
SEIR model

General equations
Clear@ages, stages, classes, b, freqD;

We start by building code that allows an arbitrary number of age classes (j) and stage classes (jj),
where stage refers to the activity level in the Britton et al. model.
Relative transmission rates (b) are assumed to depend on the ages of the two individuals involved
(j,k),  while the activity class depends on the individuals involved in a manner that potentially
depends on its age, j, and distancing class, jj, captured by b[j,jj].  We will assume b is measured
relative to the different classes, so that the average activity level is b=1 across age and stage
classes.

[In this notebook, we focus on only one age class.]

Social mitigation measures are incorporated by a constant term a  reducing transmission rates
( a  would describe the reduction in activity of each individual partner).

Disease transmission then depends on the efficacy of social mitigation measures (a), the activity
of each partner (b[j,jj]  b[k,kk]),  the transmission rate between those partners (bI[j,k]),  and the
chance that one of them is susceptible and one is infected:
dsdt@j_, jj_D :=

-Sum@a * b@j, jjD b@k, kkD HbI@j, kD * i@k, kkDL, 8k, 1, ages<, 8kk, 1, stages<D * s@j, jjD;
dedt@j_, jj_D := Sum@a * b@j, jjD b@k, kkD HbI@j, kD * i@k, kkDL, 8k, 1, ages<, 8kk, 1, stages<D *

s@j, jjD - kE@j, jjD * e@j, jjD;
didt@j_, jj_D := kE@j, jjD * e@j, jjD - kI@j, jjD i@j, jjD;

kE and kI are the transition rates from E to I and from I to outcome (recovery or death).
eqns :=

Flatten@Table@8dsdt@j, jjD, dedt@j, jjD, didt@j, jjD<, 8j, 1, ages<, 8jj, 1, stages<DD;

vars := Flatten@Table@8s@j, jjD, e@j, jjD, i@j, jjD<, 8jj, 1, stages<, 8j, 1, ages<DD;

start := Flatten@
Table@8s@j, jjD Ø s0@j, jjD, e@j, jjD Ø 0, i@j, jjD Ø 0<, 8j, 1, ages<, 8jj, 1, stages<DD;

We will want to relate the heterogeneity in movement rates to the mean b and variance Vb in b.
For the two activity classes, these are:

subb = SimplifyB

SolveB:b == b1 freq@1D + b2 freq@2D, Vb ã Ib1 - bM
2
freq@1D + Ib2 - bM

2
freq@2D>, 8b1, b2<F,

8 Hfreq@1D + freq@2DL ã 1<F

::b1 Ø
H-1 + freq@2DL b + -H-1 + freq@2DL freq@2D Vb

-1 + freq@2D
, b2 Ø b +

-H-1 + freq@2DL freq@2D Vb

freq@2D
>,

:b1 Ø -
b - freq@2D b + -H-1 + freq@2DL freq@2D Vb

-1 + freq@2D
, b2 Ø b -

-H-1 + freq@2DL freq@2D Vb

freq@2D
>>

We’ll focus on the second of these solutions, where type 1 is more active (b1 > b2):



subb = subb@@2DD;

Note that activity is a relative measure with b=1, which constrains 0 § Vb § 1 when freq[1]=freq[2]
because the two activities must be positive:

8b1, b2< ê. subb ê. b Ø 1 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2

:2 K 1
2
+ Vb

2
O, 1 - Vb >

One class
ages = 1; H* Age class *L
stages = 1;H* Distancing class *L
classes = 3; H*SEI*L

WIth only one distancing class, we can set all the b[j,jj] terms to 1:
freq@1D = 1; H*Frequency of distancing class one*L
b@j_, jj_D = 1; H*Relative activity is one with only one activity class*L

We will measure the spread of the disease in an initial population composed of a fraction, p, of
susceptibles in the population (i.e., not vaccinated or previously infected and resistant).

The stability matrix will determine the spread of the disease:
stabmat =

Table@D@eqns@@jDD, vars@@kDDD, 8j, 1, Length@eqnsD<, 8k, 1, Length@eqnsD<D ê. start ê.
s0@j_, jj_D Ø p * S * freq@jjD ê. S Ø 1 ê.

kE@j_, jj_D Ø kE ê. kI@j_, jj_D Ø kI ê. bI@j_, jj_D -> bI;

Its characteristic polynomial will determine the eigenvalues:
charpoly1 = Det@l IdentityMatrix@Length@eqnsDD - stabmatD êê Factor

-l Ip a bI kE - kE kI - kE l - kI l - l2M

Holding r0 constant: In the absense of immunity and no social mitigation measures (all individu-
als initially susceptible, p=1 and a=1), we could estimate transmissibility bI from the observed
exponential growth rate of r0 and hold this rate constant:

subbr = FlattenBSolveB
charpoly1

l
ê. l Ø r0 ê. p Ø 1 ê. a Ø 1 ã 0, bIFF

:bI Ø
r02 + r0 kE + r0 kI + kE kI

kE
>

We then consider the factor p by which the susceptible population would have to be reduced to
cause the growth rate to equal zero:

FactorB
charpoly1

l
ê. l Ø 0 ê. a Ø 1 ê. subbr F;

charpolythreshold1 = p ê. Flatten@Solve@% ã 0, pDD êê Simplify

kE kI

Hr0 + kEL Hr0 + kIL

This equals 1/R0 as found below, which provides a clearer way of thinking about the level of
resistance needed to prevent the spread of the disease:
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1 ê R0 ê. R0 ->
bI

kI
ê. subbr êê Factor

kE kI

Hr0 + kEL Hr0 + kIL

Holding R0 constant: We find R0 using the next generation method (see Hurford et al. 2010 J. R.
Soc. Interface 7:561–571 and references therein), which is useful in more complicated cases with
abritrary age and stages. 

