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Host-associated microbial communities are unique to individuals, affect host health, and correlate with
disease states. Although advanced technologies capture detailed snapshots of microbial communities,
high within- and between-subject variation hampers discovery of microbial signatures in diagnostic or
forensic settings. We suggest turning to machine learning and discuss key directions toward harnessing
human-associated microbial signatures.
Introduction
Different people harbor radically different

microbial communities, which likely play

key roles in a wide range of chronic dis-

eases. If we can identify groups of bacte-

rial taxa present in a human body habitat

that are consistently predictive of host

phenotype for different illnesses or treat-

ments, then these biological signatures

can be used to build models that predict

therapeutic outcomes based on an in-

dividual’s specific microbiota. This ap-

proach, based on predictive models, has

implications for diverse diseases that may

benefit by modulation of the microbiota

(e.g., through prebiotics, probiotics, or tar-

geted antibiotics), such as inflammatory

bowel diseases (IBD), obesity, diabetes,

or diseases that are associated with mal-

nutrition. Furthermore, given the recent

finding that humans leave a signature of

a distinctive skin microbiota on their key-

boards (Fierer et al., 2010), this work also

has implications for forensic identification.

The crux of the problem is coping with

the complexity and high dimensionality of

human-associated microbiota. Some pro-

gress has been made toward establishing

the feasibility of supervised classifica-

tion of these communities (Knights et al.,

2011a), but there has been limited devel-

opment of novel approaches, and many

challenges remain. We discuss several of

these challenges and important areas for

future research into predictive modeling

of human-associated microbial communi-

ties, as well as the potential applications

that motivate this research.
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Discovery of Microbial Signatures
Manyhumandiseasesarecausedbysingle

species or strains of bacteria, such as tu-

berculosis (Mycobacterium tuberculosis),

tetanus (Clostridium tetani), and diph-

theria (Corynebacterium diphtheriae);

these specific taxa, along with their asso-

ciations to host phenotypes, are some-

times referred to as biomarkers. Diag-

nosis and prevention of these types of

diseases is relatively simple: If you have

the biomarker, you have the disease. Sim-

ilarly, tracking pathogens and contami-

nants in environmental samples has tradi-

tionally focused on counts of a single

species, such as E. coli, or group of spe-

cies, such as coliforms (Simpson et al.,

2002). In the age of high-throughput

DNA sequencing, discovery and verifica-

tion of individual biomarkers for various

host phenotypes is straightforward: Col-

lect and sequence enough data from

hosts with and without the phenotype,

and a classical hypothesis test (e.g.,

t test or Mann-Whitney U test) will detect

differential abundance of the biomarker.

But there may be other cases when there

is no single biomarker for a phenotype.

We know now that host-associated bac-

terial communities are composed of hun-

dreds or thousands of unique species,

and many host phenotypes are associ-

ated with shifts in bacterial communities,

but not with specific causative agents.

For example, let us consider a hypothet-

ical enteric disease state that is associ-

ated with concurrent overrepresentation

of the phylum Bacteroidetes, the genus
1 ª2011 Elsevier Inc.
Shigella, and the species Helicobacter

pylori. We now have a three-way interac-

tion between three different lineages of

varying phylogenetic depth. We could

refer to this set of interacting biomarkers

and the relationship that they have with

the host phenotype as a microbial signa-

ture. Such a signature need not be limited

to taxonomic characterizations of com-

munities (e.g., surveys of marker genes

such as 16S rRNA) but may also include

genes or functional categories.

As illustrated in the example above, a

microbial signature may be arbitrarily

complex, involving simultaneous over-

and under-representations of multiple

taxa at multiple taxonomic levels. In

some cases, the traits that lead to disease

may be limited to a single bacterial strain

(perhaps one that has acquired virulent

factors on a plasmid), while in others these

traits may be more phylogenetically con-

served, such that treating a whole genus

or family as a feature would be optimal

fordimensionality reduction.Givenahypo-

thetical data set containing 1000 unique

species (pragmatically defined as 97%

OTUs, or organisms with at least 97%

identity in their 16S rRNA sequences), we

would have to perform approximately 1

billion classical hypothesis tests to explore

all such interactionsat all taxonomic ranks,

and controlling the rate of false positives

would be next to impossible. Within these

complex communities, how can we deter-

mine which lineages or genes matter, and

at what taxonomic level, for a given host

phenotype?
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The discovery of such relationships is

the goal of supervised learning—we use

a set of communities with known pheno-

type to train a machine learning algorithm;

the algorithm identifies discriminative

independent variables and produces a

predictive model that can then be used

to predict the phenotype associated

with other microbial communities. The

machine learning community refers to

this approach as ‘‘supervised learning,’’

