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Adaptation in protein-coding sequences can be detected from multiple sequence
alignments across species or alternatively by leveraging polymorphism data within
a population. Across species, quantification of the adaptive rate relies on phylogenetic
codon models, classically formulated in terms of the ratio of nonsynonymous
over synonymous substitution rates. Evidence of an accelerated nonsynonymous
substitution rate is considered a signature of pervasive adaptation. However, because
of the background of purifying selection, these models are potentially limited in
their sensitivity. Recent developments have led to more sophisticated mutation–
selection codon models aimed at making a more detailed quantitative assessment of
the interplay between mutation, purifying, and positive selection. In this study, we
conducted a large-scale exome-wide analysis of placental mammals with mutation–
selection models, assessing their performance at detecting proteins and sites under
adaptation. Importantly, mutation–selection codon models are based on a population-
genetic formalism and thus are directly comparable to the McDonald and Kreitman test
at the population level to quantify adaptation. Taking advantage of this relationship
between phylogenetic and population genetics analyses, we integrated divergence and
polymorphism data across the entire exome for 29 populations across 7 genera and
showed that proteins and sites detected to be under adaptation at the phylogenetic scale
are also under adaptation at the population-genetic scale. Altogether, our exome-wide
analysis shows that phylogenetic mutation–selection codon models and the population-
genetic test of adaptation can be reconciled and are congruent, paving the way for
integrative models and analyses across individuals and populations.

adaptation | phylogenetic | population genetics | codon models

Present-day genetic sequences are informative of populations’ past evolutionary history
and can carry signatures of selection at different scales. One main goal in the study of
molecular evolution is to disentangle and quantify the intensity of neutral, adaptive, and
purifying evolution acting on sequences, leveraging variations in sequences between and
within species. Theoretically, in order to detect adaptive evolution, one must have data
where part of the sequence is known to be under a neutral regime, which can be used as a
null model. In the case of protein-coding DNA sequences, synonymous sites are usually
taken as proxies for neutral sites, although there are instances where they are indeed
under selection (1–3). Nonsynonymous mutations, on the other hand, might be under a
mixture of varying degrees of adaptive and purifying selection. Contrasting synonymous
and nonsynonymous changes, two different types of methods have emerged to quantify
both positive and purifying selection acting on protein-coding sequences. One method,
stemming from phylogeny, uses a multiple sequence alignment comprising genes from
different species and relies on codon models to deduce the selective regime from the
patterns of nonsynonymous versus synonymous substitutions (4, 5). Starting with the
work of McDonald and Kreitman (6), another method, stemming from population
genetics, contrasts polymorphism within a population and divergence to a closely related
species.

At the population-genetic scale, one of the most widely used tests for adaptation
relies on the substitutions between two closely related species and polymorphism within
one population (6). Under a strict neutral model (i.e., assuming that nonsynonymous
mutations are either neutral or strongly selected), the ratios of nonsynonymous polymor-
phisms over synonymous polymorphisms (πN /πS) and of nonsynonymous substitutions
over synonymous substitutions (dN /dS) are expected to be equal. If, in addition, strongly
advantageous mutations occur, they are fixed rapidly in the population, thus contributing
solely to divergence but not to polymorphism. As a result, the positive difference between
dN /dS and πN /πS gives an estimate of the adaptive rate ωA = dN /dS − πN /πS (7).
This simple argument is not strictly valid in the presence of moderately deleterious
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nonsynonymous mutations, which can segregate at a substantial
frequency in the population without reaching fixation, thus
contributing solely to polymorphism, and not to divergence,
potentially resulting in an underestimation of the rate of adaptive
evolution (6, 8). Subsequent developments have tried to correct
for this effect by relying on an explicit nearly neutral model
(9, 10), so as to estimate the rate of evolution expected in the
absence of adaptation (called ω0) based on polymorphism and
then to compare it with the rate of evolution, ω = dN /dS , to get
an estimate of the rate of adaptation as ωA = ω − ω0.

In their current formulation, phylogeny-based methods rely
on the ratio of nonsynonymous substitutions over synonymous
substitutions, calledω (4, 5). Since this ratio is a contrast between
the rates before and after the action of selection on the protein,
it thus provides an estimate of the strength of selection exerted
at the amino acid level, whether synonymous changes are driven
solely by mutation or by both mutation and selection (11). In
this context, an excess in nonsynonymous substitutions, leading
to ω > 1, indicates that the protein is undergoing recurrent
positive selection for amino acid changes, meaning that the
protein is putatively under adaptive evolution. Conversely, a
deficit in nonsynonymous substitutions, leading toω < 1, means
the protein is under purifying selection. In practice, proteins
are typically under a mix of adaptive and purifying selection
dominated by the latter, thus typically leading to an ω < 1
even in the presence of positive selection. At a finer scale, site
models can detect a specific site (i) of the sequence with a
ω(i) > 1 (12, 13). Site models have the advantage of greater
sensitivity and the ability to pinpoint where positive selection
acts on the protein. However, even at the level of a single site
under recurrent adaptation, not all amino acids are expected
to be adaptive, leading to ω(i) capturing a mix of adaptive
and purifying selection, reducing the sensitivity of the test.
An alternative approach to detect adaptation would be to rely
on an explicit nearly neutral model as the null against which
to detect deviations, similarly to the McDonald and Kreitman
test. As a recent development in this direction, the so-called
phylogenetic mutation–selection models provide a null model by
estimating the fitness landscape over amino acid sequences, for
each site of the sequence (11, 14, 15). At the mutation–selection
balance, the probability for a specific codon to be fixed in the
population is proportional to its fitness, and a mutation from a
high-fitness amino acid toward a low-fitness amino acid will have
a small probability of fixation, genuinely accounting for purifying
selection. Conversely, only nearly neutral mutations between
high-fitness amino acids will tend to be permitted by the model,
allowing for the explicit calculation of the nearly neutral rate
of nonsynonymous substitutions at mutation–selection balance,

called ω0 (16, 17). By contrasting ω estimated by ω-based codon
models and ω0 calculated from mutation–selection models, one
can hope to extract the rate of adaptation ωphy

