Supplemental Figures

Figure S1: Length of size corrected pelvic spine length for wild fish from Paq and Ambrose lakes. Mean and standard error for each population are shown to the right of each lake in red. Data was taken from Miller et al. (2015). Modified pelvic spines were clipped to 2.5 mm in length.

Figure S2: Funnel plot of standard error and the effect size of (A) fish predation experiments and (B) insect predation experiments used in the meta-analysis. Each point represents a single experiment. The insect predation experiments have a greater scatter of standard error. There is no evidence for publication bias in either plot.

Figure S3: Forest plot of the effect size of all fish predation experiments on pelvic armor. The center of the grey box indicates the mean of the effect size (*d*) for each experiment and the area of the grey box is proportional to the weight of that study in the meta-analysis. The horizontal lines span the 95% confidence interval of the effect. For studies containing multiple experiments, the mean effect size of each study was calculated using a fixed effects model. The weighted mean for all studies was calculated using the inverse variance method with a random effects model (Borenstein et al. 2009). W is the weight of the study in the model. The weighted mean effect is indicated by the vertical dotted line and the 95% confidence interval of this estimate is contained within the black diamond. A positive effect size indicates that individuals with longer spines were more likely to survive.

Figure S4: Forest plot of the effect size of all insect predation studies on pelvic armor. The center of the grey box indicates the mean of the effect size (*d*) for each experiment and the area of the grey box is proportional to the weight of that study in the meta-analysis. The horizontal lines span the 95% confidence interval of the effect. For studies containing multiple experiments, the mean effect size of each study was calculated using a fixed effects model. The weighted mean for all studies was calculated using the inverse variance method with a random effects model (Borenstein et al. 2009). W is the weight of the study in the model. The weighted mean effect is indicated by the vertical dotted line and the 95% confidence interval of this estimate is contained within the black diamond. A positive effect size indicates that individuals with longer spines were more likely to survive.

Figure S5: Forest plot of the effect size of all predation experiments on body size (standard length). A random effects model was run separately on fish and insect predation studies. The center of the grey box indicates the mean of the effect size (*d*) for each experiment and the area of the grey box is proportional to the weight of that study in the meta-analysis. The horizontal lines span the 95% confidence interval of the effect. The weighted mean was calculated using a random effects model (Borenstein et al. 2009). W is the weight of the study in the model. The weighted means are indicated by the vertical dotted lines and the 95% confidence interval of this estimate is contained within the black diamonds. A positive effect size indicates that larger individuals were more likely to survive.

Fish Predation Studies	5					d	95%-CI	W
MacColl			-			-0.03	[-1.02; 0.95]	67%
Leionen - no refuge			<u>– į – į – į – į – į – į – į – į – į – į </u>			0.01	[-1.95; 1.97]	17%
Leionen - refuge						- 0.69	[-1.32; 2.71]	16%
Weighted Mean						0.09	[-0.72; 0.90]	100%
	I	I		I	I			
	-2	-1	0	1	2			

Insect Predation Studie	S	d 95%-Cl	W	
Marchinko - Paxton		0.69 [-0.48; 1.85]	12.0%	
Marchinko - McKay		0.21 [-0.67; 1.09]	21.1%	
Barrueto - 1		-0.06 [-1.11; 0.99]	14.8%	
Barrueto - 2		0.64 [-0.31; 1.59]	18.2%	
Zeller		0.09 [-0.60; 0.79]	33.9%	
Weighted Mean		0.27 [-0.14; 0.67]	100%	
- F				
-1.:	5 -1 -0.5 0 0.5 1 1.5			

References:

Borenstein M., Hedges, L.V., Higgins, J.P.T., & Rothstein, H.R. 2009. Introduction to metaanalysis. Wiley and Sons Ltd, Chichester, U.K.

Miller, S.E., Metcalf, D., & Schluter, D. 2015. Intraguild predation leads to genetically based character shifts in the threespine stickleback. Evolution 69:3194–3203.

Table S1: Data from mesocosm experimental trials. Clipped fish had both pelvic spines clipped to 2.5 mm prior to the start of the experiment whereas unclipped fish have unmodified pelvic spines. All lengths are in mm. Odds ratios were calculated after a 0.5 correction value was added to each category to avoid zero values.

		start mean	start mean	sculpin	Ν	N		mean					
		length	length	standard	Surviving	Surviving	Ν	length	clipped	clipped	unclipped	unclipped	
Tank	Lake	clipped	unclipped	length	clipped	unclipped	total	survived	dead	alive	dead	alive	logodds
11A	Ambrose	46.25	46	101	3	1	4	44.8	1.5	3.5	3.5	1.5	-1.695
12A	Ambrose	52.75	53	104	1	3	4	52.3	3.5	1.5	1.5	3.5	1.695
13A	Ambrose	54.75	55.5	97	2	3	5	54.8	2.5	2.5	1.5	3.5	0.847
14A	Ambrose	49.75	50	95	4	4	8	50.4	0.5	4.5	0.5	4.5	0
15A	Ambrose	59.75	61.5	105	0	3	3	62.3	4.5	0.5	1.5	3.5	3.0445
16A	Ambrose	51.75	52.75	98	3	1	4	50.25	1.5	3.5	3.5	1.5	-1.695
17A	Ambrose	44	43.75	94	2	2	4	52.25	2.5	2.5	2.5	2.5	0
18A	Ambrose	49	49.25	98	4	1	5	49	0.5	4.5	3.5	1.5	-3.045
19A	Ambrose	47.5	46.75	84	2	2	4	45.5	2.5	2.5	2.5	2.5	0
20A	Ambrose	53	53.25	102	2	3	5	53	2.5	2.5	1.5	3.5	0.8473
1A	Paq	41.5	43	105	2	2	4	43.25	2.5	2.5	2.5	2.5	0
2A	Paq	47	47	105	2	2	4	44.75	2.5	2.5	2.5	2.5	0
3A	Paq	43.75	44.25	95	2	3	5	45.8	2.5	2.5	1.5	3.5	0.8473
4A	Paq	38.5	38.5	99	0	3	3	39.3	4.5	0.5	1.5	3.5	3.0445
5A	Paq	36.5	36.75	96	2	2	4	39	2.5	2.5	2.5	2.5	0
6A	Paq	38.25	38	93	2	3	5	38.8	2.5	2.5	1.5	3.5	0.8473
7A	Paq	41	40.25	98	2	2	4	41	2.5	2.5	2.5	2.5	0
8A	Paq	44	45.25	102	2	2	4	43	2.5	2.5	2.5	2.5	0
9A	Paq	37.75	37.75	90	3	2	5	40.2	1.5	3.5	2.5	2.5	-0.847
10A	Paq	39.5	40	101	3	1	4	41	1.5	3.5	3.5	1.5	-1.695
1B	Paq	43	43	105	1	1	2	43	3.5	1.5	3.5	1.5	0
3B	Paq	39.5	38.75	95	3	2	5	38.6	1.5	3.5	2.5	2.5	-0.847
5B	Paq	39.25	38	96	2	2	4	39.5	2.5	2.5	2.5	2.5	0
7B	Paq	37.25	37.5	98	2	3	5	39	2.5	2.5	1.5	3.5	0.8473
8B	Paq	47.25	47	102	0	3	3	45.7	4.5	0.5	1.5	3.5	3.0445
12B	Paq	45.5	44.75	104	4	3	7	44.3	0.5	4.5	1.5	3.5	-1.35