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The mechanisms by which the ecological niches of species evolve 
over time and among groups represent an important topic in 
evolutionary biology1–8. Although niche evolution is likely to 

be influenced by multiple factors, the identification of such factors 
is difficult and debated9–11. Metabolic heat production (endothermy) 
has been proposed as a major factor that can explain differences 
in the evolution of climatic tolerance between groups10, because 
external temperatures directly determine the metabolic activity 
of ectotherms but not endotherms12–14. Ectotherms rely strongly 
on external heat sources to achieve operative body temperatures; 
the climatic niche of ectotherms is thus likely to be constrained by 
physiology because these species tend to exhibit decreased activ-
ity levels under cold conditions, which reduces the time allocated 
for obtaining food and mates15,16. Alternatively, we hypothesize that 
endotherms may not be under such constraints because their body 
temperature is internally regulated16,17. Endothermy also permits 
warming of the developing embryos, which increases considerably 
reproductive success at high latitude15. As a result, endotherms can 
tolerate a wider range of external temperatures18 and might experi-
ence more frequent niche shifts. Here, we developed an analytical 
approach to compare the rates of climate niche evolution in endo-
therms and ectotherms based on a reconstruction of palaeo-distri-
butions and a combination of phylogenetic data on extant species 
with data from the fossil record.

Recent information on vertebrate species distributions and their 
phylogenetic relationships has provided an opportunity to study the 
major changes in their ecological niches and assess biogeographical 
information in the context of historical climate changes. Terrestrial 

vertebrates are distributed over all continents and currently occupy 
a wide range of temperature conditions. Therefore, these organisms 
represent an ideal study system for investigating niche evolution 
related to endothermy because they include representatives from 
the two universally recognized endothermic groups of animals 
(birds and mammals) as well as two ectothermic groups (squamates 
and amphibians). Terrestrial vertebrates offer the unique opportu-
nity to test whether endothermy is a major factor that affects niche 
evolution at broad taxonomic and geographical scales.

Results and discussion
We assembled a worldwide dataset of 18,066,914 geo-localized 
occurrences of 11,465 species of birds, mammals, squamates and 
amphibians. We combined the occurrence data for the extant gen-
era with a large database of vertebrate fossils that includes 25,814 
occurrences of 829 genera. We only used fossils from extant genera 
and ignored fully extinct clades and taxa, because of the difficulty to 
confidently place them in the phylogeny. We reconstructed the past 
climatic niches (palaeo-niches) by combining the extant species and 
the fossil palaeo-distributions using a comparative method that can 
efficiently analyse large-scale phylogenetic data while incorporating 
fossil information. We first reconstructed the palaeo-latitudes and 
palaeo-altitudes for every node of each phylogenetic tree involv-
ing each vertebrate group over the last 270 Myr (see Methods and 
Supplementary Fig. 1). To estimate past temperatures at a specific 
latitude and altitude, we built a present-day altitude–latitude grid 
of mean annual temperatures and scaled this grid with the pal-
aeo-temperature curves19–21. Finally, this grid was used to obtain 
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palaeo-temperatures for the palaeo-latitude and palaeo-altitude 
corresponding to each internal node of the phylogenetic trees. We 
acknowledge that using a single palaeo-temperature value to char-
acterize the climatic niche of a species represents a simplification 
and does not account for intraspecific variability in the multiple 
dimensions of the niche22–24, but this assumption was necessary 
given that our reconstruction was concerning thousands of species.

Our ancestral temperature reconstructions suggest that endo-
thermy had a strong impact on the rate of niche evolution (Fig. 1). 
Niche evolution was faster in birds (mean evolution of the tempera-
ture on all the branches of the phylogeny =  0.70 (95% confidence 
interval (CI) =  0.68, 0.72) °C Myr−1) and mammals (0.52 (CI =  0.50, 
0.55) °C Myr−1) than in amphibians (0.26 (CI =  0.25, 0.28) °C Myr−1) 
or squamates (0.30 (CI =  0.29, 0.32) °C Myr−1) (Fig. 1). Wilcoxon 
signed-rank tests were highly significant for all possible compari-
sons between ectotherms and endotherms (P <  2 ×  10−16). We found 
similar results when only the last 5 Myr were considered and when 
we pruned the trees to test whether the size of the tree was affecting 
our results (Supplementary Fig. 2; see also the 'Robustness of the 
results' section in the Supplementary Material). These results may be 
primarily explained by the following three reasons: (1) endotherms 
have wider climatic boundaries and distributions that cover a wider 
latitudinal range than ectotherms17,18 (Supplementary Fig. 3); (2) 
they have higher dispersal capacities than ectotherms25, which allow 
them to cross unsuitable patches of habitat across space or time 
(for example, from one season to another); and (3) they warm their 
developing embryos and feed their offspring15. These three key fea-
tures may imbue endotherms with a higher likelihood of survival in 
unstable and heterogeneous environments at higher latitudes and 
allow them to progressively adapt to cold and unstable climates26. 
In contrast, ectothermic species may be more constrained by their 
physiology and are likely to have fewer opportunities to experience 
new climatic conditions.