or ‘‘supervised classification’’ (this use of

the term ‘‘classification’’ is not to be con-

fused with taxonomic classification of in-

dividual sequences or OTUs). Supervised

learning is essentially a formalization of

the implicit goal of most exploratory sci-

entific research; based on the results of

an experiment, we propose a descriptive

model (e.g., a linear regression) that we

believe will hold true for similar experi-

ments in the future. What distinguishes

supervised learning from classical hy-

pothesis testing is that supervised learn-

ing deals explicitly with estimating and

improving the expected future accuracy

of a predictive model at the same time

that it is discovering predictive signa-

tures—they are two parts of the same

process. There are extensive and varied

approaches within machine learning

devoted to building predictive models

and maximizing their expected accuracy

(reviewed in the context of microbial com-

munity classification in [Knights et al.,

2011a]).

For simplicity we have focused so far on

scenarios involving diagnosis of disease

states, but we also envision potential

applications in prognosis of treatment re-

sponse, forensic identification of the host,

and detection and sourcing of environ-

mental sample contamination. In the con-

text of these potential applications, we

now discuss several remaining chal-

lenges in the discovery of predictive mi-

crobial signatures.

Improving Discovery with Existing
Biological Knowledge
In many ways, studies of the microbiome

can be informed by the extensive work

that has been done in the closely related

area of microarray classification (Lee

et al., 2005), although there are some im-

portant distinctions (Knights et al., 2011a).

Both microarrays and high-throughput

characterizations of microbial communi-

ties such as marker-gene surveys or
shotgun metagenomics produce high-

dimensional data. However, unlike gene-

expression data, the low degree of over-

lap in species among subjects—for

example, in the human gut—also leads

to very sparse data matrices (i.e., ma-

trices that contain many zeros) in marker

gene surveys. The dual challenges of high

dimensionality and high sparsity make it

hard to identify individual biomarkers.

Much of the work on predictive modeling

of microarray data has focused on re-

moving noisy or irrelevant independent

variables (genes) from the data (Lee et al.,

2005). In the field of machine learning this

process of identifying anddiscardingnoisy

independent variables (e.g., taxa or genes)

is often referred to as ‘‘feature selection.’’

Feature selection is similar to control-

ling the type I error rate for multiple indi-

vidual hypothesis tests, but the underlying

motivation is to reduce the expected error

of the model when it classifies novel

communities.

Several existing feature selection tech-

niques are helpful for classifying microbial

communities (Knights et al., 2011a). How-

ever, it is likely that we can also take

advantage of relational or hierarchical

structures in the data such as taxon-

omies, gene ontologies, metabolic path-

ways, etc. (Figure 1) to share statistical

strength between weakly predictive inde-

pendent variables. One important consid-

eration is that the abundance of taxa or

genes is usually measured in relative

terms. In this case the data are composi-

tional; that is, when the relative abun-

dance of one taxon increases, the relative

abundance of the rest of the com-

munity must necessarily decrease. Con-

sequently, explicit modeling of composi-

tional distributions may be appropriate.

One such probability distribution, the

Dirichlet, has already been effective for

community-wide microbial source track-

ing (Knights et al., 2011b).

The hardest part of detecting microbial

signatures is overcoming the high vari-

ability in microbial community composi-

tion both between and within hosts (or

environmental habitats). Thus, transform-

ing the raw data by collapsing or clus-

tering the observed taxa or genes ac-

cording to similarity is key. In the case of

shotgun metagenomic sequences, we

might first filter the sequences for known

genes and then assign them to functional

or metabolic groups according to estab-
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lished databases prior to downstream

analysis (Figure 1). For surveys of marker

genes (such as 16S rRNA), we commonly

cluster sequences into operational taxo-

nomic units (OTUs) based on a predeter-

mined threshold of nucleotide similarity

(e.g., 97%). However, when we perform

data transformation as a fixed prepro-

cessing step, wemay bemaking incorrect

assumptions about the best way to

collapse input data for a given predictive

task. Alternatively, we propose that the

next generation of predictive models

must be able to integrate external infor-

mation sources into the process of feature

selection to determine the appropriate

levels of collapsing, filtering, or clustering.

For example, when we pick OTU clus-

ters for marker-gene sequences at a fixed

threshold, potentially discriminative taxa

may lose their signal if we make the clus-

ters either too specific (e.g., 99% simi-

larity) or too broad (e.g., 80% similarity).

