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Review
High-throughput sequencing technologies provide new
opportunities to address longstanding questions about
habitat adaptation in microbial organisms. How have
microbes managed to adapt to such a wide range of
environments, and what genomic features allow for
such adaptation? We review recent large-scale studies
of habitat adaptation, with emphasis on those that
utilize phylogenetic techniques. On the basis of current
trends, we summarize methodological challenges faced
by investigators, and the tools, techniques and analytical
approaches available to overcome them. Phylogenetic
approaches and detailed information about each envi-
ronmental sample will be crucial as the ability to collect
genome sequences continues to expand.

Setting the stage for high-throughput studies of habitat
adaptation
We live in a world suffused with microbial life. Universal
trees of life [1,2] constructed by a variety of methods
unambiguously show that microbial bacteria, archaea
and eukaryotes constitute the vast majority of life’s diver-
sity. These diverse organisms perform many important
ecological functions across a wide range of natural and
man-made environments: photosynthesis in the world’s
oceans [3]; nitrogen fixation and provision of carbohydrates
in association with plant roots [4]; even modification of the
chemistry of the upper atmosphere by communities in
droplets of cloud-water [5]. The bodies of animals are also
colonized internally and externally by microorganisms,
which play crucial roles in the development [6], homeosta-
sis [7] and behavior [8] of their hosts.

How have bacteria, archaea and microbial eukaryotes
adapted to survive and thrive across such a range of life-
styles and habitats? Understanding the relationship be-
tween microbial genome sequence and fitness in a given
environment is both a fundamental question in evolution-
ary biology and a matter of societal importance. As we seek
to gain a predictive understanding of phenomena such as
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the emergence (or re-emergence) of pathogens, the impact
of human activities from agriculture to the combustion of
fossil fuels on ecosystems, or the effects of dietary or
medical interventions on human health (e.g. administra-
tion of anti- or probiotics), accurate descriptions of the
mechanisms by which microorganisms have adapted to
environmental changes in the past will provide crucial
guidance.

Traditionally, questions of microbial habitat adaptation
have been addressed by experimental manipulation of
microbes in pure culture, or by comparisons of genome
sequences. More recently, however, large decreases in the
cost of sequencing have allowed such approaches to be
complemented by the collection of unprecedented quanti-
ties of 16S rRNA [9], metagenomic [10,11], transcriptomic
[12] and whole-genome data [13]. The ‘microbial data
deluge’ has spurred the development of new computational
tools, and has also made possible systematic study of large-
scale processes such as habitat adaptation in ways that
would have been previously intractable. Here, we highlight
how the increasing availability of sequence data from
diverse environments is allowing researchers to systemat-
ically explore questions about the evolution of habitat
adaptation in microbial genomes. We emphasize current
trends in the use of tools and analytical approaches,
highlighting those that have recently been applied to yield
novel insights into this question (Table 1), as well as the
outstanding methodological challenges that remain to be
overcome.

High-throughput studies of microbial habitat
adaptation
It is now well established that the distribution of microbial
organisms across different habitat types is correlated with
their phylogeny, both in terms of the b diversity of micro-
bial communities [14,15] and the habitat range of individ-
ual lineages [16]. For example, 16S rRNA surveys clearly
separate bacteria into host and free-living communities;
planktonic saline and non-saline communities; and soil
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Table 1. Links to software and resources discussed in the text

Category Title Description Link Refs

Ordination QIIME Tool for the analysis of community diversity

in Python

http://qiime.sourceforge.net/ [70]

Vegan A package for the R statistical software tool

containing several ordination methods,

along with other tools

http://cc.oulu.fi/�jarioksa/

softhelp/vegan.html

Mothur Tools for community diversity analysis http://www.mothur.org/ [71]

Ancestral state

reconstruction

PAML A multipurpose and widely used tool for

evolutionary analysis after tree building,

including ancestral state reconstruction

http://abacus.gene.ucl.ac.uk/

software/paml.html

[72]

EREM A tool for ancestral state reconstruction of

gene presence/absence

http://carmelab.huji.ac.il/

software/EREM/erem.html

[73]

Ape A phylogeny package for R that includes

functions for estimation of ancestral states

http://ape.mpl.ird.fr/

ape_features.html

[74]

MrBayes A classic program for Bayesian

phylogenetic inference

http://mrbayes.csit.fsu.edu/ [75]

Mesquite An extensive graphical suite for

phylogenetic analysis

http://mesquiteproject.org/

mesquite_folder/docs/mesquite/

whyMesquite.html

BEAST A tool for Bayesian phylogenetic inference http://beast.bio.ed.ac.uk/Main_Page [76]

Phylogenetic

comparative

measures

Ade4 Classical multivariate analysis R package,

including methods for phylogenetic

comparative measures

http://pbil.univ-lyon1.fr/

ADE-4/home.php?lang=eng

[77]

Adephylo R package; describes phylogenetic signal

present in data

http://cran.r-project.org/web/

packages/adephylo/index.html

[63]

