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What is a linear model 

A relationship between variables involving 

 a response variable Y  

 explanatory variables X1, X2, … 

 random normal errors with equal variance  

in the form 

Y = 0 + 1X1 + 2X2 + …  + error 

 

where 0, 1, 2, … are the parameters of the linear model. 

(Sometimes called “general linear model”, not to be confused with “generalized linear 

model”)



A linear model needn’t be a straight line 

For example, the quadratic equation 

Y = 0 + 1X + 2X
2 

is also a linear model 

 

 



Linear models includes methods known by other names: 

 Linear regression 

 Single factor ANOVA 

 One-sample t-test 

 Analysis of covariance 

 Multiple regression 

 Multi-factor ANOVA 

 Repeated-measures ANOVA 

 

All can be written in the form 

(response variable) = intercept + (explanatory variables) 



So what 

 

Linear model approach unites these methods into a common 

framework that  

 Is flexible 

 Provides a common set of tools ( lm in R for fixed effects) 

 Includes tools to estimate parameters (e.g., sizes of effects) 

 Is easier to work with, especially with multiple variables 

 Better handling of unbalanced designs than traditional ANOVA 

 



Example 1: Simple linear regression 

Data: The average number of “dee” notes per alarm call by black-capped chickadees 

presented with a live, perched predator. 

Predator species Predator body 
mass (kg) 

Number of “dee” 
notes per call 

Northern pygmy-owl 0.07 3.95 
Saw-whet owl 0.08 4.08 
American kestrel 0.12 2.75 
Merlin 0.19 3.03 
Short-eared owl 0.35 2.27 
Cooper’s hawk 0.45 3.16 
Prairie falcon 0.72 2.19 
Peregrine falcon 0.72 2.80 
Great horned owl 1.40 2.45 
Rough-legged hawk 0.99 1.33 
Gyrfalcon 1.40 2.24 
Red-tailed hawk 1.08 2.56 
Great gray owl 1.08 2.06 
Templeton, C. N., E. Greene, and K. Davis. 2005.Science 308: 1934-1937. 

 

 

http://animal.discovery.com/guides/ 

wild-birds/a-c/black-capped-chickadee.html 



Linear model 

Y = 0 + 1X  

Meaning of parameters in this model: 

 0 : intercept 

 1 : slope   

 

In words: 

dees = intercept + mass 

In R the intercept is implicit and doesn’t need to be included in the word 

statement of the model formula:                                

dees ~ mass 



Coefficients table 

The coefficients table contains parameter estimates with SE’s 

Y = b0 + b1X 

z <- lm( dees ~ mass ) 

summary(z)   # yields coefficients table 

         Estimate   Std. Error   t value   Pr(>|t|) 

(Intercept)  3.3731      0.2776   12.149   1.02e-07 *** 

mass      -1.0382      0.3402   -3.051    0.0110 *   

 

 

 

 

[figure x axis should say kg not g]



ANOVA table 

The ANOVA table contains F-ratios and P-values 

 

anova(z)   # yields ANOVA table 

 

           Df  Sum Sq  Mean Sq  F value   Pr(>F)   

mass          1  3.1268   3.1268   9.3106  0.01102 * 

Residuals  11  3.6942   0.3358   

Test of null hypothesis 

that  slope β1 = 0 



Behind the scenes 

To estimate parameters, method uses least squares to find the best fit 

to the data of two predictors: mass, and a “dummy” column of 1’s, such 

that there is a parameter for each column of numbers. 

Observation dees (Intercept) mass 

1 3.95 1 0.07 

2 4.08 1 0.08 

3 2.75 1 0.12 

4 3.03 1 0.19 

5 2.27 1 0.35 

6 3.16 1 0.45 

7 2.19 1 0.72 

8 2.80 1 0.72 

9 2.45 1 1.40 

10 1.33 1 0.99 

11 2.24 1 1.40 

12 2.56 1 1.08 

13 2.06 1 1.08 

 

So that     dees[i] = b0 (1) + b1 mass[i] + residual[i],  …



Behind the scenes 

To test null hypothesis the method: 