In the case where the clusters are too

specific, any conclusions made about

those clusters may not generalize well to

future data sets due to high variability

between communities. This potential pit-

fall is referred to as ‘‘overfitting.’’ Many

published studies use a within-cluster

similarity threshold of 97%, but we have

found that this is not necessarily the best

level for predictive modeling. In the con-

text of predictive modeling, it is possible

to estimate the best OTU threshold empir-

ically as the one that minimizes the ex-

pected future error of a classifier. We

studied six human-associated microbial

communities with well-understood clus-

tering patterns to determine their optimal

OTU thresholds for predictive modeling.

Three examples are shown in Figure 2.

For a given benchmark, we estimated the

generalization error of the Random For-

ests classifier (Breiman, 2001) using as

input features OTUs picked at thresholds

ranging from 60% to 99.5% nucleotide

similarity. We then chose the optimal

threshold for a given benchmark as the

one giving the most parsimonious model

(fewest OTUs) within one standard error

of the best model (Figure 2). Optimal

thresholds for the six tasks were surpris-

ingly variable, ranging from 76% to

99%). This implies that predictive models

are likely to benefit from a flexible ap-

proach to picking predictiveOTUclusters,

insteadof thecurrentpracticeof clustering

at a fixed, predefined threshold of 97%.
, October 20, 2011 ª2011 Elsevier Inc. 293



Figure 1. Processes for Microbial Signature Discovery
The process begins with the collection of a large set of sequencing data from various bacterial communities associated with different environments or different
host phenotypes. These sequences can serve directly as input to a machine-learning algorithm, or they can be transformed through a preprocessing step (data
transformation). Although for microbial community analysis data transformation and supervised learning are typically performed as separate steps, we suggest
that predictive models will be improved by the development of novel machine-learning techniques that are informed by the potential data transformations. For
example, constructing a good predictive model using metabolic characterizations of metagenomics sequencesmight be easier if the algorithm has knowledge of
the hierarchical relationships between metabolic functions. In the case of marker-gene surveys, a machine-learning algorithmmay benefit from knowledge of the
phylogenetic relationships of the observed lineages, or the network of average nucleotide similarities between the input sequences. These structures may allow
models to share statistical strength across related independent variables in caseswhere there is high variability within a given environment or host phenotype (i.e.,
lack of a ‘‘core microbiome’’).
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Furthermore, a recent exploratory

study found that several host quantitative

trait loci influenced the relative abun-

dance of taxonomic groups of variable

breadth (Benson et al., 2010), indicating

that even within a given classification

task, a single threshold for taxonomic

clustering may be insufficient to capture

the relevant habitat-related adaptations

of microbial communities. For this reason,

we believe that information about the

nucleotide similarity or phylogenetic re-

lationships of the input 16S rRNA se-

quences should be supplied directly to

the machine learning algorithm, as shown

in Figure 1. This will require the develop-

ment of novel algorithms, but it has the

benefit that the algorithm may select

the appropriate levels of specificity for

clustering input sequences given a par-

ticular predictive task. In the case of shot-

gun metagenomic sequences, we may

cluster according to existing ontologies

(Figure 1).

Biological Considerations
and Validation
Assuming that we are able to identify

microbial signatures that are predictive

of, for example, a diseased host pheno-
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type, it may still be difficult to determine

whether differences in ‘‘discriminating’’

taxa are a cause or a consequence of dis-

ease without large prospective longitu-

dinal studies. As an example, although

the composition of the vaginal microbiota

may impact the rate at which HIV is

transmitted, subsequent changes to the

vaginal microbiota due to immune dys-

function would make it impossible to

characterize a community signature that

may predispose an individual to HIV infec-

tion by comparing the vaginal microbiota

of HIV-positive women to healthy con-

trols. Similarly, individuals with IBD and

celiac disease are believed to have in-

creased intestinal permeability prior to

the onset of disease (Groschwitz and

Hogan, 2009), and it is reasonable to ex-

pect that corresponding changes, such

as alterations in the phospholipid com-

position in the intestinal mucous barrier

(Braun et al., 2009), may be associated

with characteristic changes in particular

bacterial species (e.g., promoting partic-

ular mucolytic species). Studies of how

the microbiota differ with IBD, however,

have generally compared people who

have already developed the disease to

those who have not (Frank et al., 2007).
1 ª2011 Elsevier Inc.
Consequently, taxa that differ may be

those that can tolerate inflammation in

the gut—not those that are causing it or

those whose presence could predict dis-

ease onset.