First, we must identify the F matrix (reproduction) and V matrix (movement), such that stabmat =
F-V.  Because we assume a large population of susceptibles relative to disease classes, we can
ignore the first row and column of the stability matrix and focus on the elements describing the
disease types:
Fmatrix = Transpose@Transpose@Hstabmat ê. kE Ø 0 ê. kI Ø 0L@@2 ;; 3DDD@@2 ;; 3DDD

880, p a bI<, 80, 0<<

Vmatrix = -HTranspose@Transpose@HstabmatL@@2 ;; 3DDD@@2 ;; 3DDD - FmatrixL êê Factor

88kE, 0<, 8-kE, kI<<

which satisfies the conditions required for the next generation method (see Hurford et al.). 

R0 is given by the largest real eigenvalue of the simpler matrix: F V -1 
Fmatrix.Inverse@VmatrixD êê Simplify êê MatrixForm

p a bI

kI

p a bI

kI

0 0

repronum1 = %@@1, 1DD

p a bI

kI

This fits the expectation that if everybody were susceptible (p=1) and moving around normally
(a=1), then R0 = bI

kI
 is the transmissibility bI times the average amount of time spent in the infec-

tious class (1/kI).

In order to have R0 fall to one without any mitigation measures (a=1), we would need p to equal
the inverse of the R0 in a fully susceptible population:
subbR = Flatten@Solve@Hrepronum1 ê. p Ø 1 ê. a Ø 1L ã R0, bIDD

8bI Ø R0 kI<

Factor@repronum1 ê. a Ø 1 ê. %D

p R0

R0threshold1 = p ê. Flatten@Solve@% ã 1, pDD êê Simplify

1

R0

With only one infectious class, we can use the equation (1) of Britton et al. to determine the social
distancing (a<1) needed such that the fraction of the population, sinf, that would remain suscepti-
ble after  the spread of  a  disease with social  distancing falls  to the threshold p found above
(assuming that enough time has passed with social mitigation that the disease has become rare
again):
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With only one infectious class, we can use the equation (1) of Britton et al. to determine the social
distancing (a<1) needed such that the fraction of the population, sinf, that would remain suscepti-
ble after  the spread of  a  disease with social  distancing falls  to the threshold p found above
(assuming that enough time has passed with social mitigation that the disease has become rare
again):

l in equation (1) is a typo and should be a???

eqn1 = 8sinf == Exp@-a bI H1 - sinfL ê kID<;

a ê. SolveBeqn1 ê. sinf Ø 1 ì
bI

kI
, aF@@1DD ê. subbR êê Simplify

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. à

LogA 1

R0
E

1 - R0

% ê. R0 Ø 2.5

0.61086

This is consistent with Figure 2, where a set to 0.6 was not quite enough to control the disease
(yellow curves rise after the first phase is over).

Two classes - Heterogeneity in fraction of susceptibles
ü Entering equations
Clear@b, freqD

ages = 1; H* Age class *L
stages = 2;H* Distancing class *L
classes = 3; H*SEI*L

Now let us change the differential equations such that the first stage corresponds to lower move-
ment and the second to higher movement individuals (reduced from the three stage model of
Britton et al.).

Although we could allow movement from non-distancing to distancing groups at rate ud and
from distancing to non-distancing at rate ur (constant for all disease classes and ages), we will
assume these are zero, as in Britton et al.:
tab1 = Table@H8dsdt@j, jjD, dedt@j, jjD, didt@j, jjD< ê. jj Ø 1L -

Hud * 8s@j, jjD, e@j, jjD, i@j, jjD< ê. jj Ø 1L +
Hur * 8s@j, jjD, e@j, jjD, i@j, jjD< ê. jj Ø 2L, 8j, 1, ages<D ê. ur Ø 0 ê. ud Ø 0;

tab2 = Table@H8dsdt@j, jjD, dedt@j, jjD, didt@j, jjD< ê. jj Ø 2L +
Hud * 8s@j, jjD, e@j, jjD, i@j, jjD< ê. jj Ø 1L -
Hur * 8s@j, jjD, e@j, jjD, i@j, jjD< ê. jj Ø 2L, 8j, 1, ages<D ê. ur Ø 0 ê. ud Ø 0;

eqns = Flatten@Join@tab1, tab2DD;

WIth two distancing classes, we set the b[j,1] terms to b1 (not social distancing) and the b[j,2]
terms to b2 (b1>b2), reflecting the current extent of social distancing. 
b@j_, 1D = b1;
b@j_, 2D = b2;

The stability matrix will determine the spread of the disease:
stabmat =

Table@D@eqns@@jDD, vars@@kDDD, 8j, 1, Length@eqnsD<, 8k, 1, Length@eqnsD<D ê. start ê.
s0@j_, 1D Ø p1 * S * freq@1D ê. s0@j_, 2D Ø p2 * S * freq@2D ê. S Ø 1 ê.

kE@j_, jj_D Ø kE ê. kI@j_, jj_D Ø kI ê. bI@j_, jj_D -> bI ê. a@j_, jj_D Ø a;
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Its characteristic polynomial will determine the eigenvalues:
charpoly2 = Det@l IdentityMatrix@Length@eqnsDD - stabmatD êê Factor

l2 HkE + lL HkI + lL IkE kI + kE l + kI l + l2 - b12 p1 a bI kE freq@1D - b22 p2 a bI kE freq@2DM

In the absense of immunity and no social mitigation measures (all individuals initially susceptible,
p1=p2=1 and a=1), we could estimate transmissibility bI from the observed exponential growth
rate of r0 and hold this rate constant (rather than R0, as Britton et al. held constant):

subbr = SimplifyBFlattenBSolveB
charpoly2

l2
ê. l Ø r0 ê. p1 Ø 1 ê. p2 Ø 1 ê. a Ø 1 ã 0, bIFF,

8freq@1D + freq@2D ã 1<F

:bI Ø
Hr0 + kEL Hr0 + kIL

kE Ib12 freq@1D + b22 freq@2DM
>

Note,  however,  that  holding r0,kE,kI  constant  gives the same relationship between bI  and the
activity  classes  as  estimated  from  R0  (see  below;  :bI Ø R0 kI

b12 freq@1D+b22 freq@2D
>),  given  that  all

activity classes have equal transition rates.  This would not be true in an age-dependent model,
however, if  more active individuals are also more likely to proceed through the asymptomatic
route of infection.  In that case, one would have to be careful about what one holds constant (r0
or R0).