A = ω − ω0.
Interestingly, the rate of adaptation is directly comparable be-

tween phylogenetic and population-genetic methods since both
seek a deviation of ω from a nearly neutral null model, estimated
with mutation–selection models in a phylogenetic context (ω0)
or from standing polymorphism in a population-genetic context
(πN /πS). This raises the question of whether the two signals of
adaptation are correlated, thus representing a unique opportunity
to confront phylogeny-based and population-based methods.
These two methods work over very different time scales; for
that reason, they might be capturing different signals: long-term
evolutionary Red-Queen for phylogeny-based methods versus
events of adaptation in specific lineages for population-based
methods. Nonetheless, we expect sites and proteins under long-
term evolutionary Red-Queen regimes to maintain their signal
of adaptation in several independent lineages for which the
McDonald and Kreitman test is applied.

Accordingly, in this study, we first applied ω-based and
mutation–selection codon models to whole exome data from
placental mammals, so as to quantify the rate ωphy

A for each site
and protein and detect signatures of adaptive evolution at the
phylogenetic scale. Then, we developed a pipeline integrating
(and aligning) divergence and polymorphism data across the
entire exome for 29 populations across 7 genera, namely, Equus,
Canis, Bos, Capra, Ovis, Chlorocebus, and Homo. Finally, using
this pipeline, we assessed the congruence between the phylogeny-
based and population-based approaches, by testing whether the
group of sequences detected with a high rate of adaptation in the
phylogeny-based method also displays a high rate of adaptation
according to the population-based method.

Results

DetectingGenes and Sites under Adaptation. We derived a two-
step approach (Methods), which we applied to a set of alignments
of orthologous genes at the scale of placental mammals. The
dN /dS estimated by the site model (ω) is plotted against the
dN /dS predicted by the nearly neutral mutation–selection model
(ω0) for genes (scatter plot in Fig. 1A) and sites (density plot in
Fig. 1B). An excess of ω relative to ω0 is a typical signature of
ongoing positive selection (17, 18). For such comparison to be
valid, both models estimatingω andω0 should have assumptions
as similar as possible regarding the underlying mutation process,
modeled as a Muse and Gaut (4, 16). As a control, we validated
our Bayesian estimates of ω against their maximum-likelihood
counterpart (Methods and SI Appendix, Fig. S1).

A CB

Fig. 1. Detection of protein-coding sequences ongoing adaptation at the phylogenetic scale. ! estimated by the site model against !0 calculated by the
mutation–selection model. Scatter plot of 14,509 genes in panel A, with a 95% Bayesian credible interval (� = 0.05). Density plot of sites in panels B and C. Genes
and sites are then classified as adaptive (! > !0 in red) or nearly neutral (! ' !0 in green). In panel C , the set of sites detected exclusively by mutation–selection
codon models have a mean ! < 1.
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Given these validations, an excess of ω compared to ω0 can
be retrieved as a ratio (ω/ω0 > 1) or as a difference (ω −
ω0 > 0). However, since ω0 can be close to 0 for genes and
sites strongly constrained (Fig. 1), ratios can be particularly large
and mathematically undefined, ultimately leading to artifacts.
Moreover, comparing the posterior credibility intervals of ω and
ω0 as a difference rather than a ratio is more intuitive and visual
(Fig. 1A). Altogether, genes or sites were considered to be under
an adaptive regime (in red) if the value of their ω is higher than
that of their ω0, with nonoverlapping 95% posterior credibility
intervals. This procedure retrieved 822 out of 14,509 genes,
which are putatively under a long-term evolutionary Red-Queen
regime. At the site level, the nearly neutral assumption appears
to be rejected for 104,129 out of 8,895,374 sites. Of note, this
selection procedure is not meant as a routine statistical test, but
only as an enrichment procedure, for the needs of the subsequent
analysis shown below. In practice, this selection is likely to be
conservative and to have a rate of false discovery of the order of
1% at the gene level and 5% at the site level (Methods).

Remarkably, selection based on ω > ω0 is more sensitive than
based on the commonly used criterion ofω > 1 sinceω0 is always
lower than 1 by definition (16). Thus, we can uncover sites under
adaptation (ω > ω0) with a mean ω lower than 1 (29,543 sites
in Fig. 1C ). These sites could not have been detected by ω-based
codon models relying on the criterion that ω > 1. At the gene
level, only two genes have an estimated ω > 1 such that this
distinction is not relevant.