Picante R package containing phylogenetic

comparative methods, as well as ordination

techniques

http://picante.r-forge.r-project.org/ [64]

HGT detection PhyloNet A memory-efficient tool for phylogenetic

HGT analysis

http://bioinfo.cs.rice.edu/phylonet/ [78]

AnGST Analyzer of gene and species trees http://almlab.mit.edu/angst/ [33]

DarkHorse A distribution based HGT detection tool,

with a database of precalculated results for

many genomes

http://darkhorse.ucsd.edu/ [79]

Phangorn Package for the phylogenetic analysis of

horizontal gene transfer

http://cran.r-project.org/web/

packages/phangorn/index.html

[80]

Metadata curation MG-RAST Analysis, comparison and metadata

curation for metagenomic sequences

http://metagenomics.anl.gov/ [43]

QIIME-DB A web server for running analysis of

community diversity, backed by a large

database of well-annotated samples

http://www.microbio.me/qiime

EMP

submission

portal

Submission portal for the earth microbiome

project

http://www.microbio.me/emp [44]

GOLD Manually curated metadata for genome and

metagenomic sequences; accessible by

HTML

www.genomesonline.org [50]

Metadata standards MIxS /

MIMARKS

The minimal information about a MARKer

gene (MIMARKS) or any gene (MIxS)

standard

http://www.gensc.org/gc_wiki/

index.php/MIMARKS

[41]
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and sediment communities [14]. An association between
habitat and phylogeny has also been detected in an analy-
sis combining phylogenetically informative marker genes
identified in metagenomic studies, comparison of the iso-
lation environment for cultured organisms and 16S rRNA
gene surveys [16]. These results suggest that microbial
habitat preferences are fairly stable over evolutionary
time. For example, we would not expect to see such pat-
terns if horizontal gene transfer (HGT) was so rampant
that all microorganisms were equally capable of adapting
to a given environment (by rapid acquisition of the neces-
sary genes from indigenous microbes). However, the ob-
served correlation between phylogeny and habitat in
microbial communities does not imply that habitat range
for any individual organism can be perfectly predicted from
phylogeny alone (nor does it contradict the observation of
long tails of rare microbes in many samples [17]). Instead,
this observation demonstrates that phylogenetic informa-
tion can provide a useful first approximation for habitat
range; accurate probabilistic models for determining how
accurately phylogeny (or gene repertoire) can predict mi-
crobial habitat range remain a topic for future research.

The adaptation of microbial taxa to different habitats or
lifestyles is reflected in their genome sequences. Some of
the best-established examples of habitat adaptation iden-
tified in genomic studies include reduced genome size in
intracellular endosymbionts [18] (Box 1), increases in ge-
nome size and the prevalence of two-component regulators
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Box 1. Genome reduction

Genome reduction is one of the best-studied examples of genome

evolution as a habitat adaptation in microbial organisms. Genomic

minimalism is typically associated with organisms living in a host-

associated environment, either as endosymbionts or obligate

parasites (e.g. [18,82]), where increasing reliance on the host leads

to loss of numerous pathways. The reduced genomes of the insect

symbionts Buchnera (450 kb) and Carsonella (160 kb) have lost

many biosynthetic pathways, but retain genes for amino acid

biosynthesis, which forms the basis for their relationship with the

host [18]. The extent of genomic reduction tends to increase as the

length of the obligate relationship with the host increases, with the

greatest reduction seen in the mitochondria and plastid organelles

that have been stably incorporated in eukaryotic cells for more than

one billion years and contain only a handful of genes [83].

Organelles also provide the most extreme example of eukaryotic

genome reduction, in this case in the secondary plastids, which

were acquired by acquisition of a eukaryotic alga. Two lineages with

secondary plastids, cryptophytes and chlorarachniophytes, still

retain a relict nucleus of the secondary red or green algal symbiont

called a nucleomorph that has undergone extreme genome

reduction and appears to be on a path to complete loss [84].