ü Determining level of “infleuncer immunity”

Britton et  al.  estimate herd immunity  levels  with and without  heterogeneous contact  rates,
assuming that the number of infected individuals per newly infected individual,  R0, is  held
constant.  If all individuals were immunized/resistant at the same rate (leaving p susceptible),
then p*R0 would have to be less than one to prevent the disease from spreading. If, however,
the fraction of susceptible individuals of type i is pi, then the disease can stop spreading at a
lower fraction of  resistant  individuals (higher average fraction of  susceptibles p).   Here we
solve for p. To do so, Britton et al. identify the maximum amount of social activity (a) that will
cause just enough resistance to build up in the first wave that a seccond wave does not occur
once social mitigation measures are relaxed (returning a=1)

Rather than calling this “herd immunity”, it is easier to think of this as “influencer immunity”,
where influencers are those individuals most likely to spread the disease (here more active
individuals with more contacts). The “influencer immunity” is given by the fraction of individu-
als that would have to be resistant, 1 - p, to prevent a second wave and is less than the fraction
needed if all individuals were equally resistant (= “herd immunity” level).

Holding R0 constant: We find R0 using the next generation method (see Hurford et al. 2010 J. R.
Soc. Interface 7:561–571 and references therein), which is useful in more complicated cases with
abritrary age and stages. 

First, we must identify the F matrix (reproduction) and V matrix (movement), such that stabmat =
F-V.  Because we assume a large population of susceptibles relative to disease classes, we can
ignore the first row and column of the stability matrix and focus on the elements describing the
disease types.
We can use Drop to drop the first and fifth rows and columns (corresponding to the S class whose
eigenvalues are 0 when the disease is rare):
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Fmatrix = Transpose@Drop@Transpose@Drop@Hstabmat ê. kE Ø 0 ê. kI Ø 0L, 81, 4, 3<DD, 81, 4, 3<DD

990, b12 p1 a bI freq@1D, 0, b1 b2 p1 a bI freq@1D=, 80, 0, 0, 0<,

90, b1 b2 p2 a bI freq@2D, 0, b22 p2 a bI freq@2D=, 80, 0, 0, 0<=

Vmatrix =
-HTranspose@Drop@Transpose@Drop@HstabmatL, 81, 4, 3<DD, 81, 4, 3<DD - FmatrixL êê Factor

88kE, 0, 0, 0<, 8-kE, kI, 0, 0<, 80, 0, kE, 0<, 80, 0, -kE, kI<<

Correctly gives the same eigenvalue (stabmat = Fmatrix-Vmatrix):
Det@l IdentityMatrix@Length@VmatrixDD - HFmatrix - VmatrixLD;
Factor@charpoly2 ê %D

l2

which satisfies the conditions required for the next generation method (see Hurford et al.). 

R0 is given by the largest real eigenvalue of the simpler matrix: F V -1 
Fmatrix.Inverse@VmatrixD êê Simplify êê MatrixForm

b12 p1 a bI freq@1D

kI

b12 p1 a bI freq@1D

kI

b1 b2 p1 a bI freq@1D

kI

b1 b2 p1 a bI freq@1D

kI

0 0 0 0
b1 b2 p2 a bI freq@2D

kI

b1 b2 p2 a bI freq@2D

kI

b22 p2 a bI freq@2D

kI

b22 p2 a bI freq@2D

kI

0 0 0 0

Eigenvalues@%D

:0, 0, 0,
a bI Ib12 p1 freq@1D + b22 p2 freq@2DM

kI
>

repronum2 = Last@%D

a bI Ib12 p1 freq@1D + b22 p2 freq@2DM

kI

Simplify@% ê. subb, 8freq@1D + freq@2D ã 1<D

1

kI
a bI KHp1 + H-p1 + p2L freq@2DL b

2
+

Hp2 + Hp1 - p2L freq@2DL Vb + 2 Hp1 - p2L b -H-1 + freq@2DL freq@2D Vb O

Here, we hold R0 constant within a population that is fully susceptible (p1=p2=1) and not socially
distancing (a=1), allowing us to relate bI to R0:
subbR = Simplify@

Flatten@Solve@Hrepronum2 ê. a Ø 1 ê. p1 Ø 1 ê. p2 Ø 1L ã R0, bIDD, 8freq@1D + freq@2D ã 1<D

:bI Ø
R0 kI

b12 freq@1D + b22 freq@2D
>

We then consider a social mitigation measure (a<1) that allows the disease to run its course and
then relax the mitigation (returning to a=1).  At this point, we ask if the fraction of susceptibles
is sufficiently low to prevent a second wave of the disease.

In order to avoid a second wave without any mitigation measures (a=1), we need p1 and p2 to
balance the reproductive number R0 in a fully susceptible population such that the following falls
below one when mitigation measures are relaxed:
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Simplify@repronum2 ê. a Ø 1 ê. subbR, 8freq@1D + freq@2D ã 1<D

R0 Ib12 p1 freq@1D + b22 p2 freq@2DM

b12 freq@1D + b22 freq@2D

That is, we must choose a such that the above falls just to one (no further growth), i.e., where
b12 p1 freq@1D+b22 p2 freq@2D

b12 freq@1D+b22 freq@2D
ã 1

R0
 (call this the “first wave target”).