Ontology Enrichment Tests. Next, we investigated whether the
genes classified as adaptive (ω > ω0) showed enrichment in
specific ontology terms. Thus, we performed 775 instances of
Fisher’s exact test to estimate ontology enrichment by contrasting
with genes in the control group, not classified as adaptive. Forty-
two ontologies are observed with a p-value (pv) corrected for
multiple comparison (Holm–Bonferroni correction, padj

v ) lower
than the risk α = 0.05 (SI Appendix, Table S1). At a finer scale,
we weighted genes by their proportion of sites considered under
adaptation with a ω-based site model (ω > 1, SI Appendix,

Table S2) or with a mutation–selection model (ω > ω0,
SI Appendix, Table S3). For each ontology, the proportion of sites
under adaptation is compared between the set of genes sharing
this given ontology and the rest of the genes (Mann–Whitney
U test). The statistical test based on the first criterion (ω > 1)
is correlated with ontologies related to immune processes, while
the statistical test based on the second criterion (ω > ω0) is also
correlated with ontologies related to the external membrane and
cellular adhesion.

Congruence Between Phylogeny- and Population-Based Meth-
ods. Finally, we investigated whether the phylogeny-based and
the population-based methods give congruent results in terms of
detection of adaptive evolution (Fig. 2). To do so, population
genomic data were collected for 29 populations across 7 genera
(SI Appendix, Fig. S2). For each population, ωA based on the
McDonald and Kreitman (MK) test (6) was computed on the
concatenated sequence of the 822 genes classified as adaptive by
the phylogeny-based method (red dots in Figs. 2 and 3). This
result was compared to a null distribution obtained by computing
ωA over sets of 822 genes that were randomly sampled (1,000
replicates) among the genes classified as nearly neutral according
to the mutation–selection model (green violins in Figs. 2 and 3).
Importantly, the terminal lineages over which the population-
genetic method was applied were not included in the phylogenetic
analysis so as to avoid fallacy and circularity in the estimation
of ωA and ω

phy
A . As a result, the two methods are working

on entirely nonoverlapping compartments of the evolutionary
history across mammals. For all 29 populations, theωA estimated
by the population-genetic method was significantly higher for the
putatively adaptive gene set than for the putatively nearly neutral
gene sets of the same size (at a risk α = 0.05 corrected for
multiple testing, Holm–Bonferroni correction). There is thus a
good qualitative agreement between the two methods as to what
they capture and interpret as positive selection at the gene level.

The same procedure was applied at a finer scale with sites
instead of genes. For each population, ωA was computed on
the concatenated sequence of the 104,129 sites classified as

Fig. 2. Integrating divergence and polymorphism for the detection of adaptation. At the phylogenetic level, ! (classical codon models) and !0 (mutation–
selection codon models) are computed from protein-coding DNA alignments, allowing us to classify genes into adaptive (in red) and nearly neutral (in green)
regime. At the population-genetic level, for each population, !A is computed on the concatenated sequence of genes classified as under adaptation. The result
is compared to the empirical null distribution of !A in each population, obtained by randomly sampling (1,000 replicates) a subset under a nearly neutral
regime.
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Fig. 3. Enrichment of adaptation at the population-genetic scale for 29 populations across 7 genera at the gene (panel A) and site (panels B and C) level. For
each population, !A is computed on 822 genes (A) and 104,129 sites (B) having a high rate of adaptation at the phylogenetic scale (! > !0 in red). In panel C , the
set of 29,543 sites are detected exclusively by mutation–selection codon models with a mean ! < 1. The result is compared to the empirical null distribution
of !A, obtained by randomly sampling (1,000 replicates) a subset of genes and sites under a nearly neutral regime (violin plot in green). ∗ signify that the pv
corrected for multiple comparison (Holm–Bonferroni correction) is lower than the risk � = 0.05. The acronym of populations and the quantitative value of !A
and pv are shown in Table 1.

adaptive by the phylogeny-based method and compared to
the empirical null distribution (Fig. 3B) and Table 1. Out of
29 populations, 24 have an ωA estimated by the population-
genetic method significantly higher for the putatively adaptive
site-set than for the putatively nearly neutral site-sets of the
same size taken at random (at a risk α = 0.05 corrected for
multiple testing, Holm–Bonferroni correction). In particular, the
five populations for which the test is not significant are the human
populations. Coincidentally, this is the species with the lowest
genetic diversity, resulting in underpowered statistical tests due
to fewer polymorphisms available per loci. This statistical effect
is combined with the biological effect of increased genetic drift,
owing to the small effective population size in ancestral human
populations, resulting in less efficient selection. Altogether, we
argue that finding evidence for positive selection in human
populations is statistically more challenging due to both less
efficient selection and few data available.

Except for Equus and Humans, on average, the ωA returned by
MK is positive even for the putatively nearly neutral replicates and
significantly so for Bos (ωA in the range 0.65 to 0.68 for genes and
sites) and Ovis (ωA in the range 0.66 to 0.84 for genes and sites).
This suggests the presence of a background of positive selection
captured by MK methods but not by phylogenetic methods.
This background signal could correspond either to adaptation
specifically present in the terminal lineages on which the MK
method is applied and absent over the rest of the mammalian

tree or to low-intensity recurrent positive selection, present over
the tree but nevertheless missed by phylogenetic methods, owing
to a lack of sensitivity. Alternatively, part of it could be an artifact
of MK methods due, for example, to a recent demographic
expansion (Bos and Ovis are the two among those analyzed by
the population-genetic approach showing the highest levels of
synonymous diversity) or to a more general mismatch between
short- and long-term effective population size (Ne) (19).

