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Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification

schemes that lumped all amoebae together inside the ‘lower’ protozoa, separated from the ‘higher’

plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae,

to be dismissed as primitive, and implied that the biological rules and theories developed for macro-

organisms need not apply to microbes. Eukaryotic diversity is made up of 70þ lineages, most of which

are microbial. Plants, animals and fungi are nested among these microbial lineages. Thus, theories on

the prevalence and maintenance of sex developed for macro-organisms should in fact apply to microbial

eukaryotes, though the theories may need to be refined and generalized (e.g. to account for the variation

in sexual strategies and prevalence of facultative sex in natural populations of many microbial eukaryotes).

We use a revised phylogenetic framework to assess evidence for sex in several amoeboid lineages that are

traditionally considered asexual, and we interpret this evidence in light of theories on the evolution of sex

developed for macro-organisms. We emphasize that the limited data available for many lineages coupled

with natural variation in microbial life cycles overestimate the extent of asexuality. Mapping sexuality onto

the eukaryotic tree of life demonstrates that the majority of amoeboid lineages are, contrary to popular

belief, anciently sexual, and that most asexual groups have probably arisen recently and independently.

Additionally, several unusual genomic traits are prevalent in amoeboid lineages, including cyclic

polyploidy, which may serve as alternative mechanisms to minimize the deleterious effects of asexuality.

Keywords: Amoebozoa; Rhizaria; asexual; evolution of sex; meiosis; karyogamy
Let us consider for a moment, a single Ameba . . . not as a

cause of disease, but as a unit mass of protoplasm which . . .

performs all of the fundamental vital activities common to

living things . . . there is no reason to doubt that [the chemical

composition of these unit masses] agrees with that of other

living substances, since the accompanying properties of

protoplasm—metabolism, growth and reproduction—are

obviously performed in the same way.

(p. 259 in [1])
1. INTRODUCTION
Microbial eukaryotes were historically classified as primitive

plants and animals [2] or separated into their own kingdom

[3–5]. This latter view received wide support with

Whittaker’s five-kingdom classification system [4] and

continues to be popular in many circles. One consequence

of lumping microbial eukaryotes into an artificial taxonomic

unit (variously called Protista, Protoctista or Protozoa) is the
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implicit view that microbes are fundamentally different enti-

ties than plants, animals and fungi. As a result, microbial

eukaryotes have been either dismissed as primitive or

ignored in much of the theoretical work on eukaryotes,

such as speciation theory [6] and theories on the evolution

of sex [7], with the notable exception of Bell [8]. However,

given the current classification of eukaryotes, this dismissal

is no longer acceptable. In recent analyses, the eukaryotic

tree of life is divided into a number of high-level lineages

in which macro-organisms nest within predominantly

microbial clades (figure 1), demonstrating that the evolution

of multicellularity has arisen multiple times [9–14]. Hence,

there is no evidence to suggest that unicellularity should be

equated with ‘primitive’.

The realization that there is no fundamental distinc-

tion between macrobial and microbial eukaryotes calls

for reassessment of the applicability of theories on the

evolution of sex in macro-organisms to be extended to

their microbial relatives. Differences between macro-

organisms and microbial eukaryotes must be understood,

as suggested by Calkins [1], in terms of cell character-

istics, habit and life cycle rather than an artificial and

outdated taxonomic split. Current evidence suggests

that sex has a single evolutionary origin and was present
This journal is q 2011 The Royal Society
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Figure 1. Distribution of amoeboid lineages in the eukaryotic tree of life. This phylogenetic hypothesis of eukaryotic evolution
is adapted from Parfrey et al. [13], and depicts the well-supported higher-level groupings of eukaryotes. The lineages that have

members with amoeboid morphology are in bold. Images depict exemplary amoeboid organisms and were retrieved from
Micro*scope (http://starcentral.mbl.edu/microscope/portal.php). Paraphyletic lineages are indicated by (p). SAR indicates
the group composed of Stramenopila, Alveolata and Rhizaria.
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in the last common ancestor of eukaryotes [15]. Hence,