     1) fits a “reduced” model without mass term (yielding fit under H0) 

     2) fits the “full” model with mass term added back 

     3) compares fit of full and reduced models using an F test 

 

You can optionally implement these steps “by hand” in R: 
   z1<-lm(dees ~ 1)    # fit reduced model (intercept only) 
   z <-lm(dees ~ mass) # fit full model 
   anova(z1,z)         # compare fits, yielding: 

 

   Res.Df     RSS  Df  Sum of Sq       F   Pr(>F)   

1 [reduced] 12  6.8210                                   

2 [full] 11  3.6942   1     3.1268  9.3106  0.01102 * 

 

This hands-on approach is a way for you to control exactly what R tests



Visually, this is the comparison 

 

             dees ~ 1               dees ~ mass 

 

 
 



Example 2: Single-factor ANOVA 

Percent time male mice experiencing discomfort spent “stretching”.  
Data are from an experiment in which mice experiencing mild discomfort (result of injection of 

0.9% acetic acid into the abdomen) were kept in: (1) isolation, (2) with a familiar companion mouse 

not injected, or (3) with a companion mouse also injected and exhibiting “stretching” behaviors 

associated with discomfort. The results suggest that mice stretch the most when a companion 

mouse is also experiencing mild discomfort. Mice 

experiencing pain appear to “empathize” with 

familiar mice also in pain.   

 

 

 

 

Langford, D. J.,et al. 2006.  Science 312: 1967-1970



Single-factor ANOVA is a linear model, just like linear regression 

In words: 

stretching = intercept + treatment 

The model statement includes a response variable, a constant, an 

explanatory variable. The only difference is that here the explanatory 

variable is categorical. 



ANOVA Table 

z <- lm( stretching ~ treatment ) 

anova(z) 

           Df  Sum Sq  Mean Sq    F value   Pr(>F)   

Treatment          2    4040.9 2020.5   6.6736 0.003216 ** 

Residuals  39  11807.4   302.8   

As before, anova compares the fit of “reduced” and “full” models: 
 

           stretching ~ 1      stretching ~ treatment 



Coefficients table 

z <- lm( stretching ~ treatment ) 

summary(z) 

 

             Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept) 37.194 4.220 8.814 8.06e-11*** 
treatcompanion -1.825 6.411 -0.285 0.77741 
treatcompan.inj 20.856 6.560 3.179 0.00289** 

 

Q:  what do these variables mean? (explanation below)



How to understand the coefficients table 

Behind the scenes, R codes the 3 groups of the categorical variable 

using dummy indicator variables. ).                   (R calls these “Treatment contrasts”) 

stretching (Intercept) treatisolation treatcompanion treatcompan.inj 
64.4 1 1 0 0 
46.7 1 1 0 0 
38.9 1 1 0 0 
65.6 1 1 0 0 

…     
56.7 1 0 1 0 
51.1 1 0 1 0 
50.0 1 0 1 0 
51.1 1 0 1 0 

…     
36.7 1 0 0 1 
81.1 1 0 0 1 
66.7 1 0 0 1 
66.7 1 0 0 1 

 

By default R leaves out the dummy representing the first factor level 
(determined alphabetically if order is unspecified by the user)



How to understand the coefficients table 
stretching (Intercept) treatmentcompanion treatmentcompan.inj 

64.4 1 0 0 
46.7 1 0 0 
38.9 1 0 0 
65.6 1 0 0 

…    
56.7 1 1 0 
51.1 1 1 0 
50.0 1 1 0 
51.1 1 1 0 

…    
36.7 1 0 1 
81.1 1 0 1 
66.7 1 0 1 
66.7 1 0 1 

 

Write out the model to interpret the coefficients: 

stretching  = 0*1 + 1*0 + 2*0      (subjects in isolation group) 

stretching  = 0*1 + 1*1 + 2*0      (subjects in companion group) 

stretching  = 0*1 + 1*0 + 2*1       (subjects in compan.inj group)



How to understand the coefficients table 

So the linear model being fitted is: 
 

stretching = 0                            (subjects in isolation group) 

stretching = 0 + 1                (subjects in companion group) 

stretching = 0 + 2                (subjects in compan.inj group) 