Regardless of its exact cause, subtracting this background may
give a more meaningful basis for a quantitative comparison be-
tween phylogenetic and population-genetic approaches (Fig. 2).
To do so, we can compare the 1ωA between the putatively
adaptive set and the control replicates to the ωphy

A = ω − ω0
returned by the phylogenetic method. Of note, across all analyses
shown in Fig. 3 A and B, this population-genetic 1ωA is always
smaller than the phylogenetic ωphy

A . This asymmetry is expected
as a result of a selection bias: The genes of the test set were selected
precisely for their high phylogenetic signal, while keeping a blind
eye to their population-genetic signal. From this perspective, the
ratio1ωA/ω

phy
A can be interpreted as an estimate of the fraction

of the total signal captured by the phylogenetic enrichment
procedure that is confirmed by MK statistics. This ratio, hereafter
called the confirmation rate, is indicated in Table 1.

At the gene level, the confirmation rate is relatively high,
ranging from 30% to 90%. At the site level, the confirmation rate
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Table 1. Across 29 populations (rows), table of quantitative value of �!A between the set classified as adaptive
and nearly neutral shown in Fig. 3

Genes (822) Sites (104,129) Sites (! < 1) (29,543)

Population Species �S 1!A padj
v

1!A
!phy

A
1!A padj

v
1!A
!phy

A
1!A padj

v
1!A
!phy

A

Diverse (Equus) Equus caballus 0.002 0.094 0.0∗ 0.928 0.399 0.0∗ 0.459 0.258 0.0∗ 0.446
Diverse (Canis) Canis familiaris 0.004 0.058 0.0∗ 0.557 0.406 0.0∗ 0.463 0.227 0.0∗ 0.392
Iran (IRBT) Bos taurus 0.008 0.028 0.020∗ 0.278 0.237 0.0∗ 0.272 0.134 0.150 0.231
Uganda (UGBT) Bos taurus 0.008 0.036 0.0∗ 0.355 0.222 0.0∗ 0.254 0.156 0.017∗ 0.270
Australia (AUCH) Capra hircus 0.003 0.052 0.0∗ 0.506 0.202 0.0∗ 0.230 0.168 0.143 0.290
France (FRCH) Capra hircus 0.003 0.073 0.0∗ 0.709 0.220 0.0∗ 0.250 0.236 0.039∗ 0.407
Iran (IRCA) Capra aegagrus 0.004 0.049 0.0∗ 0.482 0.242 0.0∗ 0.275 0.108 0.396 0.186
Iran (IRCH) Capra hircus 0.004 0.062 0.0∗ 0.610 0.210 0.0∗ 0.239 0.217 0.017∗ 0.375
Italy (ITCH) Capra hircus 0.003 0.052 0.0∗ 0.511 0.174 0.0∗ 0.199 0.134 0.308 0.232
Morocco (MOCH) Capra hircus 0.004 0.064 0.0∗ 0.626 0.256 0.0∗ 0.292 0.201 0.0∗ 0.347
Iran (IROA) Ovis aries 0.007 0.087 0.0∗ 0.847 0.199 0.0∗ 0.228 0.183 0.017∗ 0.316
Iran (IROO) Ovis orientalis 0.009 0.087 0.0∗ 0.848 0.204 0.0∗ 0.233 0.176 0.0∗ 0.304
Iran (IROV) Ovis vignei 0.005 0.072 0.0∗ 0.697 0.194 0.0∗ 0.222 0.192 0.0∗ 0.332
Various (ISGC) Ovis aries 0.008 0.076 0.0∗ 0.742 0.171 0.0∗ 0.195 0.189 0.0∗ 0.326
Morocco (MOOA) Ovis aries 0.008 0.093 0.0∗ 0.905 0.189 0.0∗ 0.216 0.193 0.0∗ 0.333
Barbados Chlorocebus sabaeus 0.003 0.068 0.0∗ 0.665 0.341 0.0∗ 0.390 0.248 0.0∗ 0.430
Central African

Republic (CAR)
Chlorocebus sabaeus 0.006 0.034 0.0∗ 0.334 0.229 0.0∗ 0.262 0.195 0.0∗ 0.338

Ethiopia Chlorocebus sabaeus 0.005 0.044 0.0∗ 0.425 0.231 0.0∗ 0.264 0.264 0.0∗ 0.457
Gambia Chlorocebus sabaeus 0.005 0.041 0.0∗ 0.403 0.236 0.0∗ 0.270 0.217 0.0∗ 0.375
Kenya Chlorocebus sabaeus 0.004 0.061 0.0∗ 0.598 0.181 0.0∗ 0.207 0.152 0.150 0.264
Nevis Chlorocebus sabaeus 0.003 0.029 0.020∗ 0.279 0.332 0.0∗ 0.380 0.237 0.017∗ 0.410
South Africa (SA) Chlorocebus sabaeus 0.006 0.065 0.0∗ 0.633 0.199 0.0∗ 0.228 0.142 0.108 0.246
Saint Kitts (SK) Chlorocebus sabaeus 0.004 0.040 0.0∗ 0.388 0.324 0.0∗ 0.371 0.253 0.0∗ 0.439
Zambia Chlorocebus sabaeus 0.006 0.066 0.0∗ 0.642 0.132 0.0∗ 0.151 0.131 0.150 0.227
African (AFR) Homo sapiens 0.002 0.059 0.012∗ 0.568 −0.010 1.000 −0.012 0.089 1.000 0.155
Ad Mixed American

(AMR)
Homo sapiens 0.002 0.067 0.006∗ 0.647 −0.029 1.000 −0.034 −0.141 1.000 −0.244