Comparable results that showed a higher rate of niche evolu-
tion in endotherms than in ectotherms were observed in the 20 
main orders (for birds and mammals) or families (for amphibians  

and squamates) of each group separately (Supplementary Fig. 4).  
In particular, we found higher rates of niche evolution in the 
avian Anseriformes and Procellariiformes orders, the mammalian 
Lagomorpha and Carnivora orders, the amphibian Megophryidae 
and Bufonidae families, and the squamate Natricidae and Elapidae 
families. Many of these groups originated at high latitudes, such 
as Lagomorpha27 or Carnivora28, or were particularly diverse at 
high latitudes (such as Anseriformes, Procellariformes, Carnivora, 
Lagomorpha, Megophryidae, Bufonidae, Natricidae and Elapidae; 
Supplementary Fig. 5). In contrast, we found slower rates of niche 
evolution in mainly tropical groups of birds (such as Bucerotiformes 
and Tinamiformes), mammals (Afrosoricida and Pholidota) and 
squamates (Typhlopidae and Dactyloidae). Even if these results 
at the order and family levels reinforce our main results, it is also 
possible that a significant difference in the rate of niche evolution 
between endotherms and ectotherms was detected only by chance, 
given that the number of replicates is low (only two large clades of 
endotherms and two of ectotherms).

The rate of niche evolution has important consequences for the 
evolution of habitat preferences as well as for the emergence of the 
current global diversity patterns2,6,29. For instance, the processes that 
led to the construction of the most famous diversity pattern, which 
is the latitudinal diversity gradient (that is, the decrease of species 
diversity from the Equator to the poles), may have been affected 
by the accelerated or diminished rates of niche evolution. Because 
latitude has been shown to be largely correlated with temperature, 
we expect to find that the mean latitude preferences of ectother-
mic species has been slowly evolving. Based on the phylogenetic 
and fossil information, our ancestral reconstruction suggests that 
latitudinal shifts have been ~5 times slower in ectothermic species 
(amphibians: 0.15 (0.14; 0.15)° of latitude per Myr; squamates: 0.23 
(0.21; 0.24)° of latitude per Myr) than in endothermic species (birds: 
1.14 (1.10; 1.17)° of latitude per Myr; mammals: 0.88 (0.85; 0.92)° of 
latitude per Myr). Our reconstruction results also suggest that the 
latitudinal diversity gradient emerged first in ectotherms (~50 Myr 
ago for squamates and amphibians, consistent with the age found 
in other ectotherm groups30) and more recently in endotherms 
(~20 Myr ago for mammals and birds) (Fig. 2).

According to the ‘tropical niche conservatism’ hypothesis6, the 
maximum absolute latitude of clades with a slow niche evolution, 
such as ectotherms, should have decreased during the Cenozoic era 
cooling to follow the contraction of the tropical biome. Ultimately, 
this contraction may have led to the accumulation of species in the 
tropics. To test this hypothesis, we compared the direction of dis-
persal of each branch of the phylogenetic tree (towards the Equator 
or towards the poles; from the ancestor to the descendant) during 
the Cretaceous period and the Cenozoic era (Fig. 3). We found that 
the distributions of all groups benefited from the higher global tem-
peratures and mostly expanded from the tropics towards the poles 
during the Cretaceous period and at the beginning of the Cenozoic 
era. For birds, mammals and squamates, these ‘out of the tropics’ dis-
persal events lasted until the Eocene/Oligocene transition 33.9 Myr 
ago, which corresponded to a major cooling event that was asso-
ciated with the formation of permanent ice sheets on Antarctica. 
Consistent with previous reports26–28,31–33, we found that lineages dis-
tributed at high latitudes dispersed towards the Equator following the 
contraction of tropical habitats (Fig. 3d and Supplementary Fig. 11)  
from the Eocene/Oligocene transition (33.9 Myr ago) until the 
middle Miocene climatic optimum (~15 Myr ago). Thus, our results 
suggest that the contraction of the tropical biome associated with 
decreased temperatures at high latitudes played a major role in the 
construction of the current diversity pattern of the four analysed 
groups during the second part of the Cenozoic era.