The simplest scenario is when there is extreme heterogeneity, where b2=0, in this case, we just
need the frequency of susceptibles in the high movement class p1 to equal 1

R0
, while non-movers

remain susceptible (p2=1).
b12 p1 freq@1D + b22 p2 freq@2D

b12 freq@1D + b22 freq@2D
ê. b2 Ø 0

p1

Ø The best case for a first wave eliminating the disease is when there is extreme varia-
tion in movement, with one class moving at rate b1 and the other class not moving. In
this  case,  “influencer  immunity”  is  reached  when  p1 = 1

R0
,  such  that

p = p1 freq@1D + p2 freq@2D =
freq@1D

R0
+ freq@2D.

One minus this fraction, I1 - 1
R0

M freq@1D, is the fraction of influencers that must be resistant to
prevent the disease from spreading during the second wave. If both classes are equally frequent
(freq[1]=1/2), this is half the number of immune individuals compared to the homogenous case
where all individuals move about equally.  Even less resistance is needed if the active class is
rarer.  Recall, though, that we hold R0 constant, so if the active class is rare, infected individuals
in this class must lead to many new infections.

This “best case” conclusion holds no matter how many classes, because the best case always
occurs when there is the maximal possible variability, which occurs when some individuals move
a lot and others not at all.

Numerical exploration suggests that roughly the same a value will lead to the best case first
wave, b1

2 p1 freq@1D+b22 p2 freq@2D

b12 freq@1D+b22 freq@2D
ã 1

R0
, regardless of how different the activity rates are betweent

the two groups.  The fact that a remains similar, regardless of heterogeneity in activity, isn’t
obvious and we return to this point below.

With two infectious classes, we can use equation (1) of Britton et al. to determine the social dis-
tancing (a<1) needed such that the fraction of the two sub-populations, p1 = s1@¶D

s1@0D
 and p2 = s2@¶D

s2@0D
,

that remain susceptible after the spread of a disease with social distancing falls to this threshold
(assuming that enough time has passed with social mitigation that the disease has become rare
again).

This  requires  solving equation 1  of  Britton et  al.  for  the  susceptible  fractions,  p1 = s1@¶D

s1@0D
 and

p2 = s2@¶D

s2@0D
, giving two equations that must equal zero:
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eqn1 = 9p1 - ExpA-a freq@1D bI b12 H1 - p1L ê kI - a freq@2D bI b1 b2 H1 - p2L ê kIE,

p2 - ExpA-a freq@1D bI b1 b2 H1 - p1L ê kI - a freq@2D bI b22 H1 - p2L ê kIE= êê Simplify

:-‰
b1 a bI Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2DL

kI + p1, -‰
b2 a bI Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2DL

kI + p2>

Without  any  heterogeneity  (b1=b2=1),  we  regain  the  result  of  the  one  class  model  that

a Ø
LogB

1

R0
F

1-R0
:

Simplify@eqn1@@1DD ê. subbR ê. b1 Ø b ê. b2 Ø b ê. p1 -> p ê. p2 -> p,
8freq@1D + freq@2D ã 1<D êê Flatten

-‰R0 a I-1+pM + p

Simplify@Solve@% ã 0, aDD êê Flatten

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. à

:a Ø
Log@pD

R0 H-1 + pL
>

Simplify@% ê. p Ø 1 ê R0D

:a Ø
LogA 1

R0
E

1 - R0
>

% ê. R0 Ø 2.5

8a Ø 0.61086<

This is consistent with Figure 2 in Britton et al., where a set to 0.6 was not quite enough to con-
trol the disease (yellow curves rise after the first phase is over).
With heterogeneity in activity, we can use the relationship between p1, p2 and R0 from the first
wave target to replace for p2:

SimplifyBSolveB
b12 p1 freq@1D + b22 p2 freq@2D

b12 freq@1D + b22 freq@2D
ã

1

R0
, p2F, 8freq@1D + freq@2D ã 1<F êê Flatten

:p2 Ø
b12 H1 - p1 R0L freq@1D + b22 freq@2D

b22 R0 freq@2D
>

Simplify@eqn1 ê. subbR ê. %, 8freq@1D + freq@2D ã 1<D êê Flatten

:-‰

b1 a J-b1 b2 H-1+p1L R0 H-1+freq@2DL+b12 H-1+p1 R0L H-1+freq@2DL-b22 H-1+R0L freq@2DN

b12 b2 freq@1D+b23 freq@2D + p1,
1

b22 R0 freq@2D

b12 H1 - p1 R0L freq@1D - b22 -1 + ‰

a J-b1 b2 H-1+p1L R0 H-1+freq@2DL+b12 H-1+p1 R0L H-1+freq@2DL-b22 H-1+R0L freq@2DN

b12 freq@1D+b22 freq@2D R0 freq@2D >

Solving the first one for a and plugging into the second:
Simplify@Solve@%@@1DD ã 0, aD, 8freq@1D + freq@2D ã 1<D êê Flatten

9a Ø Ib2 Ib12 freq@1D + b22 freq@2DM Log@p1DM ë Ib1

I-b1 b2 H-1 + p1L R0 H-1 + freq@2DL + b12 H-1 + p1 R0L H-1 + freq@2DL - b22 H-1 + R0L freq@2DMM=
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Simplify@%%@@2DD ê. %, 8freq@1D + freq@2D ã 1<D

b12 H1 - p1 R0L freq@1D - b22 K-1 + p1
b2

b1 R0O freq@2D

b22 R0 freq@2D

This cannot be solved explicitly for p1, but it can be rearranged more simply as:
Simplify@Solve@% ã 0, R0DD êê Flatten

:R0 Ø
b12 freq@1D + b22 freq@2D

b12 p1 freq@1D + b22 p1
b2

b1 freq@2D

>

This  provides  a  useful  insight,  as  it  indicates  that  the  solution  must  have  the  form
b12 p1 freq@1D+ b22 p1

b2

b1 freq@2D

b12 freq@1D+b22 freq@2D
ã 1

R0
, which is identical to the “first wave target”  that causes the dis-

ease to neither grow nor decline after mitigation, except with p2 = p1
b2

b1 .

