding deliberate experimental manipula-
tions of the mean and variance of the quan-
titative trait. Examples of this approach
include manipulations of clutch size (e.g.,
Lessels, 1986; Boyce and Perrins, 1987,
Finke et al., 1987) and tail length (Anders-
son, 1982) in birds and of leaf area in plants
(Willson and Price, 1980). A population with
inflated phenotypic variance would be a
useful experimental “probe” of the selective
environment, allowing estimation of f over
a broad range. It would also allow calcula-
tion of mean fitness 1 as a function of mean
value of the character, useful in predicting
the outcome of selection and evolution. Ma-
nipulated distributions should be relatively
flat (uniform) rather than normal, so that
equally reliable information can be gained
over most of the range of z. Some instability
at the tails of the distribution will nonethe-
less be present, owing to the necessary de-
cline in the number of points falling within
any fixed region of z as the edge is included.
This effect can be minimized by further in-
flating the frequency of individuals at the
tails.

The above strategy would assume that
natural selection might reasonably be ex-
pected to occur within the timespan of a
typical ecological study. The large number
of cases of natural selection that have al-
ready been observed involving only natural
levels of phenotypic variation (Endler, 1986)
is highly encouraging. Indeed, the realiza-
tion that detectable natural selection is a
frequent event in ecological time may her-
ald a new era of controlled experimental
studies of the process. In this context, the
present methods to estimate fitness func-
tions should prove especially useful.
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