Overall, we showed that 50.6% of tropical bird, 42.5% of mam-
mal, 64.5% of amphibian and 54.9% of squamate lineages remained 
in the tropics (between 23.4° N and 23.4° S) throughout the entire 
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Fig. 1 | The rate of niche evolution in endotherms (birds and mammals, 
red) and ectotherms (squamates and amphibians, blue). The boxes 
represent the median, the first quartile and the third quartile of the niche 
evolution rate reconstructed for all of the branches of the phylogenetic tree 
of each group. For each branch, the niche evolution was calculated as the 
difference of temperatures between the descendants and the ancestors. 
Based on Wilcoxon signed-rank tests, we found a significantly faster 
niche evolution in endotherms (birds and mammals) than in ectotherms 
(squamates and amphibians) (***P <  0.001). The rate of niche evolution 
was also significantly different between each separate group. The 5% 
extreme values are not shown.
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Fig. 2 | Construction of the latitudinal diversity gradient over time between birds and mammals (endotherms) and amphibians and squamates 
(ectotherms). Each panel is a matrix of 180 ×  270 cells depicting time before present (between 0 and 270 Myr) on the x axis and latitude on the y axis 
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Fig. 3 | The evolution of the global temperature of the earth over the last 145 Myr and the main directions of the latitudinal dispersal (towards the poles 
or the equator) of the four groups as a function of latitude. a, Global temperature evolution since the beginning of the Cretaceous period (145 Myr ago). 
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Curves were obtained using the ‘smooth.spline’ R function, with a sliding window through time (a) and latitude (b–e).
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Cenozoic era. Ectotherms tended to experience fewer range shifts 
because they crossed the tropic lines less frequently than did endo-
therms (30.2%, 55%, 18.9% and 25.6% of current bird, mammal, 
amphibian and squamate lineages, respectively, had at least one 
ancestor that crossed the tropic lines). Consistently with previous 
literature32,33, we showed that a substantial proportion of the lin-
eages that gave rise to the species currently distributed in the tropics 
originated at high latitudes during the Cenozoic era (22.9%, 52.1%, 
21.6% and 27.1% of tropical birds, mammals, amphibians and 
squamates, respectively) and then followed the contraction of the 
tropical biome towards the equator, suggesting that tropical niche 
conservatism played an important role in the emergence of the lati-
tudinal diversity gradient of the four groups.

Based on an unprecedented dataset of terrestrial vertebrate spe-
cies encompassing distribution, fossil and phylogenetic data, our 
results strongly suggest that climatic niche evolution is slower in 
ectotherms. This result may be highly related to the narrow climatic 
tolerances18 (Supplementary Fig. 3) and the low dispersal capaci-
ties25 previously reported for terrestrial ectothermic species. We also 
show that the rate of niche evolution has important consequences 
for the dynamics of species ranges and current biodiversity patterns 
because ectotherms have experienced a slower rate of latitudinal 
dispersal and a higher stasis in their habitat preferences. This slow 
rate of niche evolution will potentially affect the dynamics of ongo-
ing and future extinctions because climate change adaptations may 
require the rapid evolution of climatic tolerances, particularly in 
species with narrow niches34. Finally, our results concerning the rate 
of niche evolution imply that current niche modelling approaches35 
that assume that niches are conserved through time1 may be more 
accurate for modelling future distributions of ectothermic rather 
than endothermic species.

Methods
Phylogenies. We used the previously published phylogenies of 5,020 species of 
mammals36 modified by previous studies37,38, 9,993 avian species39, 2,871 amphibian 
species40 and 4,161 squamate species41. For birds and mammals, maximum 
credibility trees were constructed based on the posterior distributions of trees using 
the TreeAnnotator programme42. The age of the root of the amphibian phylogeny 
defined the maximum age for our study (~270 Myr).

Climatic and distribution data. We obtained present-day geographical 
occurrences in the form of GPS coordinates for all four groups of vertebrates 
from the Global Biodiversity Information Facility (GBIF, http://www.gbif.org). 
We combined these data with the geographical information obtained from the 
International Union for Conservation of Nature (IUCN) red list website  
(http://www.iucnredlist.org), which contains polygons with precise information  
on the distribution of the species. We removed all GBIF occurrences outside of  
the IUCN polygons.