Ø Thus, the fraction of susceptibles that must be resistant for mitigation to just stop a
second wave once relaxed satisfies p1

1

b1 = p2
1

b2 .

At this point, we have an equation that we can solve for p1 and then get p2, and we do not need
to find a to do so:
Clear@getmeD
getme@R0_, Var_, fr_D := getme@R0, Var, frD =

FindRootB
b12 p1 freq@1D + b22 p1

b2

b1 freq@2D

b12 freq@1D + b22 freq@2D
ã

1

R0
ê. subb ê. b Ø 1 ê. Vb Ø Var ê. freq@1D Ø fr ê.

freq@2D Ø 1 - fr , 8p1, 0.2, 0, 1<F

For  example,  when  there  is  no  heterogeneity  (Vb=0),  we  regain  the  one  class  result  that
p1=p2=2/5 to balance an R0 of 5/2:
getme@2.5, 0, 1 ê 2D

8p1 Ø 0.4<

But with heterogeneity, the disease can stop spreading after mitigation is relaxed (a returning to
one) with a higher total number of susceptible individuals, as argued by Britton et al.

Table of the final fraction of susceptibles with increasing variance in activity (from 0 to 1):

TableBp ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2, 8Var, 0, 1, 1 ê 10<F

80.4, 0.465962, 0.518138, 0.559153, 0.591768,
0.618185, 0.640009, 0.658388, 0.674142, 0.687867, 0.7<

That  is,  “influencer  immunity”  requires  fewer  resistant  individuals  than  “herd  immunity”  with
heterogeneity in activity, as illustrated in the following plot (red = total fraction of susceptibles,
black is among more active “influencers”, and black dashed is among less active individuals):
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ShowB

ListPlotBTableB:Var, p ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø RedF,

ListPlotBTableB:Var, p1 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê. getme@2.5, Var, 1 ê 2D ê.

R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø BlackF, ListPlotB

TableB:Var, p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê. getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê.

freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>, 8Var, 0, 1, 1 ê 100<F,

Joined Ø True, PlotStyle Ø 8Black, Dashed<F, PlotRange Ø 880, 1<, 80, 1<<,

AxesOrigin Ø 80, 0<, AxesLabel Ø 8"Vb", "Freq Susceptibles"<

F

0.2 0.4 0.6 0.8 1.0
Vb
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Here we note that the fraction of individuals that are susceptible in the different activity classes
satisfies pi

1

bi = constant even with more activity classes.

We can verify  that  p2 Ø p1
b2

b1  has the correct  form for  the solution in that  the two equations
defined by Britton et al. become identical, if we rearrange and then take the two sides to the
power of b1/b2:

‰

b2 a bI b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D

kI == p1
b2

b1

‰

b1 a bI b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D

kI == p1

This also true with more heterogeneity classes, e.g., with three heterogeneity classes:
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eqn1three = 9p1 - ExpA-a freq@1D bI b12 H1 - p1L ê kI -

a freq@2D bI b1 b2 H1 - p2L ê kI - a freq@3D bI b1 b3 H1 - p3L ê kIE,

p2 - ExpA-a freq@1D bI b1 b2 H1 - p1L ê kI - a freq@2D bI b22 H1 - p2L ê kI -

a freq@3D bI b2 b3 H1 - p3L ê kIE,

p3 - ExpA-a freq@1D bI b1 b3 H1 - p1L ê kI - a freq@2D bI b2 b3 H1 - p2L ê kI -

a freq@3D bI b32 H1 - p3L ê kIE= êê Simplify

:-‰
b1 a bI Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2D+b3 H-1+p3L freq@3DL

kI + p1,

-‰
b2 a bI Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2D+b3 H-1+p3L freq@3DL

kI + p2, -‰
b3 a bI Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2D+b3 H-1+p3L freq@3DL

kI + p3>

A solution has the form p1
1

b1 == p2
1

b2 == p3
1

b3

SimplifyBeqn1three ê. p2 Ø p1
b2

b1 ê. p3 Ø p1
b3

b1F

:-‰

b1 a bI b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D+b3 -1+p1

b3

b1 freq@3D

kI + p1,

-‰

b2 a bI b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D+b3 -1+p1

b3

b1 freq@3D

kI + p1
b2

b1, -‰

b3 a bI b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D+b3 -1+p1

b3

b1 freq@3D

kI + p1
b3

b1>

as can be confirmed again by rearranging the last two equations with the exponent on one side

and the pi
bi

b1  term on the other, taking both sides to the power of b1/bi, and noting that we
regain the first equation.  The same is true regardless of the number of activity classes, as can be

shown  by  plugging  in  pi = p1
bi

b1  into  equation  (1)  of  Britton  et  al.
pi = ExpA-a ⁄j=1

classes freq@iD bI bi bj H1 - pjL ê kIE.

ü Exploring why a remains roughly the same, regardless of heterogeneity in activity

Returning to why a is nearly the same value regardless ...

From the first  equation in equation (1),  we solved for  a  above.   Plugging in the solution for
{p1,p2}, we see that a is nearly constant regardless of the variance:

TableB

b2 Ib12 freq@1D + b22 freq@2DM Log@p1D

b1 I-b1 b2 H-1 + p1L R0 H-1 + freq@2DL + b12 H-1 + p1 R0L H-1 + freq@2DL - b22 H-1 + R0L freq@2DM
ê.

p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê. getme@2.5, Var, 1 ê 2D ê.