sex is a synapomorphy for extant eukaryotes and, where

sex is absent, it must have been secondarily lost. The

patchy distribution of sexual and asexual amoeboid

lineages in current phylogenetic reconstructions requires

many independent losses of sex (figure 1), or may indicate

that sex is present but not reported in many lineages. We

argue here that the amoeboid lineages are ideal candidates

to investigate whether asexuality has been lost many

times, because amoebae have generally been assumed to

be asexual and are spread across the tree of eukaryotes.

The body of theory developed from macro-organismal

observations holds that sexuality should be pervasive and

that asexuality should be limited to recent twigs on the
Proc. R. Soc. B
tree of eukaryotic life [16]. We define sex as the presence

of a meiotic reduction of the genome complement followed

eventually by karyogamy (nuclear fusion) in an organism’s

life cycle. In contrast to amphimixis [17], our definition

allows autogamy to be considered sex. Sex is argued to

be advantageous because it generates variability by allow-

ing independent assortment of genetic material through

recombination [18,19]. Conversely, asexual lineages are

argued to be subject to the accumulation of deleterious

mutations through a process described as Muller’s ratchet

[19,20], leading to the prediction that asexual lineages

should be short-lived, and hence ancient asexuals will be

rare [7,20,21]. On the other hand, sex is not beneficial

for the individual in the short term, because only half of

http://starcentral.mbl.edu/microscope/portal.php
http://starcentral.mbl.edu/microscope/portal.php
http://rspb.royalsocietypublishing.org/
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its genetic material is transmitted to the next generation

(the cost of meiosis [7]). Recent efforts in modelling the

evolution of sex show that incorporating genetic drift is

essential to understand the dynamics of populations with

finite size: when both drift and selection are taken into

account, sex and recombination bring together alleles

with higher selection coefficients that tend to be found in

different individuals, outcompeting asexual lineages [22].

Thus, there are two main situations where asexuality is

expected: (i) in relatively young lineages (such as several

species of scale insects with obligate apomictic thelytoky)

[23] and (ii) in systems with very large population sizes,

which rely on strategies for rapid reproduction (cell/

organism replication) [21].

We posit that the purported advantages and disadvan-

tages of sex observed in multicellular macro-organisms

should also apply to microbial eukaryotes. However,

some caveats must be taken into account when comparing

them. Firstly, life cycles are much more varied and com-

plex in microbial eukaryotes [24]. For instance, in most

plants and animals, sex and growth are tightly linked

(i.e. they cannot complete development without sex)

[15]. Conversely, many microbial eukaryotes are only

facultatively sexual (i.e. they turn sex on or off depending

on environmental conditions).

Knowledge about the natural history of microbial

eukaryotes is deeply hindered by the difficulties of obser-

vation, when compared with macro-organisms. In most

cases, organisms are assumed to be asexual because no

sex has been observed; the gold standard for establishing

sexuality remains direct observation of sexual phases of

the life cycle. Proving that sex occurs in microbial eukar-

yotes is further hindered as there are often no sexually

dimorphic forms, and sexual life-cycle stages may not

occur readily in laboratory conditions, or they may be

cryptic [25]. Further, many amoebae are not culturable

(e.g. polycystine radiolaria [26]). Despite these difficulties,

sex has been observed in several microbial and non-

microbial taxa long considered asexual when culturing

conditions were modified or appropriate mating types

were made available, including Darwinullid ostracods

[27], arbuscular mycorrhizal fungi [28] and the filamen-

tous mould Aspergillus [29], and Dictyostelium (see

below). Thus, it may not be prudent to rely on the absence

of evidence as evidence of the absence of sex [21,25].