The genomic trajectory of obligate intracellular parasites has

followed a similar reductive path, with extensive loss and/or

reduction in biosynthetic pathways that corresponds to an increased

reliance on the host [82]. Many eukaryotic lineages have undergone

large-scale genomic streamlining when they become obligate

parasites. The most extreme example is in microsporidia, a lineage

of highly reduced fungi that are obligate intracellular parasites of

diverse animals. The microsporidian Enterocytozoon bieneusi, an

enteric pathogen in humans, has even lost the ability to synthesize

its own ATP and instead has transporters to import ATP from its

host [85]. Genomic reduction has also occurred in species of the

highly abundant, free-living bacteria Pelagibacter and Prochloro-

coccus, where selection for efficient reproduction and/or reduced

cell size are proposed to have selected for streamlining of genomic

content [86,87]. In both Pelagibacter ubique and reduced strains of

Prochlorococcus, loss of paralogous gene copies has been demon-

strated to play a role in genome reduction [86,87]. In Prochlor-

ococcus strains, loss of entire gene families has also played a role in

genome reduction [87], whereas in Pelagibacter few ancestral

pathways have been lost [86]. Genome reduction in Pelagibacter

has instead been achieved by a reduction in the length of intergenic

regions (these regions have a median length of only three

nucleotides), the elimination of phage genes and pseudogenes

and loss of recently duplicated paralogs [86].
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in cosmopolitan organisms [19], increased acidic amino
acids as a response to salinity ([20] and references con-
tained therein) and increased rRNA copy number in fast-
growing microorganisms ([21–24] and references contained
therein). Additionally, numerous comparative genomic
analyses have identified genomic changes associated with
differences in habitat or lifestyle within specific taxa (see
[25] and [26] for recent examples and [27] for a review).

Finally, metagenomic surveys have also shed light on
many important aspects of habitat adaptation. These in-
clude changes in the aggregate functional profiles of mi-
crobial communities along gradients of depth [28], across
diverse habitat categories [29] or between oligotrophic and
copiotrophic communities [21].

Increasingly, research into microbial habitat adaptation
is successfully leveraging publically available genome,
marker gene and metagenome sequence data to contextu-
alize new findings. Specifically, several recent studies of
microbial co-occurrence [30], habitat adaptation [31,32],
survival strategy [21] and genome evolution [33,34]
have combined phylogenetic and genomic or metagenomic
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information to better understand microbial habitat adap-
tation. Such studies have converged on related strategies
and faced common challenges. Based on these trends, we
discuss a generalized workflow for comparative analysis
(Figure 1), including the challenges involved in matching
sequenced genomes to habitat assignments, determining
which environmental parameters are most likely to be
relevant for an analysis, separating the effects of habitat
adaptation from those of shared evolutionary history and
detecting HGT (Figure 1).

Challenges in defining microbial habitat range
To understand how microbial genomes change in response
to environmental adaptation, comparative genomics
approaches to habitat adaptation require an operational
definition for environment, and a way to relate individual
microbial genomes and the environments to which they are
adapted (Figure 1). In the future, this problem may be
resolved by single-cell genomics: careful selection of a
range of environments, followed by the sequencing of large
numbers of phylogenetically representative complete gen-
omes directly from those environments would provide an
unambiguous association between individual sequenced
microorganisms and their habitat. In practice, however,
this is not yet attainable on a large scale, although sub-
stantial progress is being made in techniques for obtaining
genome sequences from single cells [35,36]. Direct assem-
bly of genomes from deep metagenomic sequencing pro-
vides a similarly direct connection between genome and
environment [37]. However, the assembly of complete
genomes from metagenomic data is limited both because
it can be difficult to obtain sufficient coverage for complete
assembly in many complex communities and due to the
potential for chimeric assemblies. Thus, many comparative
genomics approaches currently rely on proxy information
about the habitat range of an organism. Common proxy
approaches for determining the habitat range of a se-
quenced microorganism include annotating environment
based on the original isolation source (for cultured organ-
isms), the reported collection site for environmental stud-
ies or database annotations based on one of these
approaches. Annotating habitat from the source of the
isolate is limited both by cultivation bias (the organisms
that grow best in culture often represent a non-random
subset of environmental diversity [38]) and because many
organisms, especially those abundant in individual sam-
ples, are ‘cosmopolitan’ and can inhabit a variety of envir-
onments [39]. Careful surveys of the literature can be very
useful in establishing a broader sense of the set of envir-
onments with which a sequenced organism must contend,
but such surveys are laborious and are limited to the
lineages actually discussed. An emerging alternative ap-
proach is to search community (marker gene and/or meta-
genomic) survey data for close relatives of sequenced
genomes. Such an approach has the advantage that it
can be conducted in a relatively unbiased manner and
can associate sequenced organisms with the environmen-
tal samples in which their close relatives are found. As with
annotations based on isolation source, however, care must
be taken, as some organisms present in samples might
simply be ‘passing through’ or might be contaminants



refinement of 1

learning6 7

Ordination  methods
Sample Definition and 

2

metadata
habitat types3 Co-occurrence  anal ysis

Databa ses of
environmental
sequence data

Phylogenetic comparative
methods

Experimental
validation4

Detection of horizontal
gene transfer

Ancestral state Machine 

5

Sequenced
geno mes

reconstruction

Niche-based
ecological

Tree   constructio n
models

TRENDS in Microbiology 

AnalysisObservation Synthesis

Figure 1. Recurrent themes in the analysis of microbial habitat adaptation. Numbered topics in bold correspond to sections in the text (see main text for additional detail).

To compare microbes across habitats, it is first necessary to define the environmental factors that structure microbial communities. Insights into this question can be gained

by combining sequence data from community surveys (e.g. 16S rRNA or other marker gene sequences) with rich metadata (Topic 1), using ordination techniques (Topic 2).