R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2, 8Var, 0, 1, 1 ê 10<F

80.61086, 0.61328, 0.613639, 0.613253, 0.612671,
0.612108, 0.611639, 0.611284, 0.611042, 0.610904, Indeterminate<

BrittonCommentsShort.nb   11



ListPlotB

TableB:Var, Ib2 Ib12 freq@1D + b22 freq@2DM Log@p1DM ë Ib1 I-b1 b2 H-1 + p1L R0 H-1 + freq@2DL +

b12 H-1 + p1 R0L H-1 + freq@2DL - b22 H-1 + R0L freq@2DMM ê.

p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 99 ê 100, 1 ê 100<F, Joined Ø True, PlotStyle Ø

Blue,
AxesLabel Ø

8"Vb", "a"<F

0.2 0.4 0.6 0.8 1.0
Vb

0.6110

0.6115

0.6120

0.6125

0.6130

0.6135

a

This slight change in the necessary level of mitigation is real (checked and is not a numerical
inaccuracy), but does it matter that a isn’t exactly constant at the level a =

Log@p1D

1-R0
 predicted in

the one-class case?

Here we obtain the predicted values of p1 = s1@¶D

s1@0D
 and p2 = s2@¶D

s2@0D
 from equation 1 of Britton et al.

assuming that a was given by the mitigation level needed to prevent a second wave in a homoge-
neous population, a =

Log@1êR0D

1-R0
:

SimplifyBeqn1 ê. a ->
Log@1 ê R0D

1 - R0
ê. subbR, 8freq@1D + freq@2D ã 1<F

:p1 -
1

R0

-
b1 R0 Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2DL

H-1+R0L Jb12 freq@1D+b22 freq@2DN
, p2 -

1

R0

-
b2 R0 Hb1 H-1+p1L freq@1D+b2 H-1+p2L freq@2DL

H-1+R0L Jb12 freq@1D+b22 freq@2DN
>

Again, after the first wave, the two equations are equivalent if p2 = p1
b2

b1 , leaving:

SimplifyB%@@1DD ê. p2 -> p1
b2

b1F

p1 -
1

R0

-

b1 R0 b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D

H-1+R0L Jb12 freq@1D+b22 freq@2DN
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Clear@getme2D
getme2@R0_, Var_, fr_D := getme2@R0, Var, frD =

FindRootB p1 -
1

R0

-

b1 R0 b1 H-1+p1L freq@1D+b2 -1+p1

b2

b1 freq@2D

H-1+R0L Jb12 freq@1D+b22 freq@2DN
ã 0 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

freq@1D Ø fr ê. freq@2D Ø 1 - fr , 8p1, 0.2, 0, 1<F

ShowB

ListPlotBTableB:Var, p ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø RedF,

ListPlotBTableB:Var, p1 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê. getme@2.5, Var, 1 ê 2D ê.

R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø BlackF, ListPlotB

TableB:Var, p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê. getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê.

freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø 8Black, Dashed<F,

ListPlotBTableB:Var, p ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme2@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø PurpleF,

PlotRange Ø 880, 1<, 80, 1<<, AxesOrigin Ø 80, 0<, AxesLabel Ø 8"Vb", "Freq Susceptibles"<

F

0.2 0.4 0.6 0.8 1.0
Vb

0.2

0.4

0.6

0.8

1.0

Freq Susceptibles

There is a slight but negligible difference between the two choices (setting a to the maximum
possible value to avoid the second wave knowing the heterogeneity in red, and not knowing the
heterogeneity in purple), the difference being:
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There is a slight but negligible difference between the two choices (setting a to the maximum
possible value to avoid the second wave knowing the heterogeneity in red, and not knowing the
heterogeneity in purple), the difference being:

ListPlotB

TableB:Var, Kp ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê. getme@

2.5, Var, 1 ê 2DO - Kp ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê.

Vb Ø Var ê. getme2@2.5, Var, 1 ê 2DO ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø Pink, AxesLabel Ø

8"Vb", "Diff"<F

0.2 0.4 0.6 0.8 1.0
Vb

-0.0035

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

Diff

While not obvious, this has an important implication: one could set a to the level in an unstruc-
tured population that would just avoid a second wave, without knowing the underlying heterogene-
ity in the population, and yet also just avoid a second wave if the population were structured.
The implications for the total number of cases and total number of deaths would, however, be
large.

ü Optimal solution

While having a first wave run through a population can lead to fewer total cases and deaths,
the resulting fraction of {p1,p2} is not optimal.  The optimal solution involves immunizing the
most influential spreaders, then the next, until 1/R0 is reached.  This is the logic behind first
vaccinating health care workers, teachers, and others who have a lot of contact.  What does this
optimal strategy look like and how many fewer people would have to be immune?

With two activity classes, this would imply vaccinating the most active class first and not the least
active  class  (p2=1)  until  the  threshold  needed  to  prevent  disease  spread
b12 p1 freq@1D+b22 p2 freq@2D

b12 freq@1D+b22 freq@2D
ã 1

R0
 or  p1=0  is  reached.  Then,  in  the  latter  case  (i.e.,  when

b12 p1 freq@1D+b22 p2 freq@2D

b12 freq@1D+b22 freq@2D
¥ 1

R0
 even when p1=0 and p2=1), vaccinating the least active class until

the threshold is reached.