Given the long history of study and diversity of

methods used, evidence for sex in amoeboid lineages

comes in a wide range of forms. We divide the continuum

of evidence for sex into three categories: (i) confirmed

sexual life cycle, (ii) direct evidence for sex and (iii) indir-

ect evidence that suggests a sexual life cycle but is

inconclusive. A confirmed sexual life cycle is the irrefuta-

ble combination of both meiosis and karyogamy (nuclear

fusion). Direct evidence for sex is provided by micro-

scopic observations of either meiosis or karyogamy

without confirmation of the other, or the presence of

meiosis-specific genes. We realize that for many biologists

documenting meiosis alone is enough to confirm sexu-

ality. However, we feel that observation of both parts of

the cycle is necessary given the variation in sexual mech-

anisms found in microbial eukaryotes. We are defending a

more logical stance: if we define a phenomenon by the

union of two elements, then we must expect to see the

two elements for confirmation of said phenomenon.
Proc. R. Soc. B
Conversely, the confirmation of karyogamy alone may

indicate a parasexual system (one where subsequent hap-

loidization occurs by some other means than meiosis

[30]; see also the case of Giardia [31]) but more strongly

indicates the possibility of sex. Finally, many character-

istics provide indirect evidence for the hypothesis that

an organism is sexual, but fall short of conclusively

demonstrating sex. These include molecular evidence of

recombination, cytoplasmic fusion, evidence for complex

life cycles with more than one trophic stage and pro-

duction of putative reproductive cells (e.g. swarmer cells

that can be interpreted as gametes).
2. AMOEBOID LINEAGES
The broad distribution of amoeboid organisms across the

eukaryotic tree of life makes them an ideal system for

assessing the applicability of theories on sex to microbial

lineages. Amoeboid organisms are defined by the ability

to produce pseudopodia for locomotion or feeding. They

were historically lumped into a single group, named Sarco-

dina or Rhizopoda, depending on the classification system

[32]. However, recent work demonstrates that amoebae are

found in at least 30 distinct lineages (i.e. close to half of all

described eukaryotic lineages) that are scattered through-

out the tree of eukaryotes [32,33] (figure 1). The

majority of these lineages are clustered in the Amoebozoa

and Rhizaria [32], with the remaining lineages scattered

across the tree (figure 1). The term ‘amoeba’ is used

here descriptively as a morphological category and has no

phylogenetic meaning. Here, we re-examine the sexuality

of amoebae in the context of the current phylogenetic fra-

mework of eukaryotes. We review evidence for sex in

lineages traditionally considered asexual, and discuss

reports of sexual life cycles that were originally considered

exceptions or misinterpretations.

(a) Amoebozoa

The Amoebozoa are a higher-level grouping encompass-

ing over 5000 species, currently divided into

approximately 14 lineages (figure 2a). These lineages

include familiar amoebae, such as the star of high

school biology classes Amoeba proteus and the human

enteric parasite Entamoeba histolytica. The majority of

organisms shown to belong within Amoebozoa have

amoeboid characteristics [32], although these encompass

a wide range of morphologies, such as slime moulds,

lobose testate amoebae (Arcellinida) and amoeboflagel-

lates. Asexuality in this group is thought to be a

defining characteristic [34] or sexuality is assumed to be

unknown [35]. However, deep inspection of the litera-

ture reveals evidence for sex in several Amoebozoa

lineages: the dictyostelid sorocarpic slime moulds and

myxogastrid plasmodial slime moulds, Thecamoe-

bida, Arcellinida, Leptomyxida, the genera Entamoeba,

Pelomyxa, Mastigamoeba, Trichosphaerium, the sorocarpic

slime mould Copromyxa, and a number of protosteloid

amoebae (figure 2a). We will briefly review the evidence

for each of these groups.

Confirmed sexual life cycles are described for two

lineages: the dictyostelid sorocarpic slime moulds and

the myxogastrid plasmodial slime moulds. The dictyo-

stelids illustrate the difficulty of observing sex in the

laboratory. Known for their asexual life cycles [36,37],

http://rspb.royalsocietypublishing.org/
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it was only in the 1970s that appropriate mating types of

Dictyostellium were brought into culture and the sexual life

cycle was fully documented [40–42]. The Myxogastria go

through meiosis and fuse to form diploid plasmodia

[43,44]. Myxogastria have complex mating systems,

with up to 13 mating types (roughly equivalent to sexes)

described [45].

