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High taxonomic variability despite stable functional  
structure across microbial communities
Stilianos Louca1, 2*, Saulo M. S. Jacques3, 4, Aliny P. F. Pires3, Juliana S. Leal3, 5, Diane S. Srivastava1, 6, 
Laura Wegener Parfrey1, 6, 7, Vinicius F. Farjalla3 and Michael Doebeli1, 6, 8

Understanding the processes that are driving variation of natural microbial communities across space or time is a major chal-
lenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other 
processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynam-
ics. The relative importance of these processes and their effects on community function remain largely unknown. To address 
this uncertainty, here we examined bacterial and archaeal communities in replicate ‘miniature’ aquatic ecosystems contained 
within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine meta-
bolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We 
found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composi-
tion within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral 
processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within 
functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional 
structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral 
and roughly separate processes.

Microbial metabolism drives the bulk of biogeochemi-
cal fluxes in virtually every natural ecosystem1. Microbial 
communities can display complex variation in composi-

tion across space or time, such as down the ocean water column2 
or across seasons3, and this variation can have profound effects on 
ecosystem functions3. The mechanisms driving this variation remain 
poorly understood, because the entanglement of multiple mecha-
nisms severely complicates the identification of causal relationships. 
Potential mechanisms of microbial community assembly include 
adaptation to local environmental conditions (‘environmental 
 filtering’)4, biotic interactions such as predation5,6, random popula-
tion drift7, random colonization order8 and spatially limited random 
dispersal9. Recent work suggests that the metabolic functional poten-
tial of microbial communities in the global ocean or in soil is closely 
related to environmental conditions, while the taxonomic variation 
within individual functional groups is only poorly explained by envi-
ronmental conditions10–12. This points towards an elegant paradigm 
for microbial ecology, in which community metabolic function is 
strongly shaped by energetic and stoichiometric constraints such as 
the availability of electron acceptors for respiration10, while the com-
position within functional groups is modulated by additional mech-
anisms. According to this paradigm, similar environments should 
promote similar microbial community function, while allowing for 
taxonomic variation within individual functional groups.

Trait convergence concurrent with species divergence has 
been reported previously for plant communities13,14, however, it is 
unclear whether (and how) conclusions from plant biogeography 
extrapolate to microbial biogeography9. Microbial population sizes 

are typically much higher than those of plant communities (for 
example, ~109 bacterial cells per litre in lakes15). Consequently, sto-
chastic demographic drift (that is, fluctuations in population sizes 
purely due to random birth–death events) may be less important in 
microbial communities compared with other mechanisms, such as 
priority effects or competitive exclusion16. Moreover, it is difficult 
to compare microbial metabolic traits (such as the use of various 
electron acceptors for respiration) to trait palettes conventionally 
considered in plant biogeography (for example, canopy height, dis-
persule shape or leaf phenology13,14); hence, trait convergence in 
plants need not imply functional convergence in microorganisms.

High microbial taxonomic variability despite functional stability 
has been previously observed in bioreactors7,17,18. In natural systems, 
analogous observations emerge from comparisons of β  diversities of 
community species and gene content. Notably, human gut micro-
biota have been found to exhibit a core set of genes despite strong 
taxonomic turnover between individuals19, and bacterial community 
composition on the macroalgae Ulva australis was best explained in 
terms of gene content rather than species content8. These studies 
do not, however, explicitly consider taxonomic composition within 
individual functional groups, perhaps because assigning shotgun 
environmental gene sequences to specific taxa remains a notori-
ously hard problem20. Here we circumvent this problem and com-
pare the functional and taxonomic variability of prokaryote (that 
is, bacterial and archaeal) communities across 22 replicate aquatic 
environments, harboured within the foliage (‘tanks’) of bromeliads 
in the Jurubatiba National Park, Brazil (Fig.  1). Bromeliad tanks 
accumulate rain water and organic detritus from their surrounding 
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(regional pool) and any two bromeliads shared only ~20–60%  
of their OTUs (Supplementary Table 1). This overlap between 
communities is significantly lower than would be expected solely 
due to limited sequencing depth (P <  0.001 using a null model of 
random sequencing of the regional pool) or due to random inde-
pendent colonization by OTUs (P <  0.05 using a null model of 
OTU assignment depending on OTU abundances in the regional 
pool; Supplementary Table 1). Furthermore, coefficients of varia-
tion for OTU proportions within functional groups were typi-
cally much greater than coefficients of variation of relative gene 
abundances (~2–3 versus ~0.2–0.6, respectively; Supplementary  
Table 2). This taxonomic variability within functional groups 
persists to a considerable extent even when OTUs are combined 
at higher taxonomic levels (for example, genus, family, order or  
class level; Supplementary Figs 1–4), and is in contrast to the 
more constant relative gene abundances. In each bromeliad the  
same metabolic niches appear to be occupied by very different 
organisms, even if the occupancy of each niche—in terms of its 
relative abundance—remains almost unchanged. The variability 
seen within functional groups is also reflected at the community 
level. When we considered relative OTU abundances in the entire 
community we again found a significantly low overlap between 
samples (P <  0.001) as well as a high coefficient of variation of 
relative OTU abundances (2.9 on average). Our results explain the 
previously observed strong variation in microbial community com-
position across bromeliads22, and demonstrate that taxonomic vari-
ability between replicate ecosystems need not imply differences in  
community function.

The strong taxonomic variability within functional groups is pre-
sumably enabled by a high functional redundancy in the regional 
microbial pool (Fig. 3), allowing for potential colonization of each 
bromeliad by alternative, functionally similar OTUs. The precise 
mechanisms determining the subset of OTUs that eventually esta-
blish in each bromeliad and within each metabolic niche are, at this 
point, unknown. The fact that beta (β)  diversity (in terms of OTU 

environment, and intense decomposition of this detritus sustains a 
high richness of microorganisms and macroinvertebrates21,22. Apart 
from constituting regional biodiversity hotspots, bromeliads are often 
used as miniature model systems for ecology22,23. Microbial commu-
nities in bromeliads tend to be highly distinct from the surrounding 
environments (for example, soil), exhibiting a strong shift towards 
fermenting and methanogenic organisms21,24,25. To ensure a high  
similarity between systems, we only surveyed mature plants of a  single 
bromeliad species (Aechmea nudicaulis) from the same region26.

We used amplicon DNA sequencing of the 16S ribosomal gene, 
a standard marker gene in microbial ecology27, to estimate the pro-
karyotic taxonomic community composition in each bromeliad. 
Whenever possible, we assigned detected organisms to one or more 
metabolic functional groups of potential ecological importance, 
such as fermentation, dissimilatory reduction of nitrogen com-
pounds (nitrogen respiration) or methanogenesis21,25 (nine groups 
in total). This enabled us to estimate taxonomic richness and vari-
ability within each functional group. Detected taxa were assigned to 
these functional groups on the basis of published evidence on cul-
tured representatives. For example, if an uncultured organism was 
identified within a known bacterial genus whose cultured member 
species have all been identified as fermenters, we considered that 
organism to also be a fermenter. We used environmental shotgun 
DNA sequencing (metagenomics) to estimate the overall stability of 
functional community structure, based on the relative abundances 
of proxy genes corresponding to the considered functional groups. 
For example, we used gene sequences for methyl-coenzyme M 
reductase (mcr) and heterodisulfide reductase (hdr) as proxies for 
methanogens28. We found that all communities exhibited a remark-
ably similar functional structure, which contrasts with a highly vari-
able taxonomic composition within individual functional groups. 
Furthermore, we examined phylogenetic community structure and 
species distribution patterns, and compared taxonomic composi-
tion to abiotic environmental conditions and geographical location, 
to elucidate potential mechanisms driving variation within func-
tional groups.