SolveB
b12 p1 freq@1D + b22 p2 freq@2D

b12 freq@1D + b22 freq@2D
ê. p2 Ø 1 ã

1

R0
, p1F êê Flatten

:p1 Ø
b12 freq@1D + b22 freq@2D - b22 R0 freq@2D

b12 R0 freq@1D
>
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SolveB
b12 p1 freq@1D + b22 p2 freq@2D

b12 freq@1D + b22 freq@2D
ê. p1 Ø 0 ã

1

R0
, p2F êê Flatten

:p2 Ø
b12 freq@1D + b22 freq@2D

b22 R0 freq@2D
>

With equal frequencies of the two classes, only the more active class needs to be vaccinated as
long as the variance in mobility ¥ 49 - 20 6 ~ 0.01:

SolveB

b22 freq@2D

b12 freq@1D + b22 freq@2D
ê. subb ê. b Ø 1 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2 ã

1

R0
, VbF;

% ê. R0 Ø 5 ê 2 êê Simplify
% êê N

::Vb Ø 49 - 20 6 >, :Vb Ø 49 + 20 6 >>

88Vb Ø 0.0102051<, 8Vb Ø 97.9898<<

An intentional vaccination strategy could thus lead to even fewer cases and deaths (green curve),
although the difference isn’t that large if activity is highly variable:
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ShowBListPlotBTableB:Var, p ê. p Ø freq@1D p1 + freq@2D p2 ê.

IfBVar ¥ 49 - 20 6 , :p1 ->
b12 freq@1D + b22 freq@2D - b22 R0 freq@2D

b12 R0 freq@1D
, p2 Ø 1>,

:p1 Ø 0, p2 Ø
b12 freq@1D + b22 freq@2D

b22 R0 freq@2D
>F ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 200<F, Joined Ø True, PlotStyle Ø

Green,
PlotRange Ø

AllF,

ListPlotBTableB:Var,

p1 ê. IfBVar ¥ 49 - 20 6 , :p1 ->
b12 freq@1D + b22 freq@2D - b22 R0 freq@2D

b12 R0 freq@1D
, p2 Ø 1>,

:p1 Ø 0, p2 Ø
b12 freq@1D + b22 freq@2D

b22 R0 freq@2D
>F ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 00, 1, 1 ê 200<F, Joined Ø True, PlotStyle Ø

BlackF, ListPlotBTableB

:Var, p2 ê. IfBVar ¥ 49 - 20 6 , :p1 ->
b12 freq@1D + b22 freq@2D - b22 R0 freq@2D

b12 R0 freq@1D
, p2 Ø 1>,

:p1 Ø 0, p2 Ø
b12 freq@1D + b22 freq@2D

b22 R0 freq@2D
>F ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 200<F, Joined Ø True, PlotStyle Ø 8Black, Dashed<F,

ListPlotBTableB:Var, p ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø RedF,

PlotRange Ø 880, 1<, 80, 1<<, AxesOrigin Ø 80, 0<, AxesLabel Ø 8"Vb", "Freq Susceptibles"<

F
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ShowBListPlotBTableB:Var, 1 - p ê. p Ø freq@1D p1 + freq@2D p2 ê.

IfBVar ¥ 49 - 20 6 , :p1 ->
b12 freq@1D + b22 freq@2D - b22 R0 freq@2D

b12 R0 freq@1D
, p2 Ø 1>,

:p1 Ø 0, p2 Ø
b12 freq@1D + b22 freq@2D

b22 R0 freq@2D
>F ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 200<F, Joined Ø True, PlotStyle Ø

Green,
PlotRange Ø

AllF,

ListPlot@Table@8Var, 0.6<, 8Var, 00, 1, 1 ê 200<D, Joined Ø True,

PlotStyle Ø 8Dashed, Blue<D, ListPlotB

TableB:Var, 1 - p ê. p Ø freq@1D p1 + freq@2D p2 ê. p2 Ø p1
b2

b1 ê. subb ê. b Ø 1 ê. Vb Ø Var ê.

getme@2.5, Var, 1 ê 2D ê. R0 Ø 5 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2>,

8Var, 0, 1, 1 ê 100<F, Joined Ø True, PlotStyle Ø RedF,

Graphics@8Text@Style@"Blue: everybody equally immune", BlueD, 80.74, 0.68<D,
Text@Style@"Red: mitigation preventing a second wave", RedD, 80.67, 0.48<D,
Text@Style@"Best case immunization program", GreenD, 80.74, 0.25<D<D,

PlotRange Ø 880, 1<, 80, 1<<, AxesOrigin Ø 80, 0<, AxesLabel Ø 8"Vb", None<,
PlotLabel Ø "Immunity needed to prevent disease spread"

F

Blue: everybody equally immune

Red: mitigation preventing a second wave

Best case immunization program

0.0 0.2 0.4 0.6 0.8 1.0
Vb0.0

0.2

0.4

0.6

0.8

1.0
Immunity needed to prevent disease spread

ü Numerical checks

Here we confirm the main points above. Note that in the plots below, the number of currently
infectious individuals is multiplied by five for visibility.
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Clear@numsolD
numsol@bI_, kI_, kE_, e_, s10_, s20_, b1_, b2_, a_D :=
numsol@bI, kI, kE, e, s10, s20, b1, b2, aD =

NDSolveA9D@s1@tD, tD == s1@tD I-b12 a i1@tD bI - b1 b2 a i2@tD bIM,

D@e1@tD, tD == s1@tD Ib12 a i1@tD bI + b1 b2 a i2@tD bIM - e1@tD kE,
D@i1@tD, tD == e1@tD kE - i1@tD kI,
D@s2@tD, tD == s2@tD I-b1 b2 a i1@tD bI - b22 a i2@tD bIM,

D@e2@tD, tD == s2@tD Ib1 b2 a i1@tD bI + b22 a i2@tD bIM - e2@tD kE,
D@i2@tD, tD == e2@tD kE - i2@tD kI,
s1@0D ã s10 H1 - eL, e1@0D ã s10 e, i1@0D ã 0,
s2@0D ã s20 H1 - eL, e2@0D ã s20 e, i2@0D ã 0=,