Three lineages within Amoebozoa have direct evidence

of sexual life cycles: the free-living thecamoebids, the

sorocarpic slime mould Copromyxa and the testate

lobose amoebae (Arcellinida). The thecamoebid Sappinia

diploidea makes a bicellular cyst where zygote formation is

thought to occur [46–48]; similar cysts have been

reported in the related Sappinia pedata [49]. The slime

mould Copromyxa has a life cycle that is consistent with

sex, although no secondary confirmation of meiosis has

been described [50]. Copromyxa was initially considered

an acrasid sporocarpic slime mould; however, acrasids

have been shown to belong to the Heterolobosea, which

fall within the Excavata [9], and Copromyxa is its own

lineage [51]. Molecular studies demonstrate that Copro-

myxa is closely related to the Hartmanella within the

Tubulinea (figure 2a) [50]. Multiple lines of evidence

indicate that the Arcellinida, also members of the Tubuli-

nea, are sexual. Arcella vulgaris shows microscopic
Proc. R. Soc. B
evidence of synaptonemal complexes [52], a typical

structure that forms only during meiosis [53]. Molecular

data from both Arcella hemispherica and A. vulgaris also

demonstrate recombination in the actin gene [54]. Para-

quadrulla and Heleopera go through nuclear division and

subsequent fusion [55,56]. Finally, cell fusion (which

we consider indirect evidence for sex; see below) has

been reported for many genera of Arcellinida, though it

is unclear whether karyogamy also occurs when cells

fuse, or whether gamete formation occurs at other time

points (reviewed in [48]). The most complete report of

karyogamy following cytoplasmic fusion is for Difflugia

lobostoma [57], though Rhumbler [58] did not observe

fusion during long-term culturing of this species. This

apparent contradiction may indicate that these were

different strains, a probable situation given the prevalence

of cryptic species and other uncertainty in the taxonomy

of Arcellinida [59,60]. Different life-cycle observations

can also result from different culturing conditions.

Finally, three taxa have direct, but controversial, evi-

dence for sex: cell fusion reports in the free-living naked

amoebae Leptomyxida, a complement of meiotic gene

in the human pathogen E. histolytica and life cycles con-

sistent with sex in Trichosphaerium and others. Cell

fusion is widely reported for Amoebozoa [61,62].

http://rspb.royalsocietypublishing.org/
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Among the leptomyxids, Leptomyxa reticulata [61],

Flabellula baltica [63] and multiple strains of flabellulids

[64] are observed to fuse. Subsequently, the cells separate

or persist as multinucleate stages. It is unclear whether

this fusion facilitates genetic exchange or serves another

purpose [35]; hence, we consider this as only supporting

evidence for sex.

Entamoeba histolytica has long been considered asexual

despite numerous pieces of evidence pointing to the

contrary, such as the appearance of putative heterozygote

populations after mixing of homozygotic populations for

certain isozyme classes [65,66]. The availability of the

whole genome [67] shows that E. histolytica has the full

complement of genes required for meiosis [68,69], which

should have decayed if the species had abandoned a

sexual life cycle. The enigmatic genus of marine amoebae

Trichosphaerium is reported to have an alternation of gener-

ations with gamont (sexual, including karyogamy) and

schizont (asexual) stages [70]. Since meiosis has not been

properly documented [71,72], we consider there is only

direct evidence for sex in Trichosphaerium. Complex life

cycles with multiple types of trophic cells that are consistent

with sex have been described from a number of lineages:

the polyphyletic protosteloid amoebae Clastostelium

recurvatum, Protosporangium spp., Cavostelium apophysatum,

Ceratiomyxa fruticulosa and Ceratiomyxella tahitiensis [39],

and the archamoebid Pelomyxa palustris [73].
(b) Rhizaria

The Rhizaria are a heterogeneous assemblage encom-

passing lineages such as Foraminifera, radiolarians and

euglyphid testate amoebae, chlorarachniophytes, parasitic

groups (Phytomyxea, Haplosporidia), as well as a multi-

tude of other lesser-known flagellates (figure 2b) that

emerge as having fundamental ecological roles

[13,74–76]. Filamentous pseudopodia are a recurrent

morphological feature among amoeboid members of

Rhizaria, in contrast to the lobose or broad pseudopodia

of many Amoebozoa. Complete sexual life cycles are docu-

mented for two lineages (Foraminifera and Gromia);

karyogamy or meiosis (direct evidence) has been observed

in five lineages (Euglyphida, Thecofilosea, Chlorarachnio-

phyta, Plasmodiophorida and Phaeodarea); and indirect

evidence (such as cell fusion or formation of putative

gametes) has been witnessed in five lineages (Acantharea,

Polycystinea, Cercomonas, Helkesimastix and Lateromyxa).

There are at least two lineages in the Rhizaria with

confirmed sexual life cycles. Foraminifera are marine

amoebae defined by a dynamic network of anastomosing

pseudopodia [77], and well known for producing intricate

shells. They exhibit complex sexual life cycles, with meio-

sis and gamete production occurring at separate stages

[78]. The Gromiidae also have confirmed sexual life

cycles [79]. These large protists (up to several centi-

metres) have been observed in shallow and deep-sea

sediments [80], where they are capable of denitrification

in anoxic environments [81]. Gromia was originally

classified as a genus of Foraminifera, based on gross

morphology, but lacks the distinctive anastomosing

pseudopods of Foraminifera and branches separately in

molecular phylogenies [76]. The life cycle of Gromia

resembles that of Foraminifera, with meiosis and gamete

fusion occurring at different stages.
Proc. R. Soc. B
The Euglyphid testate amoebae and the Thecofilosa

have many reports of cytoplasmic fusion, which we con-

sider indirect evidence, and also reports of karyogamy, a

form of direct evidence. Euglyphid testate amoebae

have primarily been studied from a faunistic perspective,

as bioindicators of past and present environmental

conditions [82,83], and recently from a molecular phylo-

genetic perspective [84–86]. In the family Euglyphidae,

Euglypha alveolata [87], Euglypha scutigera [88] and

Euglypha sp. [89] combine their cellular contents to

form a cyst, or in one case a third larger shell (E. alveolata

[90]). Similar processes have been observed in other clo-

sely related families: Assulinidae [89], Trinematidae

[88,91] and Cyphoderiidae [58,91], and in the unclassi-

fied Tracheleuglypha dentata [92]. The formation of a

third, larger cell has been reported only in Assulinidae

and Euglyphidae [93,94], and not in Trinematidae and

Cyphoderiidae, where cell fusion occurs within one of

the copulating cells.

In some Euglyphids, cytoplasmic fusion is followed by

karyogamy, providing direct evidence for sex. In Trinema

lineare, Valkanovia delicatula [95], Assulina muscorum and

Valkanovia elegans [94], karyogamy was documented but

the ultimate fate of the synkaryon (fused nuclei) remains

unknown. In Corythion delamarei (family Trinematidae),

the synkaryon divides into four nuclei, interpreted as

the result of meiosis [96]. The cytoplasm is then distrib-

uted around the four nuclei, and four naked daughter

cells leave the mother shell, which is left empty. These

naked cells eventually secrete a test. If the interpretation

is correct and C. delamarei indeed goes through meiosis

after cytoplasmic and karyogamy, these organisms spend

most of their life cycle in a haploid stage, being diploid

only when karyogamy occurs. In contrast, T. lineare

(Trinematidae) performs ‘conventional’ binary divisions

in addition to a sexual life cycle similar to C. delamarei

[97]. Binary divisions were not observed in C. delamarei,

or its sister species Corythion dubium [96]. This suggests

that Corythion is a genus of obligate sexual organisms.