East Asian (EAS) Homo sapiens 0.002 0.063 0.006∗ 0.610 −0.096 1.000 −0.111 −0.296 1.000 −0.513
European (EUR) Homo sapiens 0.002 0.061 0.015∗ 0.590 −0.078 1.000 −0.089 −0.289 1.000 −0.500
South Asian (SAS) Homo sapiens 0.002 0.089 0.0∗ 0.866 −0.113 1.000 −0.130 −0.111 1.000 −0.193

padj
v associated to the test are corrected for multiple comparison (Holm–Bonferroni correction, bold numbers and ∗ for padj

v <0.05). 1!A
!phy

A
is the ratio of1!A at the population-genetic level

and the phylogenetic level. �S is the observed genetic diversity (number of single nucleotide polymorphisms per site) counted over synonymous sites.

is lower (30% on average), which could betray a higher rate of false
discovery at the site level, or could be the result of subtle molecular
evolutionary processes, such as intermittent adaptation (on some
but not on all branches) or within-gene turnover (ongoing
adaptation targeting different sites on different branches).

After discarding sites with a mean ω > 1, the remaining
29,543 sites classified as being under an adaptive regime have
1 > ω > ω0 and are specifically discovered by the mutation–
selection approach. Since their ω is less than 1, they could not
be detected by classical codon models. This raises the question
of the empirical value of these findings. Indeed, while mutation–
selection methods are more sophisticated and may therefore
have a greater sensitivity, they may also be more prone to
producing false positives. The phylogenetic/population-genetic
contrast developed here can be used to assess this important
point. As shown in (Fig. 3C ) and Table 1, out of 29 populations,
for 17 out of the 29 populations that have been analyzed, the
confirmation rate is significantly positive (α = 0.05, Holm–
Bonferroni correction) and of the order of 10% on average.
This importantly suggests the presence of a background of low-
intensity positive selection, which is missed by classical codon
models, but partially detected by mutation–selection models. In

other words, the approach can detect a long-term evolutionary
Red-Queen even for a site with ω < 1 that is still under
adaptation at the population-genetic scale.

Because genes and sites classified as adaptive have a higher
ω than genes/sites classified as nearly neutral, ωA could simply
be higher for genes with higher ω due to this confounding
factor. Thus, we performed additional experiments where ω is
controlled to be the same in the nearly neutral replicate and the
adaptive set of genes (SI Appendix, Figs. S3–S7 and Tables S5–
S9). Additionally, we performed the same experiments with a
more stringent risk α = 0.005 (10 times greater) to classify
genes and sites as adaptive (SI Appendix, Figs. S8–S10 and
Tables S9–S10). Our results are robust to both controlling for
ω and with a different threshold to classify genes and sites as
adaptive. Finally, we computed ωA using the software polyDFE
(20), which relies on the synonymous and nonsynonymous
unfolded site-frequency spectra (SFS) to estimate the distribution
of fitness effects of mutations (DFE) and the rate of adaptation
(SI Appendix, Fig. S11–S18 and Tables S11–S18). Depending
on the underlying assumptions for the shape of the DFE and
the definition of ωA, we observed a wide range of ωA both for
the set of adaptive and nearly neutral genes/sites. However, the
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statistical test for the enrichment ofωA between the set of adaptive
and nearly neutral genes/sites gives results in the same direction
whether computed by polyDFE or as McDonald and Kreitman
statistic (6), although the confirmation rate and the associated pv
are different.

Discussion

Quantifying the rate of adaptation assumes that we can measure
the rate of evolution and, more importantly, its deviation from a
null model of evolution disallowing adaptation. For phylogenetic
codon models, this null model of evolution is usually assumed to
be neutral evolution and the rate of evolution computed as the
ratio of nonsynonymous over synonymous substitution rates (ω)
is thus compared to 1. We first showed that, at the phylogenetic
scale, ω can be compared to its expectation under the mutation–
selection model (ω0), a nearly neutral model instead of a
neutral model of evolution, giving a quantitative estimate of
the rate of adaptation as ωphy

A = ω − ω0. Moreover, because
ω0 is by definition lower than 1 (16), detecting adaptation
as ω > ω0 instead of ω > 1 is always a more sensitive
statistical test. We thus argue that mutation–selection provides
both a theoretical and practical improvement over the current
method of testing to detect adaptation. The application of this
approach exome-wide across placental mammals suggests that
822 out of 14,509 proteins are under a long-term evolutionary
Red-Queen, with ontology terms related to immune processes
and the external membrane of cells. Enrichment in ontologies
related to immune processes is expected, as found in previous
studies (13). However, we also detect enrichment in ontologies
related to the external membrane and cell adhesion. Genes
pertaining to these ontologies might be under adaptation as a
consequence of being the target of viruses and parasites (21, 22).
Altogether, the mutation–selection method effectively detects
adaptation regardless of the background of purifying selection
and returns reasonable candidates for adaptive evolution. Of note,
in its current implementation, and unlike classical codon models
(23, 24), the mutation–selection approach does not yet provide a
proper and well-calibrated statistical test for calling genes or sites
under adaptation with a well-controlled frequentist risk. This
was not a problem in the enrichment analysis conducted in this
article, which relies on downstream controls based on random
permutations. Nevertheless, the encouraging results obtained
here give motivation for developing such a test, which should
then have an increased power to detect adaptation, compared to
classical codon models relying on the ω > 1 criterion.