These results can then help to define (and refine) important habitat categories. Interactions between organisms (such as competition or cooperation) can be characterized

using co-occurrence analysis (Topic 3). When well-defined and annotated habitat categories (or data on environmental parameters) are available, surveys of microbial

communities can be combined with genome sequence data and phylogenetic trees to allow more detailed study of habitat adaptation. Such studies include phylogenetic

comparative measures (Topic 4), detection of horizontal gene transfer (Topic 5) and ancestral state reconstruction (Topic 6). Application of these techniques in combination

allows for inference of traits involved in habitat adaptation: these traits/habitat associations can then be put into a predictive framework using machine learning techniques

(Topic 7) or ecological modeling. Traits predicted to be important for habitat adaptation can be selected for detailed experimental study (e.g. by mutagenesis followed by

competition in microcosms).
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(Box 2). As databases of 16S rRNA and metagenomic
community surveys accumulate, automated methods for
surveying the habitat range of microbial taxa (see, e.g.
[32,40]) using community surveys should become increas-
ingly effective. However, this improvement is entirely
dependent on the consistency and quality of the contextual
information associated with marker gene and metage-
nomic community surveys.

Metadata annotation
The rapid accumulation of studies encompassing thousands
of samples and billions of sequences has the potential to
allow myriad new insights through comparative analysis.
However, to maximize this potential, accurate contextual
information about the samples (often called ‘sequence meta-
data’) is an increasingly important consideration (Figure 1,
Topic 1). In addition to the existence of metadata, the form of
that metadata is crucially important: if data are not consis-
tently annotated in a standardized machine-readable for-
mat, large-scale comparative analyses become difficult or
impossible. The utility of datasets for comparative analysis
is thus frequently limited by the quality of metadata
reported for the sampled environment. Such limitations
can be introduced during data collection, data encoding or
data reporting. During data collection, datasets are often
limited by reporting only those physical, chemical or geo-
graphic parameters relevant to the particular hypothesis at
hand (even if other parameters were collected). A lack of
widely adopted standards for encoding the metadata that
describes samples also presents significant challenges for
comparative analyses. Differences in annotation can range
from relatively simple (the use of different names or abbre-
viations to represent the same body site) to very challenging
(differing definitions of environment types). Another limita-
tion occurs during publication: although journals require
that sequence data be made publically available, similar
requirement have not been enforced for sample metadata.

To address these issues, many new sequencing efforts
are now adopting the minimal information about any
(x) sequence (MIxS) standards (http://www.gensc.org/
gc_wiki/index.php/MIxS) which was proposed by the Ge-
nomic Standards Consortium [41]. The MIxS standard
encapsulates three metadata compliant data types, which
are the minimal information about a (meta)genome se-
quence [42] and the minimal information about a marker
gene sequence [41]. These standards require researchers
to supply their metadata using controlled vocabulary
terminology and ontological values, which will greatly
475

http://www.gensc.org/gc_wiki/index.php/MIxS
http://www.gensc.org/gc_wiki/index.php/MIxS


Box 2. Source/sink dynamics

Attempts to map the habitat range of an organism using (metage-

nomic or marker gene) community surveys is that the presence of a

microbe in an assemblage is not proof that the organism is adapted

for life there. If a productive (source) and an unproductive (sink)

environment are linked by high rates of migration, even relatively

abundant organisms in the unproductive environment can be

maintained primarily by migration from the source, rather than

reproduction in the sink [88]. Such source/sink dynamics have been

extensively documented in the ecology of micro- and macroscopic

organisms [88,89] and are likely to play important roles in many

microbial communities. For example, microbial assemblages from

the human gut may contain transient populations of microorgan-

isms associated with ingested food or the mouth community, in

addition to the indigenous community. The complexities presented

by source/sink dynamics are compounded by the prevalence of

dormancy in microbial populations [90], which can increase the

ability of microbes to emigrate to, and persist in, marginal habitats.

Currently available techniques for minimizing the effect of source/

sink dynamics when annotating habitat range from community

surveys include requiring the presence of an OTU across multiple

samples, considering the relative presence of an organism in a

habitat as a proportion of its total abundance across all environ-

ments and experimental comparison of rRNA and rDNA ratios to

test for metabolism in the sample can indicate the presence of alive

and actively transcribing organisms as opposed to just their DNA.

One additional recent approach to this problem involves new

algorithms for tracking recent migration from a source environment

[91]. This approach can also detect laboratory contamination, which

can lead to inappropriate conclusions about cosmopolitanism (see

[39] and references contained therein). However, accurate techni-

ques for inferring microbial habitat adaptation (fitness in a particular

habitat, rather than merely presence) from community surveys

remain a topic where further development is needed.
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benefit cross-study comparisons. Owing to the adoption of
such standards, some databases are also starting to re-
quire MIxS compliance during metadata submission.
These include the Metagenomics RAST Server (MG-RAST;
http://metagenomics.anl.gov/) [43], the Human Microbiome
Project (HMP; http://www.hmpdacc.org/), the Earth Micro-
biome Project (EMP; http://www.earthmicrobiome.org/) [44]
and the QIIME Database (http://www.microbio.me/qiime).