In sum, there is direct evidence for sex in four families

out of the five that compose Euglyphida.

The other lineage of filose testate amoebae, Thecofilo-

sea (sensu [98]), presents direct evidence for sex. Recent

phylogenetic analyses show they are not sister to the

Euglyphida [13,76]. These amoebae may have protein-

aceous or agglutinated tests and are often overlooked in

environmental samples owing to their small size.

Cytoplasmic fusion followed by karyogamy has been

observed in both Pseudodifflugia gracilis and P. fascicularis.

The fate of the synkaryon is unknown [95].

Chlorarachniophytes, a group known for their ancient

secondary endosymbiosis [99], go through an elaborate

alternation of flagellate and amoeboid life-cycle stages,

and show indirect evidence for sex. In Chlorarachnion

reptans, flagellate cells fuse with coccoid cells; these are

interpreted as ‘male’ and ‘female’ gametes [100]. In

Cryptochlora perforans, two morphologically identical

amoeboid cells fuse and produce a cyst where meiosis is

thought to occur in a manner similar to euglyphids.

The DNA content of the cyst is double that of the amoe-

boid stages, suggesting karyogamy [101]. As meiosis has

not been confirmed, we consider this direct evidence of a

sexual life cycle as opposed to confirmation. The Plasmo-

diophorida are obligate intracellular parasites of plants,
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characterized by a specific type of mitotic division named

cruciform nuclear division [102]. They have a complex

life cycle with a plasmodial amoeboid phase, and meiosis

has been confirmed in the group. However, karyogamy

has not yet been observed [102].

The organisms collectively designated ‘Radiolaria’—a

non-monophyletic assemblage containing Phaeodarea,

Acantharea and Polycystinea—are large pelagic cells ubi-

quitous in the oceans. These organisms are extremely

difficult to maintain in laboratory conditions, and their

full life cycle has never been documented, but observations

reveal evidence that suggests sex. All three groups of radi-

olarians generally produce small biflagellated cells, whose

fate remains unclear [26,103], but may be gametes that

are released into the water column.

The strongest evidence for sex within the ‘Radiolaria’

is found in Phaeodarea; specifically, in the well-studied

species Aulacantha scolymantha, which falls in the

Cercozoa [76]. Synaptonemal complexes have been

documented between the numerous (1000þ) composite

chromosomes. Each of these composite chromosomes

subsequently segregates into developing biflagellated

swarmer cells [104] and divides into eight chromosomes.

However, complete evidence for sex is still lacking for this

group, as cellular fusion and karyogamy have not been

documented. Production of small biflagellated swarmer

cells has also been observed in Polycystinea and

Acantharea, which are closely related to Foraminifera

[13]. These have been interpreted as ‘isogametes’ in the

case of Acantharea [105], but cell fusion has not been

observed for either lineage [106].

Evidence for sex becomes scarcer as organisms get

smaller and more difficult to observe. For the small amoe-

boflagellate forms, there are reports of cell fusions with

subsequent encystment in Helkesimastix faecicola [107]

and Cercomonas longicauda [108]. In Cercomonas, cells

can aggregate and fuse in some species, thus forming

plasmodia containing up to 100 nuclei [109,110]. Such

plasmodia have also been documented in the vampyrellid

Lateromyxa gallica [111,112], though the fate of these

nuclei is unknown.
(c) Other amoeboid lineages: Heliozoa,

Heterolobosea, Stramenopila and Opisthokonta

There are other amoeboid lineages scattered in the tree of

eukaryotes, most with limited information on sex. The

‘Heliozoa’ have been split into four morphological

lineages [33], three of which have been confirmed in

molecular reconstructions [113]. One lineage—the

Actinophryida nested within the Stramenopila—is

reported to go through autogamy in the cyst [114]. The

life cycles of all three remaining ‘heliozoan’ lineages (the

Desmothoracida, Centrohelida and Gymnosphaerida)

remain poorly documented.