 

0 estimates the mean of the isolated (control) group  

1 estimates the difference between the companion and control  

0 estimates the difference between the company.inj and control 



How to understand the coefficients table 
z <- lm( stretching ~ treatment ) 

summary(z) 

 

             Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept) 37.194 4.220 8.814 8.06e-11*** 
treatcompanion -1.825 6.411 -0.285 0.77741 
treatcompan.inj 20.856 6.560 3.179 0.00289** 

          
           

 These P-values are invalid 
           except for planned comparisons



How to understand the coefficients table 

The estimates and SE’s are the most useful quantities in this table. 
The P-values in coefficients table are invalid for unplanned comparisons 
 
Planned comparisons:  

 Comparisons between group means that were decided when the 
experiment was designed (not after the data were in) 

 Must be few in number to avoid inflating Type 1 error rates 
Unplanned comparisons: 

 Multiple comparisons carried out after the results are in 

 Used to find where the differences lie (which means differ from 
which other means) 

 Basically amounts to snooping, or data dredging 

 Comparisons require protection for inflated Type 1 error rates: 
o Tukey tests: compare all pairs of means 
o Scheffé contrasts: compare all combinations of means 



The flexibility of R is that you can choose alternative coding 
z <- lm( stretching ~ treatment - 1 )         “Means model” in R 

 

The -1 tells R to take the intercept dummy out of the model instead 

Behind the scenes, this is what R does now: 
stretching treatmentisolated treatmentcompanion treatmentcompan.inj 

64.4 1 0 0 
46.7 1 0 0 
38.9 1 0 0 
65.6 1 0 0 

…    
56.7 0 1 0 
51.1 0 1 0 
50.0 0 1 0 
51.1 0 1 0 

…    
36.7 0 0 1 
81.1 0 0 1 
66.7 0 0 1 
66.7 0 0 1 

Still 3 columns, but the intercept column is replaced by the dummy 
corresponding to the first factor level.



Interpretation of parameters under the “means model” 
 
Different parameters are being estimated because of the different 
coding: 
 
Treatment 

isolated             stretching = 0 

companion       stretching = 1 

compan.inj       stretching = 2 

 

0 estimates the mean of the isolated (control) group  

1 estimates the mean of the companion group  

2 estimates the mean of the compan.inj group 



Parameter estimates under the “means model” 

z <- lm( stretching ~ treatment - 1 ) 

summary(z) 

 Estimate  Std. Error  t value  Pr(>|t|)     
treatisolation 37.194 4.220 8.814 8.06e-11*** 
treatcompanion 35.369 4.826 7.329 7.06e-09*** 
treatcompan.inj 58.050 5.023 11.557 3.64e-14*** 

Standard errors here use the MSresidual 

                         Useless 

(tests of null 

hypotheses that 

means are zero) 

R2 also useless 



Summary so far 

 Linear models can handle numeric and categorical variables 

 You don’t need to know too much about how the method handles 

categorical variables behind the scenes (i.e., as indicator variables). 

 But organizing your categories (e.g., control group ordered first) or 

altering the formula slightly (e.g., to use “means model”) will enable 

you to maximize the usefulness of the parameter estimates from 

the fitted model. 

 The flexibility of linear models will allow you to extract the most 

information possible from parameter estimates. 



Example 3: Analysis of covariance 

Data: Brain and body sizes of Neanderthal specimens ( ) and early 

modern humans ( ). Does our species have different brain sizes, after 

accounting for differences in body size? (Ruff et al 1977). This is easiest 

if we could use the model on the left.  

    brain ~ mass + species          brain ~ mass + species 

                                             + mass*species



Fitting models with more than one explanatory variable 

This includes analysis of covariance, multiple regression, multi-factor 

ANOVA, etc. 

**In R, anova fits model terms sequentially (“Type 1 SS”)** 

1.  Model terms are tested in the sequence in which the user enters 

them in the lm formula statement. 

2.  Exception: anova respects hierarchy: “lower” terms (e.g., 

intercept) are fitted before “higher” terms (e.g. slope). For 

example, interaction terms are always fitted after the 

corresponding main effects are included in the model. 