Results and discussion
Functional stability contrasts with taxonomic variability. We 
found that the metabolic functional structure of tank prokaryotic 
communities, in terms of the relative abundances of proxy genes, 
was similar between all bromeliads (Fig. 2a,b). This functional simi-
larity is presumably promoted by strong stoichiometric balancing 
between coupled metabolic pathways, the majority of which serve 
to break down large organic compounds to simpler organic mol-
ecules and gradually move electrons from reduced organic carbon 
to terminal electron acceptors such as protons (H+), carbon diox-
ide (CO2), sulfate ( −SO4

2 ), nitrate ( −NO3 ) and oxygen (O2)29. These 
metabolic pathways are distributed across multiple organisms, and 
link the breakdown of dead organic matter captured in the brome-
liads to the eventual release of carbon dioxide30 (CO2), methane24 
(CH4) and presumably molecular nitrogen (N2). Each step along 
these pathways thus appears to sustain highly constrained microbial 
productivities, resulting in specific proportions of functional groups  
that are conserved across bromeliads. We note that while simi-
lar functional community structure between bromeliads is highly 
indicative of similar productivities (and hence activities) of the 
functional groups, in situ process rate measurements are required 
to verify this conclusion.

On the other hand, we found that the taxonomic composition 
within individual functional groups was highly variable across 
bromeliads, in terms of the occurrence of operational taxonomic 
units (OTUs; at 99% 16S rDNA similarity) as well as the propor-
tions of OTUs within each functional group (Fig. 2c–k). Within any 
given functional group, OTUs detected in all of the samples (core 
microbiome) only made up ~0–1% of total OTUs across all samples  

Aechmea nudicaulis

20 cm

Figure 1 | Bromeliad species used in this study. The main image is 
Aechmea nudicaulis, the bromeliad species considered in this study. The 
foliage forms a deep central cavity (tank, inset) that accumulates rainwater 
and dead organic material, such as leaves from nearby trees.  
The decomposition of this material sustains a highly productive and diverse 
food web inside the tank. Photographs by S. Louca.
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overlaps) within functional groups differed significantly from the 
null expectation on the basis of the alpha (α) diversities within bro-
meliads and the regional gamma (γ) diversity, indicates that non-
random (for example, niche-based or spatially structured) processes 
may drive OTU turnover between bromeliads31. To further assess 
the potential importance of non-random processes, we compared 
patterns of OTU co-occurrences, OTU detection frequencies and 
phylogenetic clustering to various null models of random or neutral 
community assembly.

Null model analysis of OTU distributions. Random colonization of 
bromeliads by independent OTUs would result in negligible associa-
tions between OTUs. To test this scenario for each functional group, 
we compared OTU co-occurrences, as defined by their C scores  
(a presence–absence-based measure for mutual OTU segregation), 
to a null model corresponding to random OTU sampling from  
the functional group’s regional pool (‘fixed–fixed’ null model)32. 
Within six out of nine functional groups (aerobic chemoheterotrophs,  
cellulose degraders, fermenters, nitrogen respirers, photoautotrophs 

and sulfate respirers), OTUs were significantly segregated with 
respect to each other, that is, C scores were higher than expected 
by chance (P <  0.05; Supplementary Table 3). The remaining func-
tional groups also displayed OTU segregation, although differences 
from the null model were not statistically significant.

Failure to detect significant co-occurrence patterns within some 
functional groups may reflect random assembly processes but 
could also be due to the coarseness of presence–absence data, and 
 abundance-based null models may be more suitable for detecting 
non-random co-occurrence patterns33. Hence, we also considered 
an abundance-based metric (MA score, a measure for the con-
gruency of OTU proportions between samples)33, in combination 
with a null model that corresponds to random sampling from the 
regional pool and which takes into account relative OTU abun-
dances ‘IT model’33. We found that all functional groups exhibited 
an MA score that was significantly lower than expected by the null 
model (P <  0.001; Supplementary Table 4), indicating a substantial 
non-random segregation between samples in terms of OTU propor-
tions. When we considered the entire community, we again found 
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Figure 2 | Taxonomic and functional community structure. a, Relative abundances of proxy genes in prokaryotic metagenomic sequences (genes are 
grouped by function with one colour per gene group and one column per bromeliad). For details on associating genes with functions see Methods.  
b, Sub-plot of a focusing on the rarer genes for better illustration. c–k, Prokaryotic OTU proportions within individual functional groups (one colour per 
OTU, one column per sample, one plot per functional group), as determined from 16S rDNA sequences. Owing to ambiguities in gene function, for some 
functional groups (d,h) we considered multiple proxy genes. For each functional group, proxy genes are indicated via colour codes (corresponding to 
colours in a and b) next to the functional group’s name. For more detailed metagenomic profiles see Supplementary Fig. 12. For the taxonomic composition 
within functional groups at higher taxonomic levels (genus, family or order) see Supplementary Figs 1–3. (Sample size: 22 bromeliads.)
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non-random segregation patterns (P <  0. 001) both in terms of their 
C scores and their MA scores.

When combined with spatially limited dispersal, neutral demo-
graphic drift could in principle produce non-random (that is,  
spatially structured) segregation patterns34, because bromeliads 
in greater proximity would tend to exhibit more similar commu-
nity composition. However, as we discuss below, spatially limited  
dispersal is probably not important at the scales considered here. 
Hence, the non-random segregation patterns detected here prob-
ably reflect a mutual exclusion between OTUs that was potentially 
caused by environmental filtering or biotic interactions32, rather 
than spatially correlated or uncorrelated neutral assembly.

To test whether community assembly was neutral with respect to 
phylogenetic relationships, we compared the phylogenetic distances 
between OTUs co-occurring in the same samples to those occurring 
in the regional pool. Specifically, within each functional group we 
assessed whether OTUs found in the same samples tend to be phylo-
genetically underdispersed or overdispersed in terms of their mean 
phylogenetic distance, when compared to the expectation based on 
random OTU sampling from the regional pool. Underdispersion is 
commonly interpreted as a sign of environmental filtering acting 
similarly on closely related clades35, while overdispersion is inter-
preted as a sign of increased competition between close relatives, 
although other mechanisms may also create non-neutral patterns36. 
We found that six functional groups (aerobic chemo-heterotrophs, 
fermenters, nitrogen respirers, photoautotrophs, sulfate respirers 
and urea degraders) showed a significant tendency towards under-
dispersion (P <  0.05), while one functional group (methylotrophs) 
demonstrated significant overdispersion (Supplementary Table 5). 
The detection of a significantly non-neutral phylogenetic structure 
in seven out of nine functional groups is unlikely to be the result 
of a false positive detection rate (P <  0.000001). This supports the 
interpretation that community assembly is not neutral within these 
functional groups, but is subject to selection mechanisms that are 
sensitive to phylogenetic relationships. The absence of a statistically 
significant phylogenetic pattern in two functional groups could result 
from a weak phylogenetic signal in the processes driving OTU turn-
over rather than from truly neutral assembly, although on its own the 
test at hand cannot discriminate between the two scenarios36.

All of the above null models aim to resemble random or neutral 
community assembly, but they are based on heuristic randomization 
algorithms that lack a clear biological mechanism32,33. To test whether 
our rejection of most of these null models is merely due to the inad-
equacy of the models for describing actual population dynamics, we 
also compared the composition within functional groups to a mech-
anistic dynamical model (the Sloan neutral model)37,38. This model 

was developed specifically for microbial communities and assumes 
that populations are solely driven by stochastic birth–death events 
and random immigration from the regional pool. Upon calibration, 
the model predicts the detection frequencies of OTUs on the basis 
of their mean relative abundances in the regional pool. We found 
that 35–60% of OTUs deviated significantly (P  <   0.05) from the 
expectation, depending on the functional group (Supplementary 
Fig. 5 and Supplementary Table 6). These fractions are much higher 
than the 5% type I error rate expected under the null model. In  
fact, we found that the model’s goodness of fit (in terms of the 
likelihood or the R2) was significantly lower than if our data were 
generated by the model (P  <   0.001 for all functional groups; 
Supplementary Table 6).