From the GBIF database, a total of 294,704,442 occurrences were compiled, 
including 276,954,416 avian occurrences, 9,880,714 mammalian occurrences, 
4,221,542 squamate occurrences and 3,647,770 amphibian occurrences. The 
occurrences available in GBIF are compiled from many different sources; thus, a 
stringent filtering procedure must be applied to ensure the quality of this dataset. 
First, we only retained the occurrences registered from direct field observations 
by one or several people (occurrences tagged as ‘HUMAN_OBSERVATIONS’ 
in GBIF) and occurrences from the sampling site of a specimen preserved in a 
collection (‘PRESERVED_SPECIMEN’). We ignored the occurrences tagged 
as ‘LITERATURE’, ‘UNKNOWN’ and ‘MACHINE_OBSERVATION’ because 
they are less likely to be verified by field observations. Second, we also deleted 
occurrences at 0° N and 0° E because they frequently correspond to erroneous 
occurrences mistyped by database users. Third, for the GBIF occurrences, we only 
retained coordinates with at least 4 digits, which represented the best compromise 
optimizing the number of occurrences (for most species) and the quality of the 
data. Finally, for each species, we deleted all GBIF occurrences that did not fall 
within the polygons of the species in the IUCN red list. This filtering step was 
extremely stringent and resulted in the deletion of more than half  
of the occurrences.

The temperature and altitude of each occurrence were obtained using the 
mean annual temperature climatic layer (BIO1) and the elevation grid obtained 
from WorldClim (http://www.worldclim.org) at 2.5 arc-minute and 30 arc-second 
resolutions, respectively43. The minimum, maximum and mean of both the 
temperature and altitude were calculated for each species.

Finally, among the species with available distribution data, we selected 
those that were also present in the phylogenetic trees. Thus, we obtained a total 
of 18,066,914 occurrences for 11,465 species that corresponded to 16,805,900 
occurrences for 6,142 avian species, 851,887 occurrences for 2,922 mammalian 
species, 242,646 occurrences for 1,414 amphibian species and 166,481 occurrences 
for 987 squamate species.

Fossils. We obtained a total of 89,147 fossil occurrences from the Paleobiology 
Database (www.paleobiodb.org, accessed in May 2015), including 4,044 fossil 
occurrences for 758 avian genera, 81,269 fossil occurrences for 4,672 mammalian 
genera, 1,923 fossil occurrences for 230 amphibian genera and 1,911 fossil 
occurrences for 304 squamate genera. Because we used fossils to reconstruct the 
palaeo-latitudes of the phylogenies, we only considered genera that were also 
present in the phylogenetic trees—that sis, those that have extant relatives assigned 
to the same genus. Thus, the final fossil data included 25,814 occurrences from 829 
genera, which included 2,663 occurrences for 247 avian genera, 21,767 occurrences 
for 496 mammalian genera, 908 occurrences for 49 amphibian genera and 476 
occurrences for 37 squamate genera. The palaeo-latitude of each fossil occurrence 
was reconstructed based on the age of the fossil (or the mean age of the fossil in a 
temporal range), its present-day geographical coordinates and the reconstruction 
of historical tectonic plate positions (GPlates44).

We used palaeo-latitudes of fossil taxa to calibrate the inference of ancestral 
latitudes (see below). In each tree, we identified the node representing the most 
recent common ancestor (MRCA) of the species belonging to each genus with 
one or more fossil occurrences (shown in detail in Supplementary Fig. 10). As the 
fossils that are distant from the MRCA have diverged more, we weighted the fossil 
latitude with the time between the age of the MRCA and the age of each fossil. The 
ancestral latitude of the MRCA of each genus was then calculated as the mean of 
all the weighted fossil latitudes. This weighting procedure was done only for the 
MRCA of each genus because limited or no information is available to assign most 
of the fossils to other nodes.

Ancestral reconstruction of latitude and altitude. We modelled the evolution 
of the species altitude and latitude preferences using a Brownian motion process 
and jointly estimated the evolutionary rate and the ancestral values at the internal 
nodes of the tree. Altitude was reconstructed independently from latitude, based 
only on present-day data of species. Previous research has shown that fossil 
information can drastically improve inferences of continuous trait evolution45. 
Here, fossil information enables us to estimate information for past nodes at 
high absolute latitudes and infer a decrease in absolute latitude through time, 
which would be impossible using classic methods such as uncalibrated Brownian 
motion. Therefore, the approach presented in this paper provides an exceptional 
opportunity to reconstruct contractions of the tropical biome. Here, we integrated 
the available fossil information as node calibrations on ancestral states for the 
reconstruction of latitude. For the nodes that had available fossil information, 
the calibration followed a normal distribution with a mean corresponding to the 
weighted mean of all of the fossils assigned to that node (as detailed in the ‘Fossil’ 
section). We selected a standard deviation such that the 95% credible interval of 
the normal distribution had a range equivalent to the average latitudinal range 
observed within each species. For the nodes that did not contain fossil information, 
we used instead flat distributions (normal distributions with arbitrarily large 
standard deviation).