At the population-genetic scale, the availability of approaches
to detect adaptation (6, 25) raises the question of whether the
rate of adaptation calculated at the phylogenetic scale as ωphy

A is
congruent with the rate calculated at the population genetics scale
by McDonald and Kreitman (MK) (6) asωA = dN /dS−πN /πS .
In this light, the set of genes and sites detected to be under
adaptation at the phylogenetic scale showed a significant increase
in ωA such as inferred by the population-based method (29
populations across 7 genera). Quantitatively, about 30 to 90% of
the signal detected by the phylogeny-based approach is confirmed
by the population-based approach. This result is in stark contrast
with studies comparing ω-based codon models at the gene level
with MK methods, which found that the set of genes detected
at different scales does not seem to overlap beyond random
expectations (26). The reasons for this discrepancy are not totally
clear. The use of different codon modeling strategies could play a
role here. More fundamentally however, our study relies on a large

and densely sampled phylogeny with '100 taxa across placental
mammals, versus 5 Drosophila and 5 Brassicaceae in Chen et al.
(26). As a result, the phylogenetic aspect of our analysis benefits
from an increased power while being also inherently more focused
on genes characterized by recurrent adaptation over a very large
evolutionary scale (i.e., long-term evolutionary Red Queens),
for which population-genetic signals of adaptation may be more
easily recovered. We thus showed empirically that the mutation–
selection codon model provides a null (nearly neutral) model
from which we can disentangle purifying and adaptive evolution.
However, our procedure still has some limitations.

First, synonymous mutations are considered neutral in our
implementation of mutation–selection codon models. In other
words, we assumed no synonymous codon usage bias (CUB) or
a weak effect as it is suggested in mammals (27). However, a
strong CUB can influence the comparison between ω and ω0
(16). In our mutation–selection codon model, in addition to
modeling selection for amino acids at the site level, modeling
CUB is possible by introducing another layer of selection for
synonymous codons at the gene level (11, 15). Such a model could
be used to detect adaptation in a more general context for which
CUB cannot be overlooked (e.g., Drosophila). Further work
will thus be required to relax the assumption that synonymous
mutations are neutral and to assess the sensitivity of ωphy

A
to CUB. Second, mutation–selection codon models assume a
constant effective population size, while it has been established
that its fluctuations have a major effect on selection dynamics
(28, 29). Estimating changes in effective population size in a
mutation–selection framework is possible (30), although too
computationally intensive in its current implementation to be
performed genome-wide. Third, epistasis is not modeled while
it can have a large effect on the response of the rate of evolution
with change in population size (31). More generally, pervasive
epistasis generates an entrenchment of the amino acids (32–34),
resulting in slowing down of the rate of evolution (17, 35) or
a standstill (36). Consequently, our estimation of the predicted
rate of evolution computed at mutation–selection balance (ω0) is
overestimated given that epistasis is not taken into account in our
model. Such an overestimated ω0 results in an underestimated
rate of adaptation ω

phy
A = ω − ω0, ultimately leading to a

conservative test of adaptation which could theoretically be
improved. Accurately modeling the underlying fitness landscape
is thus a direction for future research in mutation–selection
models to improve the estimation of ωphy

A , by means of relaxing
model assumptions (34) or by leveraging empirically determined
fitness landscapes (18, 37).

On the other hand, at the population-genetic scale, the
greatest limitation to detecting adaptation is the lack of power
determined by the genetic diversity since polymorphisms are
rare and estimation of πN /πS requires pooling many sites
for which variations are available. Since the effects of mild
purifying selection are more pronounced on longer time scales
(i.e., mildly deleterious mutations contribute disproportionately
to polymorphism, compared to divergence), ωA as computed
by MK can be biased by moderately deleterious mutations
(8, 38) and by the change in population size through time (39).
To overcome this bias, model-based approaches relying on the
synonymous and nonsynonymous site-frequency spectra (SFS)
to estimate the distribution of fitness effects of mutations (DFE),
so as to account for the contribution of mild selective effects to
standing polymorphism, have been developed (9, 20) and are
often used (10, 40). However, the broad range of ωA estimated
on sets of genes/sites classified as nearly neutral suggests that
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these models are lacking power, even more than the MK statistic,
because of the sparsity of the SFS. Besides changes in population
size biasing the estimation (19), we argue that inferring ωA
using an underlying DFE model is also highly sensitive to
assumptions for the shape of the DFE and the definition of
ωA. For example, the value of ωA is computed as an integral,
where the bounds of this integral are debated by different authors
(10, 41). It is thus relatively easy to change the definition ofωA (SI
Appendix, Figs. S13–S16 and Tables S13–S16) or to constrain the
underlying DFE (SI Appendix, Figs. S13–S18 and Tables S13–
S18) to obtain a wide range of ωA on the same dataset. Taken
together, we argue that comparing ωA to 0 is not a robust test
for adaptation. Instead, ωA for a particular genomic region of
interest should be compared to other genomic regions for which
the nearly neutral evolution is not rejected, and the difference
1ωA should be compared to 0, as done in this study. More
generally, our empirical analysis emphasizes the limitations of,
and the difficulties raised by, the model-based population-genetic
approaches. In this respect, further exploring the congruence
(or lack thereof) between phylogenetic and population-genetic
approaches will represent a useful asset to clarify those delicate
problems, given that similar benefits are also expected on the side
of phylogenetic approaches, which are far from immune from
methodological limitations.