Environmental filtering. Non-neutral patterns might be caused by 
environmental filtering, by biotic interactions, or by a combination 
of these, such as trade-offs between environmental stress tolerance 
and competition32,36. To determine whether environmental filter-
ing partly drives taxonomic composition at the community level 
or within functional groups, we examined the predictive ability 
of several physicochemical variables (overview in Supplementary 
Table 7). We considered standard limnological variables such as pH 
and salinity, as well as other potentially important variables such as 
detrital volume and vegetative cover (shading). Using redundancy 
analysis39 we found that, when considered separately, individual 
environmental variables only explain small fractions (~5–15%) 
of the overall variance in OTU proportions, both at the commu-
nity level as well as within functional groups (Fig. 4a,c). When we 
regressed OTU proportions against multiple environmental vari-
ables using multivariate non-linear models, we found that our mod-
els had moderate predictive power, as indicated by cross-validated 
coefficients of determination (RCV

2   ≈   0.1–0.5; Fig.  4b). Predictive 
power at the community level was similar to predictive power 
within functional groups (Fig. 4b,d), consistent with the interpre-
tation that the taxonomic variation at the community level mostly 
stems from a variation within functional groups. Furthermore, the 
moderate predictive power, despite the high number of available 
environmental variables, suggests that environmental conditions in 
bromeliads explain some of the variation within functional groups, 
but that additional factors are also important.

The potential role of dispersal limitation. To test whether micro-
bial communities were spatially structured, we used Mantel rank 
correlation tests to compare geographical distances to the dissimi-
larities of communities in terms of OTU proportions, both at the 
community level as well as within functional groups39. Out of nine 
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Methanogenesis (13)

Figure 3 | Functional redundancy in the regional OTU pool. Associations of functional groups (rows) with OTUs (columns), indicated by blue cells. 
Functional groups are sorted according to their number of OTUs (indicated in brackets). Some OTUs were associated with more than one functional group. 
For analogous plots at the genus, family and class level see Supplementary Figs 13–15, respectively. (Sample size: 22 bromeliads.)
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functional groups, only aerobic chemoheterotrophs exhibited a 
 significant positive rank correlation between geographical distance 
and dissimilarity (P <  0.05; Fig. 5b), although methylotrophs, urea 
degraders and the entire community also showed a weak posi-
tive correlation (Fig.  5a and Supplementary Fig. 6). To assess the 
extent to which these weak correlations were caused by purely spa-
tial effects (for example, dispersal limitation) rather than spatially 
autocorrelated environmental filtering, we performed variation 
partitioning of OTU composition against spatial variables (longi-
tude, latitude and polynomial combinations) and environmental 
variables40. In all functional groups and at the community level, 
the variation explained solely by spatial variables was below 5% (in 
terms of the R2, adjusted for the number of variables) and much 
lower than the variation explained solely by environmental vari-
ables (Fig. 5d). Hence, spatial dispersal limitation probably played a 
negligible part in driving microbial community differences between 
bromeliads. These results are consistent with previous work that 
found negligible effects of spatial distance on bacterial communities 
in bromeliads at similar spatial scales22.

Unexplained variation. Our null model analyses suggest that non-
neutral selection processes at least partly shape the composition 
within functional groups. On the other hand, our 21 environmental 
variables only moderately predicted OTU proportions and pair-
wise dissimilarities of communities, both at the community level 
as well as within functional groups (Figs 4 and 5). The remaining 
variation that cannot be explained by our regression models could 
be due to unknown environmental variables further selecting for 
specific taxa, or due to past environmental conditions affecting 
current community structure. Alternatively, mechanisms other 
than environmental filtering, such as biotic interactions, may also 
have an important role in shaping microbial communities while 

maintaining functional similarity across bromeliads. The potential 
importance of biotic interactions, such as competitive exclusion or 
predation, in  shaping microbial communities has been emphasized 
previously5,6. For example, adaptation of bacteriophages to  specific 
hosts can influence bacterial species composition and promote 
spatial as well as temporal variation of microbial communities41,42. 
Consequently, unexplained taxonomic variation across locations may 
result from biotic interactions driving complex population  dynamics. 
This interpretation is consistent with previous findings that the dis-
tribution of cyanobacterial taxa across coexisting bromeliads was 
driven by physicochemical factors as well as by protozoans and  
invertebrates43. In addition, stochastic colonization combined with 
biotic interactions may promote priority effects that result in  multiple 
alternative equilibria31. This scenario would resemble previous 
 findings in grassland plant communities13, where species divergence 
despite trait convergence could not be attributed to dispersal limita-
tion or neutrality, but instead appeared to be driven by priority effects.

Conclusions
We have shown that replicate natural ecosystems in close proxim-
ity can exhibit very different taxonomic composition of prokary-
otic communities, despite similar metabolic functional structure. 
Several OTUs were not assigned to any functional group due to a 
lack of closely related cultured representatives, and hence the OTU 
richness and variability within functional groups are probably even 
higher in reality. Our findings point to an important difference 
between functional and taxonomic community structure, which 
arises because mechanisms leading to a convergence of metabolic 
function (for example, stoichiometric balancing between meta-
bolic pathways) do not necessarily lead to a convergence of taxo-
nomic composition. Reciprocally, strong taxonomic turnover may 
only weakly affect ecosystem functioning44 (but see Strickland and 
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colleagues45). The decoupling between function and taxonomy 
observed here resembles previous observations in bioreactors17 
and the human gut19. We emphasize that, in contrast to taxonomic 
variation within functional groups, taxonomic variation at the 
community level is generally also a partial reflection of functional 
variation. In this study, as well as in the aforementioned studies17,19, 
functional structure appeared relatively constant, presumably due 
to high physicochemical similarities between replicates. In more 
heterogeneous environments or across strong environmental gra-
dients, the decoupling between function and taxonomy may be 
masked by strong metabolic niche effects. For example, functional 
β  diversity was found to be strongly correlated with taxonomic  
β  diversity across soil types46. The correlation between functional 
and taxonomic composition (at the community level) thus depends 
on the relative importance of metabolic niche effects when com-
pared to processes causing variation within functional groups.

We suggest that functional community profiles, based on gene-
centric metagenomics10, on functional predictions for recovered 
genomes47 or on a functional classification of detected taxa11, should 
be the baseline of future microbial biogeography studies, particu-
larly when the ultimate focus is on ecosystem functioning10,48. The 
residual variation within functional groups can then be analysed 

separately, as demonstrated here, to elucidate additional  community 
assembly processes that act in superposition to metabolic niche 
effects. Our analysis suggests that in bromeliad tanks non-neutral 
processes, such as environmental filtering and as-yet-undetermined 
biotic interactions, are important drivers of the variation within 
individual functional groups, while spatial dispersal limitation and 
neutral drift appear to be less relevant. The careful separation of 
functional variation from the taxonomic variation within func-
tional groups thus enables deeper insight into microbial community 
assembly, and will be an important step towards a truly mechanistic 
microbial ecology.