Ordination methods
When investigating habitat adaptation in microbes, it is
crucial to first have a baseline understanding of how
microbial communities vary across environmental samples
(microbial b diversity) and the main factors that drive
such variation (Figure 1, Topic 2). Ordination methods
have been widely and fruitfully applied to address these
questions. By assessing the microbial composition of each
microbial community, ordination methods allow an assess-
ment of the extent to which communities are partitioned
into distinct clusters or arrayed along a continuous gradi-
ent based on environmental factors (see [45] for a survey of
ordination methods).

Ordination analyses performed on microbial commu-
nity composition data acquired via sequencing of the
gene encoding the small subunit ribosomal RNA have
been used to distinguish microbial communities, and to
identify environmental factors that contribute to both
large and small-scale differences between communities.
For example, Lozupone et al. [46] found a clear split
between saline and non-saline environments among
non-host associated microbial communities. King et al.
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combined ordination techniques with biogeography to
demonstrate the dominant role of pH, plant abundance
and snow depth in shaping the microbial communities
found in alpine soil and to build global distribution
models for microorganisms in this habitat [47], and
Fierer et al. used 16S rRNA composition data to show
that microbial communities on individuals’ hands were
far more similar to the communities on their computer
keyboards than they were to communities from other
individuals’ hands [48].

A community-wide perspective on the factors structur-
ing microbial diversity can also be obtained by shotgun
metagenomic data. DNA or RNA sequences from random
locations on the genomes of many microbes in a community
can be assigned to functional (or other) categories, and
again ordination methods can be applied to the resulting
data. The (dis)agreement between 16S rRNA data and
metagenomic data can then be visualized and quantified
via Procrustes analysis, which compares the similarity of
pairs of ordinations (see [9] for an example of applying this
technique to the 50 and 30 paired-end reads of the same
rRNA molecules in environmental samples). Such compar-
isons are one method of determining, at the community
level, the degree to which the pool of functional genes in a
microbial assemblage is predictable from phylogeny (rela-
tive to other reference communities). An unusual degree of
difference between phylogeny and gene content may be a
biologically interesting signature of competition or func-
tional convergence [32].

Finally, ordination methods can help to inform high-
throughput studies of microbial habitat adaptation by
determining which environmental parameters are most
important in structuring community diversity. Objective
methods for defining relevant metadata parameters and
defining working habitat categories are crucial, because
many studies rely heavily on the lifestyle or habitat cate-
gories defined in a small number of online databases
(primarily NCBI [49] and GOLD [50]) to test comparative
genomic hypotheses. Careful refinement of these catego-
ries and addition of more detailed subcategories (based in
part on the results of ordination techniques) would yield
rapid dividends in comparative analysis.

Application of machine learning techniques
Machine learning techniques hold promise for relating
gene functions to habitat distributions (Figure 1, Topic
7). These techniques have been used in taxonomic classifi-
cation of metagenomic data and many other problems in
bioinformatics. Although their application to classification
and clustering of microbial communities by habitat is
relatively new [51], machine learning techniques have
been applied extensively to habitat classification in micro-
array data [52]. This emerging approach has been success-
ful for classifying microbial communities across several
different habitat types. For example, Muegge et al. [53]
used a nearest-neighbor approach to demonstrate that
phylogenetic characterizations of microbial communities
can be used to predict metagenomic profiles of those com-
munities. Werner et al. used supervised classifiers to iden-
tify a small subset of operational taxonomic units (OTUs)
that were highly predictive of the type of bioreactor in
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brewery wastewater-treatment systems [54]. Supervised
classifiers have also recently been applied to source track-
ing of fecal contamination in water supplies [55].

The primary purpose of supervised machine learning in
the context of microbial habitat adaptation is to build
predictive models of the differences between habitats. A
supervised classifier takes as its input a set of biological
samples (training data) characterized by, for example,
observations of OTUs, or counts of gene categories, along
with metadata identifying the source habitats of those
communities. The output is a model designed to predict
the source habitat for novel biological samples not included
in the training data and an estimate of the expected future
accuracy of the model. In many cases the classifier will also
report a measure of the predictive capability of each of the
dependent variables (e.g. gene categories). One of the main
advantages of machine learning techniques is that they are
designed to discover general trends present in the training
data even when the number of dependent variables is
much larger than the number of samples, while avoiding
overfitting. This is a challenging task, however, in data as
sparse and high-dimensional as microbial community sur-
veys or metagenomic analyses, and exceptional caution
must be taken to avoid overestimating the future accuracy
of supervised classifiers with small sets of training data
[56]. Novel techniques might also need to account for
the compositional nature of metagenomics data; for exam-
ple, changes in a dominant community member could
introduce spurious correlations between minor members
[57]. Nonetheless, one exciting direction is that once suffi-
cient genomes linked to environmental samples have been
collected, machine learning techniques will be ideal for
understanding which genes, regulatory structures or other
properties of the genome are specifically associated
with presence in an environment, especially when com-
bined with the phylogenetic methods discussed in the next
section.