More broadly on a theoretical level, this work leverages a
specific overlap between phylogenetic and population genetics,
namely that the rate of adaptation ωphy

A in phylogenetic codon
models and ωA in the MK test should theoretically be directly
comparable. Based on this theoretical relationship, our study is
paving the way for studies and methods augmenting molecular
polymorphism data within species with information about
divergence data between species (42) and by assessing empirically
the relationship between phylogenetic and population genetics
analyses (43). In this light, mutation–selection models at the
phylogenetic scale can play a dual role: pinpointing genes and sites
under adaptation (ωphy

A > 0) and also seeking the genomic region
for which the nearly neutral theory is not rejected (ωphy

A ' 0).

Materials and Methods
Phylogenetic Dataset. Protein-coding DNA sequences alignments in placental
mammalsandtheircorrespondinggenetreeswereextractedfromtheOrthoMaM
database, containing 116 mammalian reference sequences in v10c (44–46).
Genes located on the X, Y, and mitochondrial chromosomes were discarded from
the analysis since the number of polymorphisms, necessary in the population-
based method, is expected to be different on these sequences. Additionally,
sequences from the species for which polymorphism are available as well as their
sister species have been discarded from the analysis to ensure independence
between the data used in the phylogenetic and population-genetic method, so

as to avoid fallacy and circularity in the estimation of ωA and ωphy
A . Altogether,

we analyzed 14,509 protein-coding DNA sequences alignment containing at
most 87 reference sequences of placental mammals.

Adaptation in Phylogeny-Based Method. Classical codon models estimate
a parameter ω = dN/dS , namely, the ratio of the nonsynonymous over the
synonymous substitution rates (4, 5). In the so-called site models,ω is allowed
to vary across sites (12, 47). In Bayescode, site-specific ω(i) (Fig. 1B, y-axis)
are modeled as independent and identically distributed random effects from a
gamma distribution (48). Therefore, this corresponds to a continuous version
of the M5 model of Yang et al. (12). In a second step, the average over sites
is calculated, giving estimates of ω for each protein-coding sequence (Fig. 1A,
y-axis). To assess the sensitivity of our estimate ofω to the prior as implemented
in BayesCode, we ran the CODEML site model (F1x4 MG, 8 discrete categories

of ω) from the PAML software (24) on a sample of 100 random genes. Both ω
estimates from BayesCode and CODEML are strongly correlated at the site level
(r2 = 0.985, slope of 0.92 in SI Appendix, Fig. S1.A) and at the gene level
(r2 = 0.991, slope of 0.9 in SI Appendix, Fig. S1.B).

In contrast to ω-based codon models, mutation–selection models assume
that the protein-coding sequence is at mutation–selection balance under a fixed
fitness landscape, which is itself characterized by a fitness vector over the 20
amino acids at each site (11, 14, 15). Mathematically, the rate of nonsynonymous

substitution from codon a to codon b (q(i)a 7→b) at site i of the sequence is equal to
the rate of mutation from the underlying DNA change (µa7→b) multiplied by the

scaled probability of fixation of the mutation (P(i)
a 7→b). Crucially, the probability

of fixation depends on the difference of scaled fitness between the amino acid

encoded by the mutated codon (F(i)b ) and the fitness of the amino acid encoded

by the original codon (F(i)a ) at a given site i (49–51). Altogether, the rate of
substitution from codon a to b at a given site i is

q(i)a 7→b = µa7→bP
(i)
a 7→b = µa 7→b

F(i)b − F(i)a

1− eF
(i)
a −F

(i)
b

. [1]

Fitting the mutation–selection model on a sequence alignment leads to
an estimation of the mutation rate matrix (�) as well as the 20 amino acid
fitness landscape (F(i)) at each site i. From these parameters, one can compute

ω
(i)
0 (Fig. 1B, x-axis), the site-specific rate of nonsynonymous over synonymous

substitution at the mutation–selection balance:

ω
(i)
0 =

∑
a∈C

∑
b∈Na

π
(i)
a q(i)a7→b∑

a∈C
∑

b∈Na
π

(i)
a µa 7→b

, [2]

whereC is the set of all the possible codons (61 by discarding stop codons),π(i)
a

is the equilibrium frequency of codon a at site i, andNa is the set of codons that
are nonsynonymous to a (16, 17). The equilibrium frequency of codon a at site i
is a function of the nucleotide frequencies at its three positions and the amino

acid scaled fitness (F(i)a ):

π
(i)
a =

σa[1]σa[2]σa[3]e
F(i)a∑

b∈C σb[1]σb[2]σb[3]e
F(i)b

, [3]

where σa[j](a[j] ∈ {A, T, C, G}) is the equilibrium frequency (given by the
mutational matrix) of the nucleotide at position j ∈ {1, 2, 3} of codon a. In a
second step, the average over sites is calculated, giving estimates ofω0 for each
protein-coding sequence (Fig. 1A, x-axis). Under the assumption that the protein
is under a nearly neutral regime, the calculatedω0 (mutation–selection model)
and the estimatedω (site model) should be the same (16).