Methods
Biological sample collection. Detritus from the bottom of bromeliad tanks was 
collected and physicochemical measurements were taken from all bromeliads in 
the period 8–10 January 2015, within an area spanning roughly 0.2 km2 in the 
Parque Nacional da Restinga de Jurubatiba, east coast Brazil. At that time, weather 
conditions were sunny, dry and hot, and were preceded by several weeks of extreme 
drought49. Supernatant liquid was removed from the bromeliad’s central tank using 
a sterile serological pipette. The detritus at the bottom was then retrieved using 
a sterile syringe and a metal spatula, after cutting the bromeliad open for easier 
access. All of the retrieved detrital content was mixed before sampling. Samples 
were flash-frozen in liquid nitrogen within 10 min of collection and then stored 
in the laboratory at − 80 °C until further processing. For shipment, samples were 
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concentrated via centrifugation (40,000g for 15 min, balanced using MilliQ filtered 
water) and removal of the supernatant fluid, and then freeze-dried for 24 h.  
The dried samples were shipped to the University of British Columbia, Canada, for 
further processing.

Chemical analysis of tank water. The water above the benthic detritus was 
collected using a serological pipette, stored in 25 ml centrifuge tubes on regular 
ice in the field and at − 4 °C in the laboratory until further analysis (within 2 days). 
Total dissolved phosphorus concentrations were determined as the inorganic 
phosphorus obtained after a procedure of acid digestion and autoclaving of 
the water samples and the ascorbic acid–molybdate reaction50. Total nitrogen 
concentrations were determined as the concentration of nitrate obtained after 
an acid digestion procedure and autoclavation. Nitrate was transformed into 
nitrite with a cadmium column via a reduction step, and nitrite was subsequently 
quantified using a flow injection analysis system (FIA-Asia Ismatec)51, yielding  
total nitrogen. 

Water samples for CH4 measurement were taken separately (1.5 ml per 
measurement) and directly from the bromeliad, fixed using formalin (4%)  
in 3 ml glass vials, kept on regular ice in the field and at 4 °C in the laboratory  
until analysis within 2 days. Air was sampled from the headspace using a syringe  
after shaking the vials for 1 min, and headspace CH4 content was determined  
using a gas chromatograph. Methane concentrations were determined using 
a Shimadzu GC-2010AF chromatograph equipped with a Rt-QPLOT column 
(3 m ×  0.32 m) and a flame ionization detector (FID-2010). Temperatures of the 
injection, column and detection were 120 °C, 85 °C and 220 °C, respectively. 
Nitrogen (N2) was used as the carrier gas.

Conductivity, pH, temperature and total suspended solids (TSS) were  
measured in the field using an ExStik II EC500 (ExTech Instruments).  
Salinity was calculated from conductivity and temperature using the empirical 
formula reported previously52. Water turbidity was measured in the field using  
a Hanna Turbidimeter HI98703. Absorption spectra were measured in the 
laboratory using a Varian 50 Bio UV-Visible Spectrophotometer, following the 
manufacturer’s procedures. Dissolved organic carbon (DOC) concentrations  
were determined using by Pt-catalysed high-temperature combustion with a 
Shimadzu TOC-VCPN Total Carbon Analyzer, after filtering through 0.7 μ m 
Whatman GF/F glass fibre filters.

For one bromeliad the retrieved supernatant water was insufficient for 
performing all of the chemical assays in the field. That water sample was thus 
diluted at a ratio 1:5 using deionized water before measuring the conductivity,  
pH, TSS and turbidity. The resulting conductivity, salinity, TSS and turbidity  
were then corrected using the dilution factor. The pH was corrected using  
a standard curve constructed by serial dilution of water from another  
bromeliad. For several bromeliads the retrieved supernatant water was  
insufficient for measuring absorption spectra and DOC concentrations,  
as well as for excitation-emission spectrophotometry (EES; explained below). 
These water samples were thus diluted in the laboratory using deionized  
water as needed. All measurements were subsequently corrected for the  
effects of dilution.

EES of the water samples was performed using a Varian Cary Eclipse 
fluorescence spectrophotometer. In EES, each sample is exposed to light  
of several wavelengths while simultaneously measuring the resulting fluorescence 
spectrum53. The obtained excitation–emission matrices (EEMs) were analysed 
for organic carbon profiles using parallel factor analysis (PARAFAC) with the 
MATLAB package drEEM54. EEMs were pre-processed as follows. The EEM of 
pure MilliQ water was subtracted from the sample EEMs. Rayleigh (elastic) and 
Raman (inelastic) scatter signals were removed by replacing them with NaN. 
EEM entries for emission wavelengths smaller than the excitation wavelengths 
were set to zero. EEM entries at the excitation wavelengths 320 nm and 365 nm 
were ignored because of abnormal intensity troughs at all emission wavelengths, 
probably resulting from imperfections of the fluorometer lamp. EEMs were 
corrected for inner filter effects using the sample absorption spectra and the 
drEEM function fdomcorrect54.

PARAFAC model fitting was attempted for various model sizes (3–9). To avoid 
local PARAFAC optima, fitting for each model size was repeated 50 times with 
random initialization using the drEEM function randinitanal. Model residuals 
were inspected manually to ensure that the model size was sufficient55,56. Split-half 
validation (S4C4T2; splits: 4, combinations: 4, tests: 2)54 failed for all considered 
model sizes, but was ignored because of low sample size when compared with the 
high richness of observed EEM profiles. Instead, to constrain the model’s size and 
avoid overfitting, model components were inspected for physical plausibility54 
and subsequently compared to published entries in the OpenFluor fluorophore 
database based on Tucker’s congruence coefficient57. We kept the model  
(size 4; Supplementary Fig. 7) with the highest number of plausible components 
represented in OpenFluor at a congruence of at least 0.98. The best matches  
in the OpenFluor database were ‘CS-Galathea, C1’ for component 1 (ref. 58), 
‘Recycle_WRAMS, C5’ for component 2 (ref. 59), ‘PrairieLakes, C2’ for  
component 3 (ref. 60) and ‘FloridaKeys, C3’ for component 4 (ref. 61). The model 
explained 98.2% of the variance, at a core consistency of 82.9% (Supplementary  
Fig. 8). For each sample and for each individual PARAFAC component we 

determined the maximum fluorescence intensity in the component’s EEM, and 
multiplied it by the component’s score in the particular sample. This yielded 
four PARAFAC component intensities per sample, each in arbitrary units that 
are comparable across samples but not across PARAFAC components. These 
component intensities were subsequently used in our analysis as four additional 
environmental variables (PARAFAC 1–4).

Measurement of other physicochemical variables. Light intensity (the flux  
of photosynthetically active radiation) on bromeliads was measured using  
an LI-250A Lightmeter (LI-COR Biosciences), equipped with a US-SQS/L 
spherical micro quantum sensor (Heinz Walz GmbH). The light meter was placed 
on the ground next to the bromeliad at noon of a sunny day (10 January 2015),  
after trimming the bromeliad’s foliage to avoid shading of the device by the 
bromeliad itself. The detrital volume was measured using the centrifuge tube  
scale after allowing for precipitation for 5 min, performing the read at the  
interface between the precipitated detritus and the supernatant transparent  
fluid. The total tank volume was set to the total volume of all retrieved material 
(detritus and water). The total tank depth was either measured using a metal  
wire with engraved centimetre scale, or using the serological pipette’s volume  
scale upon calibration. Tree cover (shading) above bromeliads was measured  
by taking a photo from the top of a bromeliad ‘face-up’ on a sunny day, and 
processing the photo using ImageJ for contrasting objects against a blue sky 
background. An overview of all physicochemical environmental variables is 
provided in Supplementary Table 7.