  

This is different from what SAS and other programs do, which instead 

use a “drop-1” approach (“Type III Sums of Squares”).



R doesn’t use drop-1 fitting of terms 

Most other programs use a drop-1 approach by default, in which each 

term in the model is tested by comparing fit of the full model to a 

reduced model with the term of interest dropped but retaining all other 

terms. The order in which the terms are entered in the model formula 

has no effect. In particular, there is no respect for hierarchy. For 

example, interaction terms are left in the model when testing a main 

effect. Many statisticians feel strongly that this makes no sense. 

Note: The distinction doesn’t matter when the study design is 

completely balanced.



Sequential vs drop-1 fitting 

The P-values in the coefficients table correspond to the drop-1 method, 

whereas the P-values in the ANOVA table are based on sequential fitting 

of terms. As a consequence, the P-values in the ANOVA and coefficients 

tables will not agree when study designs are not balanced.  

Which method is best? 
See http://afni.nimh.nih.gov/sscc/gangc/SS.html for further discussion. 

 

In my view: 

Use the coefficients table for parameter estimation (summary). 

Use the ANOVA table for hypothesis testing (anova). 

Use the optional “hands-on” approach to force anova to do something 

different from its default. 

http://afni.nimh.nih.gov/sscc/gangc/SS.html


Analysis of covariance 

 Most ANCOVA designs are unbalanced, because specific x-values 

are often unique to a group. 

 Because anova fits terms sequentially, the ANOVA table in R 

depends on the order in which variables are entered into the model.  
   brain ~ mass + species + mass:species  

will yield a different ANOVA table than  
   brain ~ species + mass + mass:species 

 Because anova respects hierarchy, the interaction term 

mass:species (a “higher” term) is tested only after mass and 

species (“lower” terms) are included. 

 You can force specific comparisons in R. For example, use 

anova(z1,z2) to compare any two user-specified models of 

interest, z1 (reduced) and z2 (full). 



Back to analysis of covariance example 

Does our species have different brain sizes after accounting for 

differences in body size? This is easiest if we could use the model on the 

left, but to do this involves model simplification, the leaving out of 

terms (usually those that are not statistically significant). Is this allowed? 

    brain ~ mass + species          brain ~ mass + species 

                                             + mass*species



The perils of model simplification 

“models should be pared down until they are minimal adequate”  

     -- Crawley 2007, The R book, p325 

 If the interaction term is not statistically significant, it is often 

dropped from the model, which is then refit without it. 

 However, the P-value may be a poor guide to whether a model 

should include a variable or not. Other criteria may be better. 

 Dropping a term purely because P > 0.05 involves “accepting” a null 

hypothesis, which is risky. Too many accepted null hypotheses can 

lead to the wrong model. 

 At the same time, a simpler model with fewer terms may be 

justified to achieve particular goals. Be aware of the dangers, and be 

explicit about how you got to the model you decided to use. 



Perils of correcting for covariates: regression towards the mean 

Beware: Body mass is not “true size”, nor is it the cause of brain size. 

Mass is affected by sources of variation that don’t affect brain size (e.g., 

exercise, diet). As a result, regression on body mass will tend to “under-

correct” for size. 



Core assumptions of linear models 

 Independent errors (residuals) 

 Equal variance of residuals in all groups 

 Normally-distributed residuals 

 Robustness to departures from these assumptions is improved 

when sample size is large and design is balanced 

 R has built-in diagnostics for lm objects using plot method 

(workshop) 



Handling violations of assumptions within a linear model framework 

 

What if your residuals are not independent because of serial 

autocorrelations or phylogeny? 

 General least squares (gls in R’s nlme library) 

 

What if your residuals aren’t normal because of outliers? 

Nonparametric methods exist, but these don’t provide parameter 

estimates. 

 Robust regression (rlm) 



What if your response variable is not normal but is some other 

distribution instead? 

 Generalized linear models (glm) 

 

 

 

 

 

 

What if the relationship between variables is has linear and nonlinear 

parts? 

 Generalized additive models (gam) 