Phylogenetic comparative methods
Once habitats have been assigned to organisms, relating
genome properties to habitats is still challenging. Because
all organisms share a common ancestry, each genome
sequence cannot be counted as an independent observation
when conducting statistical analyses, including machine
learning techniques. Instead, the evolutionary history that
relates organisms must be taken into account [58]
(Figure 1, Topic 4). The importance of this well-estab-
lished, but often ignored, principle is illustrated in
Figure 2. Phylogenetic comparative methods are of partic-
ular relevance to microbial ecologists because the organ-
isms selected for genome sequencing are not distributed
across the tree of life evenly (although efforts are underway
to ameliorate this problem [13]). This sequencing bias
exacerbates the problems of interpretation introduced
when traits are correlated with phylogeny.

Recent investigations of microbial adaptation to the
human gut [32], global co-occurrence patterns [30] and
genomic changes associated with growth rate [21] have
investigated phylogenetic patterns by plotting relevant
traits against phylogenetic distance, and found useful
information in both trends that can largely be explained
by phylogeny (e.g. similarity in GC content [21,30]) and
those can only be partially explained by phylogeny (e.g.
gene content during adaptation to life in the gut [32]; and
gene content and genome size in co-occurring organisms
[30]). Other studies have employed rarefaction, in which
data are evened out across categories by discarding mem-
bers of overrepresented taxa. Rarefaction can provide a
useful check on the effects of oversampled taxa but suffers
from the obvious drawback that it frequently discards a
large portion of the data, and is limited by the least
sampled taxon. Nonetheless, the utility of relatively unso-
phisticated methods such as rarefaction and regression
against phylogenetic distance suggests that inclusion of
more formal analyses of phylogenetic signal (e.g. phyloge-
netic independent contrasts [59] and phylogenetic gener-
alized least squares), along with reconstructions of
ancestral states (Box 3) could play an important role in
future studies of microbial habitat adaptation. The devel-
opment [59,60] and testing [61,62] of phylogenetic compar-
ative methods for quantitative traits, as well as software
packages [63,64] to make such methods easily accessible,
are active areas of research, but many tools exist for
estimating these traits without phylogenetic bias (Table
1) and should be applied in microbial studies.

Relating co-occurrence patterns to bacterial genomes
One way to understand potential interactions between
organisms that might impact environmental distribution
is through the application of co-occurrence analysis
(Figure 1, Topic 3). For instance, species that support each
other’s growth, such as in syntrophic relationships where
one organism produces metabolites that are consumed by
the other, would be expected to positively co-occur across
samples. By contrast, species that competitively exclude
each other (e.g. because of similar metabolic requirements)
might negatively co-occur. Co-occurrence patterns, howev-
er, are confounded because both positive and negative
associations can also be driven by environmental prefer-
ences [30,65]. Additionally, differences in the depth of
sampling between environmental isolates could obscure
co-occurrence patterns, especially for rare taxa.

Combining co-occurrence studies with comparative ge-
nomics can clarify the biological properties that drive
associations among microbes [30]. As an example, Chaffron
et al. performed a global analysis of co-occurrence patterns
using 16S rRNA surveys representing 3000 distinct sam-
pling events for which sequence data were deposited in
GenBank [30]. They then assessed the genomic properties
of the subset of OTUs for which close relatives had genome
sequences. Although some of the positive associations in
the 16S rRNA OTU network reflected known or suspected
syntrophic associations, such as a consortium involved in
the anaerobic oxidation of methane, the general trends
suggested that the major factor driving positive associa-
tions was shared environmental preference. Positively co-
occurring OTUs were more phylogenetically related than
random OTU pairs, extending to lineages that diverged up
to 10% at the 16S rRNA level (these would typically be
placed in different taxonomic families). Interestingly, pos-
itively co-occurring OTUs had more similar genome size,
GC content (the proportion of nucleotides that are guanine
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(a) 

Node name Habitat Metabolic 
genes 

Other 
genes 

A Habitat 1 2,042 2,957 

B Habitat 1 2,018 2,981 

C Habitat 1 2,021 2,978 

D Habitat 1 2,043 2,956 

E Habitat 1 2,046 2,953 

F Habitat 1 2,016 2,983 

G Habitat 1 2,050 2,949 

H Habitat 1 2,062 2,937 

I  Habitat 2 2,102 2,897 

J Habitat 2 2,111 2,888 

K Habitat 2 2,077 2,922 

L Habitat 2 2,080 2,919 

M Habitat 2 2,067 2,932 

N Habitat 2 2,083 2,916 

O Habitat 1 2,032 2,967 

P Habitat 1 2,032 2,967 

Habitat Metabolic
genes

Other
genes 

Average % 
metabolic 

Habitat 1 20,362 29,628 49.7% 

Habitat 2 17,474 12,520 58.3% 

Raw habitat data Summary  

Result appears significant by G-test
for independence:  