16S sequencing. DNA was extracted from the rehydrated samples using  
the MoBio PowerSoil DNA extraction kit, by applying the manufacturer’s  
suggested protocol. Amplification of the 16S rRNA gene was done using  
barcoded primers covering the V4 region (Escherichia coli 515F and 806R) 
that included Illumina adapters, and using the Earth Microbiome Project 16S 
amplification protocol version 4_13 (ref. 62). Amplicon DNA from all samples  
was pooled into a single library, at such proportions that each sample contributed  
a similar amount of DNA. Primer dimers and remaining PCR enzymes  
were removed from the amplicon library using the MoBio UltraClean PCR  
Clean-Up Kit. Library quantitation was performed by Genoseq Core (University  
of California, Los Angeles) using a high-sensitivity Agilent Bioanalyzer and  
Kappa Biosystems’ Illumina Genome Analyze (KAPA SYBR FAST Roche 
LightCycler 480) kit, followed by qPCR. Sequencing was performed by Genoseq 
Core using an Illumina MiSeq next-generation sequencer, following the 
manufacturer’s standard protocol.

Sequencing yielded 2,599,770 paired-end sequences (2 ×  300 base pairs each). 
Sequence analysis was performed using the QIIME toolbox (version 1.9.1)63. 
Paired-end reads were merged after trimming forward reads at length 240 and 
reverse reads at length 160. Merged sequences were quality filtered using QIIME’s 
default settings, yielding 2,393,473 sequences of median length 253. Remaining 
sequences were error-filtered and clustered de novo using cd-hit-otu64 at a 99% 
16S rDNA similarity threshold, generating 2,027 OTUs representing 1,908,183 
sequences across all samples. Sample B17 yielded by far the fewest sequences  
(5,811 sequences corresponding to 677 OTUs). Diagnostic OTU rarefaction  
curves are shown in Supplementary Fig. 9.

We note that historically a lower resolution (at 97% 16S rDNA similarity) was 
recommended for delineating prokaryotic OTUs in biogeographical studies65. 
However, recent work shows that greater taxonomic resolution is needed to 
detect signals of endemism (for example, up to 99.5% for the cyanobacterium 
Prochlorococcus66) and signals of competitive exclusion (99–100%)67, and that  
taxa defined on the basis of 97% similarity may be underspeciated68,69.

Taxonomic assignment of representative sequences was done using  
uclust70 and the SILVA reference database (release 119)71, using the first 50 hits  
at a similarity threshold of at least 90% as follows: For any queried sequence,  
if at least one hit had a similarity s ≥  99%, then all hits with similarity s were  
used to form a consensus taxonomy. Otherwise, if at least one hit had a  
similarity s ≥  90%, then all hits with similarity at least (s −  1%) were used  
to form a consensus taxonomy. If a query did not match any reference  
sequence at or above 90% similarity, it was considered unassigned. A total  
of 1,965 OTUs (representing 1,874,361 sequences across all samples) were 
taxonomically annotated.

Representative sequences were aligned against the SILVA database  
using PyNAST71,72, and phylogenetic relationships were calculated using the 
FastTree algorithm73, at standard QIIME settings. Phylogenetic distances are in 
nucleotide substitutions per site. For analyses based on OTU proportions  
(for example, redundancy analysis and mean phylogenetic distances, described 
below) we normalized our OTU table by dividing each entry by the total  
number of sequences in a sample (this is the maximum-likelihood estimator of 
true OTU proportions in a sample). For analyses that depend on presence–absence 
data and that assume equal sampling effort, we rarefied our samples at equal 
sequencing depth (as described below for each case).

Functional annotation of prokaryotic taxa. To determine the taxonomic 
composition within each of the nine considered functional groups (aerobic 
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chemoheterotrophy, cellulolysis, fermentation, methanogenesis, methylotrophy, 
nitrogen respiration, sulfate respiration, photoautotrophy, ureolysis), we associated 
each taxonomically annotated OTU with one or more metabolic functions  
based on extensive literature search, whenever possible. Specifically, a taxon  
(for example, species or genus) was assigned to a function if all cultured species 
within the taxon are known to exhibit that function. For example, OTUs annotated 
at the genus (but not species) level, were only associated with functions present  
in all cultured species of that genus. Clades with no cultured representatives  
(for example, Miscellaneous Crenarcheaota Group74) were not functionally 
annotated, regardless of potential metagenomic or single-cell genomic analyses. 
For species with multiple known strains, we focused on type strains that are  
often (but not always) representative of the species in terms of metabolic function. 
We point out that this inference of metabolic phenotype is entirely based on 
cultured representatives, and as more organisms are being cultured some of  
the functional annotations may turn out to be false. This caveat is similar to 
limitations of other existing functional profiling techniques. For example,  
gene-centric metagenomics predicts functional genes based on their sequence 
similarity to genes studied in cultured organisms20. Furthermore, taxonomic 
binning of shotgun environmental sequences remains notoriously hard and coarse. 
In contrast, here we first identified known taxa using marker gene sequencing and 
then estimated their metabolic phenotype based on the experimental literature. 
This revealed a remarkably high taxonomic richness as well as variability within 
individual functional groups, although both richness and variability are probably 
still underestimated due to the limited coverage of cultured organisms. Our 
complete database for the functional annotation of prokaryotic taxa (FAPROTAX) 
is available online at http://www.zoology.ubc.ca/louca/FAPROTAX. A detailed 
evaluation of FAPROTAX, including a direct comparison with metagenomics,  
has been provided previously11.

In this study, each taxonomically annotated OTU was compared against 
each FAPROTAX annotation rule in an automated way. In total 465 out of 1,965 
OTUs (24%) were assigned to at least one functional group, yielding in total 518 
functional annotations (see Supplementary Table 8 for an overview). A substantial 
fraction of OTUs could not be assigned to any functional group, thus OTU 
proportions inside a functional group only apply to the subset of functionally 
characterized OTUs (although this limitation does not affect the conclusions  
of this study). Conversely, a small number of OTUs were assigned to multiple 
functional groups (Supplementary Fig. 10). The complete list of functional 
annotations is available as Supplementary Data 1.

We note that FAPROTAX functional groups are not completely one-to-one 
comparable with metagenomic gene groups, due to ambiguities in the functions 
potentially performed by some genes20. To strengthen our confidence in  
the stability of the nine considered functional groups, we provide detailed 
gene-centric functional profiles for multiple related functions (Fig. 2a,b and 
Supplementary Fig. 12).

Metagenomic sequencing. To assess the functional stability of microbial 
communities across samples, we performed shotgun environmental DNA 
sequencing (metagenomics), which allows the detection of known genes  
in an environment regardless of their host organisms. Extracted DNA was 
sequenced in 100-bp paired-end fragments on an Illumina HiSeq 2000.  
Library preparation and sequencing was done by the Biodiversity Research  
Centre NextGen Sequencing Facility and followed standard Illumina protocols.  
All samples were uniquely barcoded and run together on a single lane.  
The resulting sequence data were processed using Illumina’s CASAVA-1.8.2. 
Specifically, output files were converted to fastq format, and sequences 
were separated by barcode (allowing one mismatched base pair), using the 
configureBclToFastq.pl script. This yielded a total of 80,206,935 quality-filtered 
paired-end reads. Reads were trimmed at the beginning and end to increase 
average read quality, yielding an average forward and reverse read length  
of 97 and 98 bp, respectively. Sufficiently overlapping paired-end reads were 
merged using PEAR 0.9.8 with default options75, yielding 9,757,035 merged reads. 
Non-merged read pairs were deduplicated using the SOFA pipeline (version 
1.2)76 and the KEGG protein reference database (release 2011.06.18)28, in order to 
reduce potential double-counts during subsequent gene annotation. MetaPathways 
2.5 (ref. 77) was used for open reading frame (ORF) prediction in all merged 
and non-merged reads (minimum peptide length 30, algorithm prodigal), 
yielding 111,568,314 ORFs. Predicted ORFs were taxonomically annotated 
in MetaPathways using LAST and the NCBI RefSeq protein database (release 
2015.12.12)78, and multiple taxonomic annotations were consolidated using a 
lowest common ancestor algorithm77. Non-prokaryotic ORFs were excluded from 
subsequent analysis. LAST annotation of prokaryotic ORFs against the KEGG 
protein reference database was performed using MetaPathways (KEGG release  
18 June 2011, minimum BLAST-score ratio 0.4, maximum E-value 10−6, minimum 
score 20, minimum peptide length 30, top hit), yielding 30,730,175 annotations. 
Metagenomic KEGG orthologous group (KOG) counts28 were normalized using 
the total number of KEGG-annotated sequences per sample (total sum scaling). 
Whenever possible, multiple KOGs associated with similar metabolic functions 
(for example, dissimilatory nitrite reduction to ammonium, nirBD and nrfAH) 
were combined into a single gene group. An overview of KOGs associated with 

each function is provided in Supplementary Table 9. The resulting metagenomic 
profiles are given in Fig. 2a,b and Supplementary Fig. 12.