Assuming that microbial signatures

can be successfully associated with host

traits, there are still many issues of inter-

pretation that complicate attempts to

make biological or mechanistic conclu-

sions from those associations. The most

reliable microbial markers for hard-to-

observe host conditions will be backed

both by extensive correlation data ac-

ross studies and well-understood mecha-

nisms that relate phenotype to particular

genes, organisms, or community fea-

tures. Two particularly noteworthy ap-

proaches to supplementing correlation

data with mechanism include experi-

mental confirmation and genomic studies

of microbial lineages. As an example of

the first approach, Sharon et al. (2010)

applied a combination of correlation stud-

ies and experimental confirmation to un-

cover a bacterium involved in Drosophila

melanogaster mate preference. It had

previously been observed that Drosophila

raised on different media interbred less

than those raised on the same medium.



Figure 2. Are We Overfitting with 97% OTUs?
(A) Many microbial ecology studies use operational taxonomic units (OTUs) defined at 97% 16S SSU rRNA sequence identity, consistent with the conventional
bacterial species threshold. However, it is possible that either more specific or more general OTU definitions may be useful for machine-learning applications. (A)
shows hypothetical error curves for the case that the commonly used 97% 16S SSU rRNA identity threshold represents an optimal OTU definition for a given
classification task, the case that more specific OTUs are always better, and the case that the optimal identity threshold is lower—for example, 85%. The hypo-
thetical error curves illustrate the concepts of ‘‘overfitting’’ and ‘‘underfitting’’: if the clusters are too specific, then a predictive model cannot observe general
trends in the data (overfitting); if they are too general, then the predictive features are getting buried during the clustering (underfitting).
(B) Relates the choice of OTU threshold to empirical error in correctly classifying samples using a random forest classifier (Breiman, 2001) trained on two-thirds
of the data and tested on the remaining third for 10 randomly chosen train/test splits of the data. Three classification benchmarks are shown: the Body Habitat
benchmark categorizes host-associated microbial communities by general body habitat; the Host Subject benchmark categorizes communities from the
forearm, palm, and index finger by host subject; the Lean-Obese benchmark categorizes gut communities by host phenotype. Vertical dashed lines indicate
the most parsimonious model (i.e., fewest OTUs) whose mean generalization error is within one standard error of the best model. The empirical error curves
suggest that different classification tasks may be best accomplished with different OTU definitions. This is a demonstration of our more general suggestion
that existing knowledge about raw input data, whether marker genes or shotgun metagenomic sequences, must be incorporated into the next generation of
predictive algorithms.
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Investigation of the fly microbiota re-

vealed that some lineages, in particular

the Lactobacilli, differed in flies raised on

different media, indicating that this could

be either a cause or secondary marker

of the observed difference in mate prefer-

ences. To distinguish between these

possibilities, Sharon et al. demonstrated

that broad-spectrum antibiotics could

abolish the observed mate preference.

Adding Lactobacillus plantarum could

rescue the mate preference effect in anti-

biotic-treated flies. Such experimental

confirmation greatly strengthens the case

for approaches that would seek to use

L. plantarum levels as a marker for mate

preference in wild Drosophila populations

beyond what could be said from cor-

relation data alone. Further character-

ization of the mechanism involved in

L. plantarum modification of mate pre-

ference (e.g., does it affect Drosophila
pheromones?) would make this an even

stronger candidate as a marker.

In cases where experimental manipula-

tion is difficult, additional mechanistic

information into the role of a putative

marker microbe can be gained by exami-

nation of genome sequences. For ex-

ample, Turnbaugh et al. (2009) used a

combination of genomic and transcrip-

tomic approaches to study members

of class Erysipelotrichi that increased

when gnotobiotic mice, transplanted with

a human microbial community, were

switched from a low-fat diet rich in vege-

tables to a high-fat, high-sugar diet. These

analyses found the genome of the cul-

tured isolate to be enriched in phospho-

transferase system (PTS) transporters

and identified PTS genes involved in the

import of simple sugars as upregulated

following the switch to a sucrose- and

fat-rich western diet. Such genomic and
Cell Host & Microbe 10
transcriptomic findings supported the

hypothesis that the observed increase

in Erysipelotrichi was caused by changes

in diet.

Discussion
In some cases, models of human-associ-

ated microbial communities can already

give reasonably accurate predictions of

important traits such as host phenotype,

forensic identification of the host (Fierer

et al., 2010) and environmental sources

of sample contamination (Knights et al.,

2011b). There is likely an enormous po-

tential for improvement, however, with

the increased availability of training data

from a broad variety of prospective

studies and the development of novel

theoretical approaches that account for

latent structures such as the phylogeny

and behavioral characteristics of a mi-

crobiome. Experimental validation and
, October 20, 2011 ª2011 Elsevier Inc. 295
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biological interpretation of predictive

models is also essential as the fieldmoves

toward high-stakes applications including

personalized medicine and the early diag-

nosis of disease.
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