8s1@tD, e1@tD, i1@tD, s2@tD, e2@tD, i2@tD<, 8t, 0, 500<E

NO HETEROGENEITY: Fixing R0=2.5 (bI = 1/2, kI=1/5, b1=b2=1), the first plot shows the dynam-

ics  without  mitigation,  the  second with  mitigation  using  a=
LogB

1

R0
F

1-R0
=0.61,  and  the  third  after

mitigation is lifted (a=1) using the final fractions of susceptibles after the first wave (restart),
confirming that this level of social mitigation prevents a second wave:

restart = FlattenB

8s1@tD, s2@tD< ê. numsolB1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1,
LogA 2

5
E

1 - 5 ê 2
F ê. t Ø 500F

80.199949, 0.199949<

GraphicsGridB::

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1, 1DD,
8t, 0, 500<, PlotRange Ø AllD,

PlotBEvaluateB8s1@tD, 5 i1@tD< ê. numsolB1 ê 2, 1 ê 5, 1, 1 ê 10 000,

1 ê 2, 1 ê 2, 1, 1,
LogA 2

5
E

1 - 5 ê 2
FF, 8t, 0, 500<, PlotRange Ø AllF,

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000,
restart@@1DD, restart@@2DD, 1, 1, 1DD, 8t, 0, 500<, PlotRange Ø AllD

>>F
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Total number of cases in the unmitigated vs mitigated + relaxed (first and last graph):
8Evaluate@1 - Hs1@tD + s2@tDL ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1, 1D ê. t Ø 500D,
Evaluate@1 - Hs1@tD + s2@tDL ê.

numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, restart@@1DD, restart@@2DD, 1, 1, 1D ê. t Ø 500D<

880.892659<, 80.603083<<
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This illustrates that if a were slightly smaller (0.55) there would be a second wave (last panel):
restart = Flatten@

8s1@tD, s2@tD< ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1, 0.55D ê. t Ø 500D;
GraphicsGrid@88

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1, 1DD,
8t, 0, 500<, PlotRange Ø AllD,

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1, 0.55DD,
8t, 0, 500<, PlotRange Ø AllD,

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000,
restart@@1DD, restart@@2DD, 1, 1, 1DD, 8t, 0, 500<, PlotRange Ø AllD

<<D
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Total number of cases in the unmitigated vs mitigated + relaxed (first and last graph):
8Evaluate@1 - Hs1@tD + s2@tDL ê. numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1, 1, 1D ê. t Ø 500D,
Evaluate@1 - Hs1@tD + s2@tDL ê.

numsol@1 ê 2, 1 ê 5, 1, 1 ê 10 000, restart@@1DD, restart@@2DD, 1, 1, 1D ê. t Ø 500D<

880.892659<, 80.692436<<

WITH HETEROGENEITY: The same plots but with b1=1.5 and b2=0.5 (b = 1, Vb = 1 ê 4, bI now

has to be 2 kI), the following confirms that a=
LogB

1

R0
F

1-R0
 still prevents the second wave.

R0 kI

b12 freq@1D + b22 freq@2D
ê. b1 Ø 3 ê 2 ê. b2 Ø 1 ê 2 ê. freq@1D Ø 1 ê 2 ê. freq@2D Ø 1 ê 2 ê.

R0 Ø 5 ê 2

2 kI
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restart = FlattenB8s1@tD, s2@tD< ê.

numsolB2 ê 5, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1.5, 0.5,
LogA 2

5
E

1 - 5 ê 2
F ê. t Ø 500F;

GraphicsGridB::

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1.5, 0.5, 1DD,
8t, 0, 500<, PlotRange Ø AllD,

PlotBEvaluateB8s1@tD, 5 i1@tD< ê. numsolB2 ê 5, 1 ê 5, 1, 1 ê 10 000,

1 ê 2, 1 ê 2, 1.5, 0.5,
LogA 2

5
E

1 - 5 ê 2
FF, 8t, 0, 500<, PlotRange Ø AllF,

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, restart@@1DD,
restart@@2DD, 1.5, 0.5, 1DD, 8t, 0, 500<, PlotRange Ø AllD
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Total number of cases in the unmitigated vs mitigated + relaxed (first and last graph):
8Evaluate@

1 - Hs1@tD + s2@tDL ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1.5, 0.5, 1D ê. t Ø 500D,
Evaluate@1 - Hs1@tD + s2@tDL ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000,

restart@@1DD, restart@@2DD, 1.5, 0.5, 1D ê. t Ø 500D<

880.739973<, 80.461285<<

(Note that heterogeneity reduces the total number of cases even without mitigation, because the
individuals remaining as Rt drops are more likely the least active.)
This plot illustrates that if a were slightly smaller (0.55) there would be a second wave (last panel):
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restart = Flatten@
8s1@tD, s2@tD< ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1.5, 0.5, 0.55D ê. t Ø 500D;

GraphicsGrid@88
Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1.5, 0.5, 1DD,
8t, 0, 500<, PlotRange Ø AllD,

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000,
1 ê 2, 1 ê 2, 1.5, 0.5, 0.55DD, 8t, 0, 500<, PlotRange Ø AllD,

Plot@Evaluate@8s1@tD, 5 i1@tD< ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, restart@@1DD,
restart@@2DD, 1.5, 0.5, 1DD, 8t, 0, 500<, PlotRange Ø AllD
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Total number of cases in the unmitigated vs mitigated + relaxed (first and last graph):
8Evaluate@

1 - Hs1@tD + s2@tDL ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000, 1 ê 2, 1 ê 2, 1.5, 0.5, 1D ê. t Ø 500D,
Evaluate@1 - Hs1@tD + s2@tDL ê. numsol@2 ê 5, 1 ê 5, 1, 1 ê 10 000,

restart@@1DD, restart@@2DD, 1.5, 0.5, 1D ê. t Ø 500D<

880.739973<, 80.542414<<
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