Comparing OTU turnover to null models. To assess the degree of OTU turnover 
between bromeliads, for every functional group and for any two bromeliads we 
measured the OTU overlap in terms of the Jaccard overlap index, defined as 
the number of OTUs detected in both samples, divided by the number of OTUs 
detected in any of the two samples79. Hence, a Jaccard overlap of 1 corresponds 
to complete overlap (regardless of OTU proportions), while a Jaccard overlap of 
0 corresponds to no overlap at all. Mean Jaccard overlaps (MJO; that is, averaged 
over all bromeliad pairs) were within the range ~0.2–0.6 for all functional groups 
(Supplementary Table 1). These low MJOs indicate substantial differences in 
community structure across bromeliads. In principle, however, such low MJOs may 
also be observed between identical communities purely from stochasticity  
in OTU detection, that is, due to insufficient sequencing depth80. We thus 
compared each MJO with hypothetical MJOs generated under a null model 
of random sampling from the regional OTU pool. Specifically, for any given 
functional group, sequences were randomly reassigned to OTUs from a 
multinomial distribution corresponding to OTU proportions in the regional  
OTU pool, while maintaining the original total number of sequences per 
bromeliad and per functional group. The statistical significance (P value)  
of an observed MJO was defined as the probability that a random MJO would 
be lower than the observed MJO, and was estimated based on 1,000 iterations. 
All functional groups had a significantly low MJO (P <  0.001), showing that low 
overlaps are not just the result of detection stochasticity. The same analysis as the 
above was also applied to the entire community, again yielding a significantly low 
MJO (P <  0.001). We note that the Jaccard overlap of gene groups was 1 for all 
sample pairs, since all considered gene groups were detected in all samples.

OTUs may colonize bromeliads randomly and independently of one  
another, but colonization events may be so rare that population growth within 
bromeliads leads to amplified (that is, population-level) differences between 
samples. In that case, the individual-based null model described above, which 
re-assigns individual sequences to OTUs, may inflate the statistical significance 
of low overlaps between bromeliads. To test this scenario separately for each 
functional group, we also compared MJOs to a population-based null model 
in which OTUs are randomly reassigned to samples. Specifically, for each 
sample, OTUs were picked at probabilities corresponding to their mean relative 
abundances in the regional pool, while the number of OTUs assigned to each 
sample remained unchanged. This approach has been previously suggested81  
as a means for comparing community overlaps to the expectation based on  
random colonization, while accounting for α  diversities in the local communities 
and γ  diversity in the regional pool. The only difference to the model used 
previously81 is that here we assign OTUs to samples based on their mean relative 
abundances in the regional pool, rather than their detection frequencies, to 
account for low community evenness and to account for the fact that rare OTUs are 
less likely to colonize a site than highly abundant ones. Because the null model is 
sensitive to variation in sampling effort81, we rarefied all samples at the maximum 
possible equal sequencing depth without replacement, after omitting samples that 
had fewer than 100 sequences in the considered functional group. The statistical 
significance of an observed MJO was determined as described earlier, based on 
1,000 iterations. All MJOs were again found to be significantly lower than expected 
by the null model (P <  0.05), although for some functional groups significances 
were weaker than when using the individual-based null model (Supplementary 
Table 1). The corresponding mean Raup–Crick dissimilarities, which quantify the 
deviation of sample overlaps from the null model81, are provided in Supplementary 
Table 1. The same analysis was also applied to the entire community, again 
revealing a significantly low MJO (P <  0.001).

Comparing functional and taxonomic variability. To compare the degree of 
functional variability versus taxonomic variability within functional groups,  
we examined the coefficients of variation (CVs; that is, the standard deviation 
divided by the mean) of relative gene group abundances on the one hand, and  
the CVs of OTU proportions within individual functional groups, on the other 
hand. Because each particular functional group contained multiple OTUs, we 
averaged the CV over all OTUs within the functional group. We note that the 
considered gene groups (Fig. 2a) only cover a small fraction of the total detected 
gene pool (~5% of annotated metagenomic sequences). Hence, to minimize the 
dependence of the CV of any particular gene group on the choice and coverage  
of other considered gene groups, we considered gene group abundances relative  
to the total number of annotated metagenomic sequences in each sample.  
An overview of CVs is provided in Supplementary Table 2. Observe that OTU  
CVs are generally an order of magnitude higher than gene group CVs, consistent 
with our conclusions based on overlap indices. We also calculated the CVs of 
relative OTU abundances at the community level and found a similarly high mean 
CV as within the functional groups (Supplementary Table 2).

Comparing OTU co-occurrences to a null model. To examine whether  
OTU co-occurrences across samples follow non-random patterns (for example, 
resulting from competitive exclusion), we considered a statistical quantity known 
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as the checkerboard score (C score) of the OTU presence-absence matrix32.  
The C score is defined as
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where M is the total number of considered OTUs, Ni is the number of samples 
containing OTU i and Nij is the number of samples containing both OTUs i and j. 
Hence, for fixed Ni, the C score becomes larger if species co-occur less frequently 
(that is, Nij values are smaller). To assess whether an observed C score was likely to 
be due to chance (that is, if OTUs occur independently of each other), we compared 
it to the C score distribution of random presence–absence matrices generated 
under a null model, described in detail below. If random C scores generated  
by the null model are mostly below the observed C score, this would mean  
that OTUs tend to exclude each other more often than expected by chance  
(that is, OTUs are segregated). We calculated the C score and its deviation from  
the null model separately for each functional group.

We used the fixed–fixed null model to generate randomized versions  
of the original presence–absence matrix32. Specifically, the null model shuffles the 
cells of the matrix, while preserving the total number of samples containing each 
OTU as well as the number of OTUs present in each sample and in each functional 
group. The fixed–fixed null model was previously found particularly suitable for 
detecting non-random co-occurrence patterns across ‘island lists’, where islands 
can have different sizes and thus species–area relationships may lead to strong 
differences in the number of species detected in each island82. This null model is 
thus suitable for detecting non-random co-occurrence patterns across samples  
that may differ in terms of OTU richness or sequencing depth, while maintaining 
a low false positive error rate82. Randomized presence–absence matrices 
corresponding to the null model were generated using the ‘curveball’ algorithm83. 
We used 1,000 random matrices to asses the statistical significance of C scores.  
We also applied the same analysis to the entire community. An overview of  
results is given in Supplementary Table 3.