We ran the Bayesian software BayesCode (https://github.com/
ThibaultLatrille/bayescode) on each protein-coding DNA alignment (52). Each
Monte Carlo Markov chain (MCMC) is run during 2,000 points, with a burn-in
of 1,000 points, to obtain the posterior mean of ω and ω0 across the MCMC
as well as the 95% posterior credibility interval for genes and sites. Genes
and sites classified under an adaptive regime (in red) are rejecting the nearly
neutral assumption such that the lower bound for the credible interval of ω
(α = 0.05) is above the upper bound of the credible interval ofω0 (α = 0.05),
meaning that the value of their ω is higher than that of their ω0. Because this
is a unilateral test (ω > ω0) and the two credible intervals are independent,
the risk is (α/2)2 = 0.0252 = 0.000625 for each test. Empirically, the
nearly neutral assumption appears to be rejected for 822 out of 14,509 genes,
while 0.000625× 14,509' 9 genes are expected due to the multiple testing,
suggesting a 9/822 ' 1% rate of false positive at the gene level. At the site
level, the nearly neutral assumption appears to be rejected for 104,129 out of
8,895,374 sites, while 0.000625× 8,895,374 ' 5,560 are expected due to
the multiple testing, suggesting a 5,560/104,129' 5% rate of false positive
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at the site level. Genes and sites are classified under a nearly neutral regime (in
green) if the averageω is within the credible interval of theω0, and respectively,
the average ω0 is also within the credible interval of ω, meaning ω = ω0.
Additionally, the set of sites detected exclusively by mutation–selection codon
models have a meanω < 1. Genes and sites that do not fall under any of these
categories are considered unclassified.

Polymorphism Dataset. Each Single Nucleotide Polymorphism (SNP) (chro-
mosome, position, strand) in the focal species was matched to its relative position
(chromosome, position, strand) in the protein-coding DNA alignment by first
converting the genomic positions to relative position in the coding sequence
(CDS) using gene annotation files (GTF format) downloaded from Ensembl
(ensembl.org). We then verified that the SNPs downloaded from Ensembl were
matching the reference in the CDS (FASTA format). Second, the relative position
in the CDS was converted to position in the multiple sequence alignment
(containing gaps) from the OrthoMaM database (44–46) by doing a global
pairwise alignment, using the Biopython function pairwise2, between CDS
FASTA and the sequence found in the alignment. This conversion from genomic
position to position in the alignment is possible only if the assembly used for
SNP calling is the same as the one used in the alignment, the GTF annotations,
and the FASTA sequences.

We retrieved the genetic variants representing the population level
polymorphism from the following species and respective available datasets:
Equus caballus EquCab2 assembly in the EVA study PRJEB9799 (53), Canis
familiars CanFam3.1 assembly in the EVA study PRJEB24066 (54), Bos taurus
(UMD3.1 assembly in the NextGen project),Ovis aries (Oar_v3.1 assembly in the
NextGen project),CaprahircusCHIR1 assembly in the NextGen project converted
to ARS1 assembly with dbSNP identifiers (55), Chlorocebus sabaeus ChlSab1.1
assembly in the EVA project PRJEB22989 (56), and Homo sapiens GRCh38
assembly from the 1,000-genome project (57, 58).

Variants not inside genes are discarded at the beginning of the analysis. Inser-
tions and deletions are not analyzed, and only single nucleotide polymorphisms
(SNPs) with only one mutant allele are considered. Stop codon mutants are also
discarded. For populations containing more than 8 sampled individuals, the site-
frequency spectrum (SFS) is subsampled down to 16 chromosomes (8 diploid
individuals) without replacement to alleviate the effect of different sampling
depths in the 29 populations. Moreover, subsampling mitigates the impact of
moderately deleterious mutations segregating at a low frequency on πN/πS
since they are more likely to be discarded than polymorphism segregating at a
higher frequency. The Snakemake pipeline for integrating polymorphism and
divergence data uses custom scripts written in Python 3.9.

Rate of Adaption in Population-Based Method. The genes and sites
classified as under adaptation are concatenated. For each population,πN/πS is
computedasthesumofnonsynonymousoversynonymouspolymorphismonthe
concatenated SFS. dN/dS is computed on the concatenated pairwise alignment
between focal and sister species extracted from OrthoMaM; the dN/dS count

is performed by yn00. We considered Ceratotherium simum simum as Equus
caballus sister species; Ursus maritimus as Canis familiars sister species; Bison
bison bison asBos taurus sister species; Pantholops hodgsonii asOvis aries sister
species; Pantholops hodgsonii as Capra hircus sister species; Macaca mulatta as
Chlorocebus sabaeus sister species, and finally, we considered Pan troglodytes
as Homo sapiens sister species. Altogether, ωA = dN/dS − πN/πS is thus
computed for each population on genes and sites classified as under adaptation.
The result is compared to the empirical null distribution of ωA, obtained by
randomly sampling (1,000 sampling replicates) a subset of genes/sites classified
as nearly neutral.

Other methods to compute ωA such as polyDFE (20) are also used (SI
Appendix, Eqs. 3–20), which relies on the synonymous and nonsynonymous
unfolded site-frequency spectra (SFS) to estimate the distribution of fitness
effects of mutations (DFE) and the rate of adaptation. In polyDFE, the GammaExpo
model assumes that the fitness effect of weakly deleterious nonsynonymous
mutations are distributed according to a negative Gamma, and the fitness effects
of weakly advantageous mutations are distributed exponentially. This method is
an extension of the methods introduced by Eyre-Walker and collaborators (9, 59).
Unfolded SFSs are obtained by polarizing SNPs using the 3 closest outgroups
found in the OrthoMam alignment with est-usfs v2.04 (60).

Data, Materials, and Software Availability. The data underlying this article
are available at https://doi.org/10.5281/zenodo.7107233. Scripts and instruc-
tions necessary to reproduce the empirical experiments on the original dataset or
with user-specified datasets are available at https://github.com/ThibaultLatrille/
AdaptaPop. Archive data have been deposited in Genes and sites under
adaptation at the phylogenetic scale also exhibit adaptation at the population-
genetic scale, https://zenodo.org/record/7543458. Previously published data
were used for this work. This study makes use of data generated by the NextGen
Consortium.
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