The Heterolobosea are a lineage of amoeboflagellates

nested within the Excavata [115]. Heteramoeba clara is

reported to have a sexual life cycle consisting of a two-

mating-type system [116], although there is a certain

amount of doubt to these experiments. The genome of

Naegleria gruberi was recently sequenced, and reveals

the presence of meiosis-specific genes, supporting the

presence of sex in this clade [117]. The acrasid cellular

slime moulds have been shown to fall within the
Proc. R. Soc. B
Heterolobosea rather than with other sorocarpic slime

moulds in Amoebozoa [9]. Complete life cycles have

been documented for acrasids, but these contain no

evidence for meiosis or karyogamy. Hence, we consider

there is no evidence pointing to sex in this group.

The Labyrinthulidae and Thraustochytriidae are

amoeboid organisms currently placed within the Strame-

nopila (or Heterokonta), which also includes the diatoms,

brown algae and water moulds, in which sex is well estab-

lished. A complete sexual cycle is described for both of

these amoeboid lineages, with well-documented meiosis

[118,119].

A number of orphan amoeboid lineages have recently

been placed amid the Opisthokonta (which also includes

the Fungi and Metazoa). Amoebidium parasiticum, orig-

inally thought to be a fungus, has a multi-stage life

cycle, but no sex has been reported [120]. Similarly, the

nucleariid amoebae and Fonticula alba have shown no evi-

dence of sex [50]. However, only a limited number of

studies have focused on these taxa.
3. CONCLUSION
Evolutionary theory predicts that long-lived lineages

should be sexual [7], and that asexual lineages derived

from sexual ancestors will be short-lived owing to the

negative effects of Muller’s ratchet on the genome

[121,122]. The two major clades that are dominated by

amoebae, the Rhizaria and Amoebozoa (figure 2), are cer-

tainly very ancient. Fossil Arcellinida, a clade of testate

amoebae within the Amoebozoa, has been found in

750 Myr old rocks [123]; Foraminifera and Polycystinea,

two clades within Rhizaria, have fossil records that extend

back at least to the Cambrian (i.e. 488–542 Myr ago)

[26,124]. Sex is a complex character and it is unlikely

to have evolved independently in multiple lineages, or

lost and regained multiple times [25]. Thus, the presence

of sexual lineages scattered across Amoebozoa and Rhi-

zaria suggests that these clades were ancestrally sexual.

As in other branches of the eukaryotic tree, sex may

then have been lost independently in derived lineages.

Some amoeboid lineages may be genuinely asexual.

One candidate for asexuality is A. proteus, which is the

textbook example of binary fission in eukaryotes. A mul-

titude of research groups have been culturing A. proteus

and its relatives for more than a century without uncover-

ing evidence supporting the existence of sex in this group.

Yet assuming asexuality may be precarious given the

uncertainties regarding culturing conditions. Although

the ultimate proof for sex, as defined here, is the obser-

vation of meiosis and subsequent karyogamy, genomic

data from populations of A. proteus could reveal evidence

of recombination. Such data are yet lacking for these and

the majority of amoeboid protists.

The logical equation ‘lack of evidence ¼ asexual’ is

precarious, but the opposite stance is perhaps equally

dangerous. Assuming that all lineages in Amoebozoa are

sexual may mean discarding the possibility that alterna-

tive means to deal with Muller’s ratchet have arisen

independently. Microbial eukaryote lineages may well

have different strategies, such as lateral gene transfer

(LGT) and cyclic polyploidy. Bdelloid rotifers, a clade

of asexual microscopic animals, provide the most

famous example of an alternative mechanism to avoid
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the ratchet: during rehydration following anhydrobiosis

(a suspended animation state that allows the organism

to survive dehydration), these organisms acquire foreign

DNA and reorganize genomic regions [125]. This may

well be a remarkable example of an evolutionary approach

to reap the benefits of recombination, and could represent

one of many strategies that eukaryotes have explored to

avoid the deleterious effects of Muller’s ratchet. If such

an unusual mechanism appeared in Metazoa, comparably

non-canonical mechanisms may have evolved among 30þ
amoeboid lineages.