Comparing OTU co-abundances to a null model. Previous work suggests  
that abundance-based null models of species covariation may be more powerful 
than presence–absence-based null models for detecting OTU segregation  
or aggregation33,84. Hence, to test the robustness of our conclusions from the  
co-occurrence analysis described above, we also performed null model analysis 
using OTU abundances. Specifically, for each functional group we considered a 
statistical measure of meta-community overlap known as the generalized  
Morisita similarity index85, henceforth referred to as the MA score33. The MA  
score is defined as follows:
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where S is the number of samples and pij is the proportion of OTU i within the 
considered functional group in sample j. Hence, lower values of the MA score 
indicate a lower similarity between samples in terms of OTU proportions and 
thus a potential segregation between OTUs. We compared the MA score to the 
MA score distribution of random abundance matrices generated under the 
so-called IT null model, as suggested previously33. This null model randomly 
assigns sequences to matrix cells proportional to the total number of sequences 
in each sample (within the functional group considered) and proportional to the 
total number of sequences assigned to each OTU across samples, until the total 
number of sequences per sample and per OTU is reached. The null model thus 
accounts for potential differences in sequencing depth between samples, and 
exhibits good power for detecting segregation or aggregation while maintaining  
a low type I error rate33. We used 1,000 random abundance matrices to asses  
the statistical significance of MA scores. When compared to the null model,  
all functional groups showed a significantly low MA score, suggesting  
segregation between OTUs (P <  0.001; Supplementary Table 4). When we  
applied the same analysis to the entire community, we again detected a highly 
significant segregation.

Note that the standardized effect sizes and statistical significances  
found here are greater than typically found for larger organisms, such as  
plants and animals33, because the high number of sequences (when compared  
with typical plant or animal counts) leads to a smaller variance of the random  
MA scores under the null model. This ‘law of large numbers effect’ is absent  
in the presence–absence-based analysis described in the previous section,  
which may explain why patterns detected therein were less significant.

Phylogenetic dispersion. To assess whether community assembly within  
functional groups was neutral with respect to phylogenetic relationships, we 

examined the phylogenetic distances between functionally similar OTUs co-
occurring in the same samples. The phylogenetic distance (PD) between any 
two OTUs was calculated as the sum of branch lengths needed to traverse the 
phylogenetic tree from one OTU to the other. For each functional group,  
we calculated the mean phylogenetic distance (MPD) between co-occurring  
OTUs as follows:
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where dik is the phylogenetic distance between OTUs i and k. Note that this 
definition of MPD is almost equivalent to the ‘phylogenetic diversity’ of a 
single community introduced previously86, with the difference that previously 
dik was defined as the divergence time between two OTUs (which is half of 
their phylogenetic distance in most cases) and here the average is taken at the 
metacommunity level (that is, across multiple samples). Samples with fewer than 
two OTUs within the considered functional group were omitted.

For each functional group, the MPD was compared with the expected  
MPD (MPD) under the null model of random phylogenetic relationships between 
OTUs within each sample. The distribution of MPDs under the null model was 
estimated by randomly and repeatedly permuting OTUs in the phylogenetic tree 
1,000 times, while keeping their proportions in each sample fixed. OTUs were 
permuted independently for each sample, and permutations were restricted to 
OTUs within the same functional group. The standardized effect size (SES) of the 
MPD—which quantifies the deviation of the observed MPD from the expectation 
of the null model, was calculated as:

σ= −SES MPD MPD (4)
MPD

where σMPD is the standard deviation of random MPDs generated under the null 
model. Hence, a strongly positive or strongly negative SES corresponds to strong 
phylogenetic overdispersion or underdispersion, respectively. The statistical 
significance of the SES was defined as the probability that the null model would 
yield an SES at least as large (in magnitude) as observed. The same analysis was 
also performed at the community level. The SESs and statistical significances are 
summarized in Supplementary Table 5.

Comparing OTU detection frequencies to a mechanistic neutral model.  
The above null models generate presence–absence matrices or abundance  
matrices that may be interpreted as random or neutral, however, they remain  
ad hoc heuristic randomization algorithms that lack a biological mechanism. 
Hence, the deviations from these null models observed here could in principle 
be due to their non-realistic representation of actually occurring neutral 
processes. A widely used mechanistic (that is, process-based) model for neutral 
microbial community assembly is the Sloan neutral model37. This model assumes 
that all OTUs are equivalent, and that the abundances of individual OTUs in 
each community are solely driven by stochastic birth–death events (leading to 
demographic drift) and random immigration from a regional pool (the source)37,38. 
Given the mean relative abundances of OTUs in the source and a fixed sequencing 
depth for each community, the Sloan model predicts (in a probabilistic sense) the 
frequency at which each OTU would be detected in a set of local communities. 
The Sloan model includes a single free immigration parameter for the entire 
metacommunity, which accounts for the importance of immigration compared to 
local demographic processes. This model is similar to the Hubbell neutral model87, 
but was developed specifically for microbial communities (which typically exhibit 
high cell densities) and for relative abundance data from molecular techniques. 
Note that speciation is not included in the Sloan neutral model. Speciation 
probably contributes negligibly to the observed community variation (that is,  
at 99% OTU similarity) at the spatial (~100 m) and temporal (~1 year) scales 
relevant to this study88,89.

To compare the OTU composition within functional groups to the Sloan 
neutral model we proceeded as follows, separately for each functional group. 
We first estimated the mean abundances of OTUs in the source based on their 
proportions in all samples, as suggested previously37. We then rarefied each  
sample at a constant depth without replacement. The rarefaction depth was 
chosen to be the maximum possible, after omitting samples containing fewer 
than 100 sequences within the functional group. The detection frequency for each 
OTU was set to the number of rarefied samples containing the OTU. We fitted 
the immigration parameter by maximizing the likelihood of the observed OTU 
detection frequencies (approximated as the product of likelihoods of the binomial 
distributions for all OTUs). This calibration method is known as maximum 
likelihood (ML) estimation and is widely established in statistical regression  
and physics90. A comparison of the fitted models and data is provided in 
Supplementary Fig. 5. The same approach as the above was also used for the  
entire community (Supplementary Fig. 11).

http://dx.doi.org/10.1038/s41559-016-0015
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As mentioned before, the Sloan neutral model makes predictions about the 
probabilities at which each OTU would be detected at various frequencies in 
the metacommunity (this probability distribution is a binomial distribution38). 
The deviation of an observed OTU detection frequency from the corresponding 
expectation of the model is usually assessed in terms of the probability that such 
a strong deviation could occur if the fitted model was true91,92. Here we found that 
about 35–60% of OTUs deviated significantly (P <  0.05) from the expectation of 
the fitted model, depending on the functional group considered (Supplementary 
Table 6). At the entire community level, 56% of OTUs deviated significantly from 
the neutral model. These fractions are much higher than the 5% type I error rate 
than would be expected under the null model, indicating that the distribution  
of a substantial fraction of OTUs may be driven by non-neutral processes, both at 
the community levels as well as within functional groups. Note that no statement 
can be made about the mechanisms influencing the remaining OTUs, apart from 
the fact that their detection frequencies are within the 95% confidence interval  
of the fitted model.

Note that in some cases the fitted models roughly reproduce the observed 
OTU detection frequencies as a function of their mean relative abundances 
(Supplementary Figs 5 and 11). This does not, however, constitute evidence that 
assembly within functional groups is driven by neutral processes because a positive 
relationship between mean OTU abundances and OTU detection frequencies,  
a central prediction of the neutral model, is not unusual for meta-communities 
even if non-neutral mechanisms dominate community assembly93. Without 
knowledge of these specific mechanisms, we can reject the null hypothesis of 
neutrality if the data deviate significantly from the model predictions, but not  
vice versa. To assess the overall consistency of our data with the fitted model,  
we compared it to hypothetical data simulated according to the model itself, 
as follows. For each sample j and for each functional group, we chose OTU 
proportions randomly according to a Dirichlet distribution:

.. ∼ ..x x mN p mN p, , Dir( , , ) (5)j Mj T T M1 1

where mNT is the fitted immigration parameter, M is the total number of OTUs 
assigned to the functional group, pi is the mean relative abundance of the ith  
OTU across samples and x1j is its simulated relative abundance in the jth sample38. 
Given these simulated proportions, we then randomly assigned R sequences to 
any of the M OTUs according to a multinomial distribution with probabilities 
x1j,.., xMj, where R is the rarefaction depth described above. This yielded a random 
abundance matrix that is comparable in structure to the observed (rarefied) 
abundance matrix but whose entries are randomly distributed according to the 
fitted Sloan model. Using this random abundance matrix, we calculated the 
corresponding mean relative OTU abundances and detection frequencies, and 
compared these to the fitted neutral model in terms of their likelihood as well as 
their coefficient of determination (R2). Note that, for a fixed number of OTUs and 
samples, a higher likelihood and a higher R2 indicate a better agreement with the 
model. Here we found that the likelihoods and the R2 of the simulated data were 
much higher than the likelihood and the R2 of the actual data that were used to  
fit the model, regardless of the functional group considered (P < 0.001 based  
on 1,000 simulations; Supplementary Table 6). This further indicates that the  
Sloan neutral model is a poor description for the composition within functional 
groups. The same test was also applied at the community level and yielded  
similar results (Supplementary Table 6).