G = 7.886759, p = 0.0024899   
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Figure 2. The importance of phylogenetic correction in comparing traits across habitats. Consider the problem faced by an investigator seeking to test whether adaptation

to a copiotrophic environment (Habitat 2) is correlated with acquisition of additional metabolic genes relative to an oligotrophic environment (Habitat 1). To illustrate how

phylogenetic structure can complicate such analyses, panels (a) and (b) summarize hypothetical (simulated) data representing a case in which habitat adaptation and

metabolic gene evolution are purely independent. Given gene presence/absence data derived from whole-genome sequences (a), it may be tempting to use traditional

statistical methods without phylogenetic correction to test whether the habitat of the organism influences the number of metabolic genes in its genome. Naı̈ve assessment

of the effect of habitat on gene content using a non-phylogenetic test may lead an investigator to conclude that the increase in representation of metabolic genes between

organisms found in Habitat 2 over Habitat 1 (58.53% vs 49.7%) is statistically significant. In the example, illustrated in (a), the G-test for independence yields a highly

significant P-value (P = 0.00249), despite no actual connection between habitat and gene content. Examination of the phylogeny relating the genomes (b) reveals a great

deal of phylogenetic structure that is ignored by any statistical test that does not incorporate evolutionary relatedness (including, but not limited to, the G-test). Instead,

such non-phylogenetic statistical tests implicitly assume the unstructured ‘star’ phylogeny (panel b, inset). Ignoring the hidden patterns of correlation caused by shared

evolutionary history in this manner frequently produces false positive results such as that in (a). For example, non-phylogenetic tests would ignore the correlations caused

by the close phylogenetic relationship between lineages I and J as well as K and L (thus overcounting genes from the lineages). In this simple hypothetical example, we can

readily observe that phylogenetically unaware statistical methods can generate false positive results. This phenomenon is widely recognized in the literature on

phylogenetic comparative methods (see [59–64,81] for more detailed discussion). To illustrate that the false positive result obtained in this hypothetical example is not
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Box 3. Ancestral state reconstruction

Reconstruction of ancestral states is a powerful tool to understand

molecular and genomic evolution, which is increasingly being

applied to the study of microbial habitat adaptation. Ancestral traits

for a group of species can be inferred based on a phylogenetic tree,

an alignment of the observed states and a model of evolution of the

character under study. By analyzing a character in a group of extant

species, the most probable state the character had in the common

ancestor of these species can be determined, thus identifying

changes that have occurred since divergence. The ancestral

sequence can be estimated by one of several methods, such as

parsimony [92], maximum likelihood ([93] and references therein) or

Bayesian inference ([94] and references therein). Selected tools for

performing ancestral state reconstruction are listed in Table 1. For

relatively recent evolutionary events, it is sometimes possible to

infer probable gene sequences at ancestral nodes. The estimated

sequence can then be synthesized, cloned into a vector that is

transfected into a cell and the expressed protein can subsequently

be purified to study its properties. Based on this process, new

insights into the evolution of dim-light vision [95] and steroid

receptors [96] have been obtained. In addition to inferring ancestral

gene sequences, ancestral state reconstruction has also been

applied to infer other traits, such as mitochondrial metabolism

[97] and the content of genomes [98]. In the future, it seems

probable that integrated studies of genomic evolution including

both ancestral state reconstruction of genome contents, sequence-

based analyses of selective pressure (e.g. via ratios of synonymous

to non-synonymous nucleotide substitutions [99]), tests of the order

of trait divergence [100] and detection of horizontal gene transfer

could yield new insights into the evolution of microbial habitat

adaptation.

Review Trends in Microbiology October 2011, Vol. 19, No. 10
or cytosine) and relative coverage of KEGG functional
pathways than random OTU pairs. Phylogeny could large-
ly explain the high similarity in GC content but not simi-
larities in genome size and KEGG functional pathway
coverage. Thus, inhabiting the same environment could
drive convergence of genome size and metabolic potential
in divergent microbes [30].

Horizontal gene transfer (HGT)
Ongoing studies have continued to document the impor-
tant roles played by HGT in microbial habitat adaptation
(Figure 1, Topic 5). HGT can be detected by several
methods: phylogenetic methods, which typically compare
gene trees with a ‘species tree’; compositional methods,
which analyze deviations in nucleotide, codon or amino
acid composition; or mobile-element methods, which
search for specific genes or sequences associated with
DNA mobility (see [66] for a review). Although there is
ongoing controversy [67,68] about the total extent
of HGT, and the implications of HGT for microbial
(especially bacterial and archaeal) phylogeny [69], it is
increasingly clear that both (i) HGT has played a major
role in bacterial evolution and (ii) trees of the universal or
nearly universal genes give the same overall phylogenetic
pattern on average [68], implying that the extent of HGT
is not so great that measures of vertical inheritance, such
as 16S rRNA phylogenies, are meaningless. Several re-
specific to the details of the tree, nor the small number of genes depicted, we repeated t

