
 on April 2, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
rspb.royalsocietypublishing.org
Research
Cite this article: Yamamichi M, Ellner SP.

2016 Antagonistic coevolution between

quantitative and Mendelian traits. Proc. R. Soc.

B 283: 20152926.

http://dx.doi.org/10.1098/rspb.2015.2926
Received: 8 December 2015

Accepted: 24 February 2016
Subject Areas:
ecology, evolution, theoretical biology

Keywords:
coevolution, polygenic continuous trait,

major-gene discrete trait, Red Queen dynamics,

eco-evolutionary feedbacks, extinction
Author for correspondence:
Masato Yamamichi

e-mail: yamamichi@ecology.kyoto-u.ac.jp
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2015.2926 or

via http://rspb.royalsocietypublishing.org.
& 2016 The Author(s) Published by the Royal Society. All rights reserved.
Antagonistic coevolution between
quantitative and Mendelian traits

Masato Yamamichi1,2,3 and Stephen P. Ellner3

1Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto 606-8501, Japan
2Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
3Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA

MY, 0000-0003-2136-3399

Coevolution is relentlessly creating and maintaining biodiversity and there-

fore has been a central topic in evolutionary biology. Previous theoretical

studies have mostly considered coevolution between genetically symmetric

traits (i.e. coevolution between two continuous quantitative traits or two dis-

crete Mendelian traits). However, recent empirical evidence indicates that

coevolution can occur between genetically asymmetric traits (e.g. between

quantitative and Mendelian traits). We examine consequences of antagonistic

coevolution mediated by a quantitative predator trait and a Mendelian prey

trait, such that predation is more intense with decreased phenotypic distance

between their traits (phenotype matching). This antagonistic coevolution pro-

duces a complex pattern of bifurcations with bistability (initial state

dependence) in a two-dimensional model for trait coevolution. Furthermore,

with eco-evolutionary dynamics (so that the trait evolution affects preda-

tor–prey population dynamics), we find that coevolution can cause rich

dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics

and deterministic predator extinction. Predator extinction is more likely to

occur when the prey trait exhibits complete dominance rather than semi-

dominance and when the predator trait evolves very rapidly. Our study

illustrates how recognizing the genetic architectures of interacting ecological

traits can be essential for understanding the population and evolutionary

dynamics of coevolving species.
1. Introduction
Coevolution—reciprocal evolution in interacting species—has been considered a

driving force for creating and maintaining biodiversity [1]. Evolutionary ‘arms

races’ in predator–prey, parasite–host and exploiter–victim systems [2,3] are

thought to create an endless evolutionary chase called Red Queen dynamics

[4,5]. In addition to accumulating empirical evidence of coevolution [1,5], recent

studies have shown that evolution can be rapid enough to affect contemporary

population dynamics [6–8]. Understanding ‘rapid coevolution’ is therefore

important for understanding and predicting future ecological dynamics [9–11].

Theoretical studies on coevolution have mostly considered genetically

symmetric traits in antagonistic interactions (i.e. coevolution either between

continuous quantitative traits or between discrete Mendelian traits) [5]. Continu-

ous quantitative traits are generally modelled using phenotypically based

approaches for trait evolutionary dynamics, partly because the genetic basis of

ecologically important traits was largely unknown [3]. The approaches include

approximate quantitative genetics models for multilocus trait dynamics

(e.g. [10–17]), mutation-limited asexual clonal models (Adaptive Dynamics)

(e.g. [18–24]) and models for evolutionarily stable strategies (ESS) that cannot

be invaded by other strategies (e.g. [25]). These studies have assumed that the

coevolving traits are quantitative with a continuum of possible values [26].

Coevolution between Mendelian predator and prey traits has also been studied

(e.g. [27–31]). Indeed, there is a large theoretical literature going back to classical
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population genetics about exploiter–victim coevolution with

Mendelian traits (reviewed by Seger [32]).