Comparing OTU proportions to environmental variables. To assess whether 
and how the taxonomic variation within functional groups can be attributed 
to environmental conditions, we constructed multivariate regression models 
for each OTU in each functional group, using 21 environmental variables as 
potential predictors (an overview of the environmental variables is presented 
in Supplementary Table 7). We used generalized linear models with a logit link 
function and a binomial distribution94 to account for the fact that OTU  
proportions are estimated via discrete counts at finite sequencing depth and 
the fact that OTU proportions only take values between 0 and 1. Specifically, 
the number of sequences assigned to a particular OTU was modeled as a 
binomial distribution, whose number of trials was equal to the total number of 
sequences assigned to the considered functional group in each sample, and whose 
probability of success was the logistic function of a multivariate linear function of 
environmental predictors. The linear model coefficients, for any particular set  
of predictors, were chosen via ML estimation90, as implemented by the  
Statsmodels package95.

For each OTU we independently chose the appropriate subset of  
environmental variables based on the achievable cross-validated coefficient of 
determination (RCV

2 ), which represents the coefficient of determination when 
only a random training subset (90%) of the samples are used for fitting and the 
remaining test subset (10%) is used to evaluate the fitted model96. The RCV

2  is 
typically used to assess the risk of data overfitting and inaccurate extrapolation96, 
and provides a more conservative estimate of a model’s predictive power than  
the classical coefficient of determination (R2). For each potential subset of 
predictors, we estimated the RCV

2  using tenfold Monte Carlo cross-validation 
with 100 random iterations96. The appropriate subset of predictors was chosen 

in a forward stepwise manner, that is, by successively adding the predictor that 
maximized the RCV

2  in the enlarged model97. At each step, if the enlarged model 
exhibited a lower RCV

2  than before, the process was aborted and the previous subset 
of predictors was used. This process ensured that for each OTU only the most 
important environmental predictors were used for regression, thereby avoiding 
overfitting. A model’s RCV

2  was taken as a measure for how well environmental 
conditions predicted the proportion of a specific OTU within a specific functional 
group. Consequently, the distribution of RCV

2  across all OTUs in a functional  
group provides an overview for how well environmental conditions predict  
the group’s overall composition (Fig. 4b).

The above regression analysis enabled assessment of the overall predictive 
power of the environmental variables. The relative importance of specific 
environmental variables, however, remains unclear because each OTU was 
regressed on a different subset of variables that was chosen to have the best 
predictive power for the particular OTU. To get a general understanding of which 
environmental variables may be particularly relevant to the overall composition 
within functional groups, we used redundancy analysis (RDA)39. RDA was 
performed separately for each functional group and for each environmental 
variable, by regressing all OTU proportions within the functional group 
simultaneously against the environmental variable (all-against-one), and  
then calculating the fraction of variance explained by the constrained axis.  
This fraction provides a measure for how well a specific environmental  
variable explained the overall taxonomic variation within a specific functional 
group (Fig. 4a). RDA was performed using the scikit-bio package (v. 0.4.0). We 
note that in principle one could perform RDA using all environmental variables 
at the same time, to assess their overall explanatory power and their individual 
importance based on, for example, their regression coefficients. In our case, 
however, such an all-against-all approach would be inappropriate because the 
number of samples (22) would be close to the number of explanatory variables 
(21), and hence multiple ordinary linear regression (which underlies RDA)  
would grossly overfit our data. Our assessment of the overall predictability 
of community composition was thus performed separately using the more 
sophisticated regression described above.

Comparing dissimilarities to geographical and environmental distances. 
Pairwise dissimilarities between taxonomic community profiles reported here  
were calculated using the Bray–Curtis metric39, based on OTU proportions  
within individual functional groups. Other dissimilarity metrics (Canberra and 
Hellinger) yielded similar conclusions, so they are not further discussed here. 
Before calculating dissimilarities, we rarefied all samples at the maximum possible 
equal sequencing depth within the considered functional group. Samples with 
fewer than 100 sequences within the functional group were omitted. The same 
approach was used to calculate dissimilarities at the community level.

To examine whether Bray–Curtis dissimilarities between communities 
were correlated to geographical distances between bromeliads, we used Mantel 
correlation tests to calculate correlations and their statistical significances39. 
Specifically, within each functional group, we calculated Spearman rank 
correlations between all pairwise dissimilarities and geographical distances. 
The statistical significance of correlations was estimated using 1,000 random 
permutations of the rows and columns in the geographical distance matrix  
(rows and columns permuted similarly). Out of the nine functional groups, only 
aerobic chemoheterotrophs displayed a significant correlation with geographical 
distance (P =  0.016; Supplementary Fig. 6). When we considered the entire 
community, no significant correlation was found (Fig. 5a).

Variation partitioning of OTU composition. To assess what fractions of the 
variation in OTU composition within functional groups are explained by purely 
environmental conditions or by purely spatial structure (for example, due to 
spatial dispersal limitation), we used variation partitioning40,98. Specifically, for 
each functional group we performed multiple linear RDA of the OTU proportions 
using either solely spatial variables (longitude, latitude or polynomial combinations 
up to third order) or solely environmental variables (Supplementary Table 7), 
or using both spatial and environmental variables together. In each case we 
quantified the fraction of explained variation based on the adjusted coefficient of 
determination (Radj

2 , adjusted to account for the number of predictor variables) 
according to Wherry’s formula99. Variations explained solely by spatial or solely 
by environmental variables, that is, while controlling for environmental or spatial 
variables respectively, were calculated via basic arithmetic operations of the Radj

2  as 
described previously40. To reduce the risk of overfitting, only a subset of available 
spatial and environmental variables was used as predictors in each RDA model. 
Concretely, predictors were chosen separately for each functional group, using 
a step-wise selection algorithm that optimized the cross-validated coefficient of 
determination at each step, as described above for the generalized linear models. 
An overview of selected predictors is provided in Supplementary Table 10.  
An overview of explained variances is provided in Fig. 5. The same analysis was 
also performed at the community level.

Data availability. Molecular sequence data reported in this paper have been 
deposited in the NCBI Sequence Read Archive (SRX1757104 to SRX1757125 

http://dx.doi.org/10.1038/s41559-016-0015
http://www.ncbi.nlm.nih.gov/sra?term=SRX1757104
http://www.ncbi.nlm.nih.gov/sra?term=SRX1757125
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and SRX1757435 to SRX1757456), as part of BioProject PRJNA321235 (NCBI 
Bio-Project database http://www.ncbi.nlm.nih.gov/bioproject; SRA accession 
SRP074855). Environmental metadata are included with the corresponding 
BioSamples (SRS1433623 to SRS1433644; http://www.ncbi.nlm.nih.gov/biosample). 
Functional annotations of prokaryotic taxa are available as Supplementary Data.
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