Cyclic polyploidy may be another evasion method for

avoiding the impact of Muller’s ratchet. Ploidy cycles

may reduce the mutational load usually associated with

high ploidy, and maintain the selective advantages of

haploid genetic transmission [17]. Many microbial

eukaryotes (amoeboid and others) experiment with

ploidy changes that go far beyond the metazoan n–2n

(haploid–diploid) fluctuation [24]. For instance, A. proteus

shows up to 3n variation during interphase, suggesting a

cycle of polyploidization and return to haploidy before

mitosis; and E. histolytica shows heterogeneity in nuclear

ploidy owing to varying levels of endomitosis—within a

population, individual trophozoites exhibit continuous

variation from 4n to 40n [126]. The consequences of

these phenomena are still poorly understood, as impli-

cations about the dynamics of eukaryotic genomes are

only beginning to be explored [24].

An open question is whether LGT through endo-

symbiotic organisms may supply genetic variability to

populations of amoebae. Diverse amoebae (e.g. Acantha-

moeba spp., Hartmannella spp., Arcella spp., Amoeba spp.)

harbour a wide variety of bacterial endosymbionts and

viruses during their life cycle [127–130]. The possibility

of genetic recombination between amoebae and their

multiple cytoplasmic inhabitants has just begun to be

studied, as is the case of the giant amoeba-infecting

Marseillevirus and Mimivirus that show evidence of

chimeric genomes, with fragments of DNA acquired

from multiple sources [131,132].

Well-resolved phylogenetic trees provide a framework to

investigate possible sexuality and identify truly asexual

lineages. Amoeba proteus is a member of the Amoebidae

clade, for which no evidence for sex has been uncovered.

The closely related Arcellinida are probably sexual. Hence,

the Amoebidae make an ideal group for deeply searching

for signs of sex/asexuality. Documentation of the complete

life cycle is difficult, but suitable alternative methods to ident-

ify the presence of sex include intense culturing and/or

surveying of natural populations to document recombination

(as predicted by meiosis) and genetic studies to identify a set

of meiosis genes. In this case, there are three possible out-

comes: (i) the Amoebidae are indeed sexual and we failed

to document sex so far; (ii) the Arcellinida–Amoebidae

ancestral was sexual and the Amoebidae became truly

asexual independently; or (iii) the Amoebidae use a distinct

strategy for evading Muller’s ratchet, which might involve

extensive LGTand/or ploidy cycles.

We conclude that the generalization of widespread

asexuality in amoeboid organisms is superficial and a pro-

duct of two main forces: (i) an intrinsic practical difficulty

in studying microbial organisms, and (ii) the long-held

belief that amoeboid organisms are a single unit of evol-

ution, as opposed to a morphological strategy that was
Proc. R. Soc. B
adopted by a wide variety of independent lineages. Amoe-

bae are not fundamentally chaste. The timing and flow of

events that lead each independent lineage to adopt an

asexual or sexual life cycle must be evaluated separately.

A multiple-evidence approach, using a phylogenetic

framework, gathering evidence on life cycles, genetic

information on recombination and/or suits of meiotic

genes, will be more efficient in reconstructing the history

of eukaryotic sexual life cycles. In line with Calkin’s

reasoning almost a century ago about the chemical consti-

tution of amoebae [1], there is no reason to doubt that the

rules of evolution governing sex in amoeboid organisms

agree with those of other living beings. We predict that

thorough and careful study of amoeboid organisms will

reveal even more unusual ways of performing sex or other-

wise exchanging genetic information. When discussing

the sex of amoeboid protists, the existing evidence does

not evoke chastity but rather the Kama Sutra.
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