How do different genetic architectures affect coevolution-

ary dynamics? One important difference is that Mendelian

models have an inherent tendency to cycle, first noted by

Haldane [32]. Multiple alleles, multiple loci or multiple species

versions of these models readily generate complex cycles or

chaotic dynamics [32,33]. A comparison of models with two

versus more alleles suggests that cycles would be very likely

when prey and predator have continuously varying quantitat-

ive traits, but in fact the reverse is true [32]: coevolution of

quantitative traits rarely produces cycles. The key difference

is that in quantitative trait models, all phenotypes are near

the population mean [32]. Cycles in Mendelian models involve

switches between extremes: high frequency of one predator

type (feeding on its complementary prey genotype) causes

increased frequency of the least complementary prey genotype.

By contrast, in quantitative trait models, trait distributions

change through gradual shifts in the mean of a Gaussian distri-

bution. Coevolution-driven cycles can occur in quantitative

trait models [14,19], but these require very strong external sta-

bilizing selection for intermediate trait values [15]. With

external stabilizing selection weak or absent, the only possible

type of ongoing dynamics is unbounded runaway selection for

extreme traits [14,15].

Coevolution models with discrete Mendelian traits have

frequently been used for parasite–host coevolution, whereas

models for predator–prey coevolution mainly assume conti-

nuous quantitative traits [32]. However, empirical studies

have found many ecologically important traits controlled

by Mendelian inheritance in prey (e.g. [34–36]) or predator

(e.g. [37–39]) species [40]. This suggests the potential impor-

tance of coevolution between traits with different genetic

bases. To the best of our knowledge, no study has examined

the outcome of coevolution between quantitative and

Mendelian traits, despite empirical evidence for coevolution

of this type [36]. In Southeast Asia, some snakes can eat

right-handed (dextral) land snails effectively but are not

good at eating left-handed (sinistral) snails because of

left–right asymmetry in the snakes [36,41]. Within the right-

handed snake range, left-handed snail species frequently

evolved by speciation from a right-handed ancestor, probably

as a counter-adaptation against the biased predation [36,42].

Handedness of snails is determined by two alleles at a single

nuclear locus [36,43], whereas the snake traits (teeth number

on each side and foraging behaviour) are continuous quantitat-

ive traits [41] and therefore they seem to be controlled by many

loci with small effects. These observations indicate antagonistic

coevolution between quantitative and Mendelian traits. Will

the dynamics resemble Mendelian–Mendelian coevolution,

quantitative–quantitative coevolution, something in between,

or are some new phenomena likely to occur?

In this study, we examine theoretically coevolution between

a quantitative predator trait and a Mendelian prey trait. Our

model is analogous to matching-allele interaction, in that preda-

tors are most able to capture prey whose phenotype matches

their own (i.e. a bidirectional axis of vulnerability sensu [3]).

We consider both purely coevolutionary dynamics (trait

evolution that does not interact with population dynamics)

and eco-evolutionary dynamics (traits and population sizes

change on the same time scale). Analysis of our models

shows that: (i) continuous-discrete coevolution can produce a

rich array of dynamics including bistability (initial state
dependence), anti-phase cycles, in-phase cycles and chaotic

dynamics, (ii) semidominance of the prey trait is more favour-

able for predator persistence than complete dominance and

(iii) increasing heritability of the predator trait can result in

deterministic predator extinction. We also present some results

for the reverse situation, Mendelian predator and quantitative

prey traits.
2. Model
We consider a predator–prey model with phenotype matching

(a bidirectional axis) instead of a unidirectional axis of

vulnerability (e.g. speed, toxin or armour: [10,12,13,16,17,44]).

Phenotype matching means that predators are most successful

at capturing prey when their trait value x is close in value to the

prey trait value u, and unsuccessful if jx2uj is large. Examples

of phenotype matching include habitat choice, pattern match-

ing and lock-and-key mechanisms [9,13–15,18–20,45,46].

We assume that per capita attack rate on prey genotype i
declines in a Gaussian manner when x differs from ui,

aiðxÞ ¼ ai exp½�ðx� uiÞ2=ð2t2Þ�: Here ai is the maximum per
capita attack rate, and t determines how steeply the rate

decreases as predator–prey mismatch increases [47].