We estimated the parameters (that is, the rate of the Brownian model  
of evolution and the ancestral states at all internal nodes) in a new Bayesian 
framework using Markov chain Monte Carlo (MCMC) to sample their  
posterior distributions. The rate parameter and the root state were sampled  
using the Metropolis–Hastings algorithm46,47, whereas all other ancestral states 
were sampled directly from their posterior distribution using Gibbs sampling48. 
Under a Brownian model of evolution, a trait value changes as a function of 
elapsed time (t) and the rate (σ 2), so that the expected value is normally distributed 
with mean equal to its initial value (x0) and variance equal to the product of  
rate and time:

σ~x x t( , )t 0
2

The posterior distribution of an ancestral state at any internal node i is a 
normal distribution that derives from the product of four normal distributions, 
encompassing the expectations of the trait value of the ancestor xi-1, the 
expectations from the two descendants x′ i+1 and x″ i+1, and the normal distribution 
assigned as calibration to the node value (Supplementary Fig. 1):
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We implemented this method in R (script is available at https://github.com/
jonathanrolland/niche_evolution). We ran 2,000,000 MCMC iterations (or fewer 
if convergence was reached) and sampled every 1,000 steps. We assessed the 
convergence and sampling efficiency by inspecting the samples using the Tracer 
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programme49. We used this approach to reconstruct the maximum and minimum 
latitude/altitude through time. We also provide an assessment of the quality of 
ancestral states using simulations in the supplementary material.

Climatic grid based on altitude and latitude through time. Based on the mean 
annual temperature data provided by the WorldClim climatic layer, a 180 ×  90 
climatic grid was constructed. This grid depicted latitudes on the x axis from − 90° 
to 90° and altitudes on the y axis from − 422 m to 8,685 m. For each combination of 
latitude and altitude (that is, for each cell), we calculated the mean of present-day 
temperatures. This grid was then used to obtain the temperature corresponding 
to the latitude and altitude coordinates of the nodes through time. Because global 
temperatures have changed over time and assuming that the association between 
temperature and both altitude and latitude may not have changed substantially, 
we re-scaled all of the cells of the grid at each given node age. To do this, we 
first calculated the difference between the global temperature at the node age 
and at present time using a palaeo-temperature curve (Cenozoic period19 and 
pre-Cenozoic periods20,21). We then added this temperature difference to all the 
cells of the altitude/latitude matrix to obtain an equivalent of the altitude/latitude 
matrix at the node age. The palaeo-temperature of the node was then obtained 
on this matrix, at the latitude and the altitude reconstructed previously (see also 
Supplementary Fig. 7).

Estimating the rate of niche evolution. For each node of the phylogenetic tree, 
we obtained an ancestral temperature using the previously reconstructed latitudes 
and altitudes, the climatic grid and the node age. The rate of niche evolution 
was then calculated for each branch of the phylogenetic tree by measuring 
the temperature differences between the descendant and the ancestor of each 
branch. We divided this difference by the length of the branch to obtain a rate 
of temperature change per unit of time. We then calculated the mean and the 
median of all of these rates (for all the branches of the tree) for each taxonomic 
group and the confidence intervals around those estimates using 1,000 bootstraps. 
The comparison between the rates of niche evolution among the four groups is 
displayed in Fig. 1. As we reconstructed niches from past and current species 
distribution, we acknowledge that the change in the niche detected might be 
due to changes in the realized niche and do not reflect an evolution of the 
fundamental niche. Our study is based on occurrences data and not physiological 
thermal tolerance data, we thus modelled here only the realized climatic niches. 
This realized niche may not directly represent the fundamental niche of the 
species, as it may also reflect factors other than thermal tolerances, such as 
dispersal or competition50,51.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. We provide all codes of the methodology used in this study at: 
https://github.com/jonathanrolland/niche_evolution.

Data availability. We provide all data files used in this study at: https://github.com/
jonathanrolland/niche_evolution.
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Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
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The data is available (as described in the manuscript).
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for use in the system under study (i.e. assay and species).
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. no cells were used

b.  Describe the method of cell line authentication used. no cells were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.
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d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.
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materials used in the study.

no animals were used

Policy information about studies involving human research participants
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