case, 5000 binary characters (representing gene presence/absence), plus one habitat ch

correlation between habitat and gene content, we would expect no more than a 5% fal

hypothetical situations, a G-test of gene content versus habitat would falsely reveal a

application of phylogenetic comparative measures in studies of microbial habitat ad

references [59–64,81] for studies that address this issue).
cent studies of HGT have therefore focused on separating
the relative contribution of HGT (by conjugation, phage
transduction, transformation, etc. [66]) and vertical de-
scent (including gene loss, duplication, evolution of new
gene families and sequence divergence) to the evolution of
gene content.

Schliep et al. [34] used information embedded in the
set (or ‘forest’) of gene trees from 100 bacteria and ar-
chaea to identify sections of gene trees that were not
consistent with vertical descent, but did correspond to
lifestyle (e.g. ‘anaerobe’) or habitat (e.g. ‘soil’) features as
derived from NCBI annotations. This analysis yielded
sets of gene families that could be better explained by
lifestyle or habitat annotations than by taxonomy (�19%
of gene families analyzed for hyperthermophiles) as
well as networks of gene exchange among taxa and
clusters of genes that were gained or lost in association
with lifestyle.

David and Alm [33] used AnGST, a model that tests for
gene duplication, gene loss and HGT within a single
framework, to reconstruct the evolutionary history of
3983 gene families. The results implied an ‘archaeal ex-
pansion’ 3.33–2.65 billion years ago in which the number of
gene families expanded by �26% during a period of rapid
diversification. By examining the timing of the expansion,
and finding that the gene categories increasing during this
event were primarily associated with redox and electron
transfer (O2 binding, Fe binding and Fe-S binding were the
most enriched categories), David and Alm were able to
connect this expansion to the ‘great oxygenation event’: a
dramatic biotically mediated event in Earth’s history, in
which the production of oxygen by photosynthesis began to
exceed buffering capacity and thus raise O2 levels in the
atmosphere and ocean.

Algorithms that include a unified model of gene evo-
lution hold great promise for the study of habitat adap-
tation in microbial genomes (Table 1). The separation of
genome evolution into specific vertical or horizontal
components, and relating patterns in each to changes
in habitat or lifestyle are also promising avenues for
future research.

Concluding remarks
The increasing availability of 16S rRNA and metagenomic
community surveys, in combination with new genome
sequences, provides novel opportunities to conduct large-
scale studies relating the survival strategies of microbial
organisms to their genomic features (Box 4). Using the
structure of the tree of life will be essential in establishing
baseline predictions for trait conservation given phylogeny
and thereby distinguishing novel adaptations to a particu-
lar habitat from traits preserved solely due to shared
evolutionary history. Given this phylogenetic baseline,
large collections of community surveys with backing meta-
data can be used to detect genomic variations associated
he procedure depicted in (a) and (b) across 1000 simulated 256 taxon trees. In each

aracter were simulated in a purely neutral manner. Because there was no genuine

se positive rate from a valid statistical test. However, in 38.4% (384/1000) of these

 statistically significant result (P < 0.05). This simple example illustrates that the

aptation should be considered essential (see Table 1 for available software and
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Box 4. Outstanding questions

� What is the relative role of sequence change in existing genes

versus transfer of new genes in microbial habitat adaptation?

� Given that microbes may be detected as present in an assem-

blage, but not genuinely adapted for life there (due to source/sink

dynamics or laboratory contamination), how can we best tell

which organisms are adapted?

� How can we determine the order of adaptive events that permits

colonization of a new environment?

� Do adaptations to environments with similar features (e.g. the

guts of various mammals) share similar features?

� Can adaptation to other members of the community (e.g.

syntrophy) be distinguished from shared adaptation to common

abiotic factors present in the environment?

� Given source/sink dynamics, what is the best (experimental or

bioinformatic) measure of habitat adaptation?

� If HGT has played an important role in microbial adaptation to a

variety of environments, then what is the timing of specific

genomic changes that allow for adaptation to a habitat relative to

dispersal into a new habitat?

� To what extent has HGT affected microbial eukaryotes?

� What are the relative contributions of different gene transfer

mechanisms to adaptive evolution across habitats?

� Do adaptation to habitat (e.g. the human gut) and adaptation to

other organisms co-occurring in a specific assemblage (e.g.

syntrophy) show interchangeable genomic signals, or are these

patterns distinct?
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with life in a range of environmental conditions. Statistical
tools are now available for investigating adaptation along
ecological gradients, detecting HGT, reconstructing the
evolutionary history of genes involved in environmental
adaptation and inferring correlations in species abun-
dance. A major challenge for future studies will be design-
ing accessible, high-throughput pipelines that combine
these tools to gain biological insight and generate testable
hypotheses from the large-scale sequence collection efforts
currently underway.
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