The predator trait distribution is Gaussian, with mean

�xðtÞ and constant phenotypic variance s2: fðx, �xÞ ¼
exp½�ðx� �xÞ2=ð2s2Þ�=

ffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

: We assume (i) that phenotypic

variance has a genetic (heritable) component, s2
G, and an

environmental component, s2
E, with s2 ¼ s2

G þ s2
E, and for

simplicity, (ii) that the variance components are constant,

which is commonly assumed in dynamic models for

quantitative trait evolution [10–12,14,26].

Under our assumptions, the average attack rate by a

predator on prey genotype i is

�aið�xÞ ¼
ð1

�1

aiðxÞf ðx, �xÞdx

¼ aitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2
p exp � ð

�x� uiÞ2

2ðt2 þ s2Þ

" #
, ð2:1Þ

where i ¼ 1, 2 and 3 correspond to prey genotypes A1A1,

A1A2 and A2A2, respectively. The model represents com-

plete dominance with two discrete prey trait values when

u1 ¼ u2 = u3. In semidominance, the heterozygotes have an

intermediate trait u2 ¼ (u1 þ u3)/2 so there are three distinct

prey phenotypes. We assume that u1 ¼ –u3 without loss of

generality, so that u2 ¼ 0 under semidominance. The above

models represent ends of a spectrum. There is a continuum

between these extremes and probably some sort of smooth

transition between their dynamics.

(a) Evolutionary dynamics model
Our first model considers purely evolutionary dynamics

driven by relative fitness, with total population sizes held

constant as in [14]. Let p be the A1 allele frequency. We

assume prey genotype fitnesses (in discrete time, with dis-

crete generations) to be Wi ¼ ð1þ r1Þð1� �aiP1Þ, where 1 is

prey generation time, r is the reproduction rate (equal for

all genotypes), P is the predator density and �ai ¼ �aið�xÞ defined

by equation (2.1). Thus, the only advantage of one prey

phenotype over another is predation risk. We assume that

prey start each generation in Hardy–Weinberg equilibrium

owing to random mating. To eliminate dynamic behaviours

http://rspb.royalsocietypublishing.org/
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resulting only from the assumption of discrete generations,

we pass to a continuous-time approximation in the usual

way, by assuming small changes per generation (1� 1)

owing to weak selection (e.g. [48], §3.3). In the electronic sup-

plementary material, appendix S1, we show that for small 1,

the prey evolutionary dynamics are approximated by a con-

tinuous-time equation determined by the additive genetic

variance and fitness gradient,

dp
dt
¼ pð1� pÞ

2

@

@p
½��aðp, �xÞP�

¼ pð1� pÞP½pð2�a2 � �a1 � �a3Þ � �a2 þ �a3�,
ð2:2Þ

where �aðp, �xÞ is the per-predator attack rate or average predation

rate, �aðp, �xÞ ¼ p2�a1ð�xÞ þ 2pð1� pÞ�a2ð�xÞþ ð1� pÞ2�a3ð�xÞ:
We assume that predator fitness is proportional to per-

predator total predation rate, which is determined by the

prey abundance N, prey genotype frequencies, and the

attack rate on each genotype, �aðp, �xÞN: We then adopt a

conventional fitness gradient model [26]

d�x
dt
¼ s2

G

@

@�x
½�aðp, �xÞN�

¼ s2
GN p2 @�a1

@�x
þ 2pð1� pÞ @

�a2

@�x
þ ð1� pÞ2 @

�a3

@�x

� �
: ð2:3Þ

The speed of adaptive evolution in the predator quantita-

tive trait is determined by the strength of selection and

additive genetic variance [49]. The assumption that the trait

remains normally distributed was demonstrated to be a

good approximation to trait dynamics in various multi-

locus models numerically [50]. Equations (2.2) and (2.3) are

our two-dimensional model for purely evolutionary

dynamics. The attack rate is simplified by rescaling predator

and prey traits relative to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðt2 þ s2Þ,

p
and defining

a0i ¼ ait=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2
p

: With these, and dropping the prime, the

attack rate is �aið�xÞ ¼ ai exp½�ð�x� uiÞ2�: The predator’s

additive genetic variance on this scale is V ¼ s2
G=½2ðt2 þ s2Þ�:

(b) Eco-evolutionary dynamics model
Our second model allows evolutionary and ecological

dynamics (changes in predator and prey abundance) to occur

on the same time scale. Specifically, we put the predation

rates from our evolutionary model into a Rosenzweig–

MacArthur-type predator–prey model where the prey has

logistic growth, and the predator has a linear (Holling type I)

functional response. The dynamics of prey density, N, and

predator density, P, are then

dN
dt
¼ N r 1�N

K

� �
� �aP

� �

and
dP
dt
¼ Pð�aN � dÞ,

9>>>=
>>>;

ð2:4Þ

where r is the prey intrinsic growth rate, K is the carrying

capacity, d is the per capita mortality and �a is the average preda-

tion rate, �a ¼ �aðp, �xÞ: The combination of logistic growth and

linear functional response means that with constant par-

ameters, an equilibrium at which predator and prey coexist is

always stable [51]. The predator equation often includes con-

version efficiency, but we can scale prey abundance so that

this equals one.

The fitnesses implied by equation (2.4) are consistent with

our evolutionary model (equations (2.2) and (2.3)). Prey

reproduction (r in equation (2.4)) has no effect on equation
(2.2) as long as it is the same for all genotypes, so the logistic

density-dependence in equation (2.4) does not change the

prey trait dynamics. Predator fitness (dP/dt)/P in equation

(2.4) equals the per-predator attack rate, �aðp, �xÞN, minus

the constant d, so the fitness gradient and trait dynamics

are still given by equation (2.3).

Assuming that all prey genotypes are equivalent except

for the trait value ui (a ¼ a1 ¼ a2 ¼ a3), we rescale the

model as N0 ¼ N/K, P0 ¼ P/K and t0 ¼ rt. With the new par-

ameters a00 ¼ a0K=r ¼ atK=ðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2
p

Þ, d0 ¼ d/r, and the

(double) prime dropped, the full system becomes

dN
dt
¼ Nð1�N � �aPÞ,

dP
dt
¼ Pð�aN � dÞ,

dp
dt
¼ pð1� pÞP½p(2�a2 � �a1 � �a3)� �a2 þ �a3�

and
d�x
dt
¼ VN p2 @�a1

@�x
þ 2p(1� p)

@�a2

@�x
þ (1� p)2 @�a3

@�x

� �
,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð2:5Þ

with �aið�xÞ given by a exp½�ð�x� uiÞ2�: Thus, the model has

four parameters (d, a, V, u1) after rescaling.
3. Results
(a) Purely evolutionary dynamics
With predator and prey abundance constant, we can eliminate

more parameters by rescaling t� ¼ a00P0t0 ¼ atPt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2
p

in the last two lines of equation (2.5), giving (with the

asterisk dropped)

dp
dt
¼ pð1� pÞ[ p(2�a2 � �a1 � �a3)� �a2 þ �a3]

and
d�x
dt
¼ H p2 @�a1

@�x
þ 2pð1� pÞ @

�a2

@�x
þ ð1� pÞ2 @

�a3

@�x

� �
,

9>>>=
>>>;
ð3:1Þ

where H ¼ VN0=P0 ¼ Ns2
G=½2Pðt2 þ s2Þ� and �ai ¼

exp½�ð�x� uiÞ2�: This leaves only two parameters, the scaled

predator genetic variation (H ) and prey trait difference (u1).

We found that the complete dominance model is stable

when the prey trait u1 is smaller than the threshold (1=
ffiffiffi
2
p

),

and is unstable otherwise, by local stability analyses

(figure 1a; the mathematical analysis is in the electronic sup-

plementary material, appendix S2). The speed of predator

evolution, H, does not affect local stability and the prey trait

distance is the sole determinant of stability. At the stable equi-

librium, the predator trait is between the prey homozygotes

(�x ¼ 0), because the prey phenotypes are similar enough for

predators to exploit both of them simultaneously.

By contrast, the parameter region in which the semidomi-

nance model is stable decreases gradually as u1 increases

(figure 1b). Thus, stability results from simultaneously

increasing predator evolution speed and decreasing the

prey trait difference (figure 1b). When the prey trait difference

is smaller than about 1.12, slowing predator evolution can

create limit cycles through a Hopf bifurcation (a black curve

in figure 1b). When the predator evolution speed is smaller

than about 0.628, increasing the prey trait difference also

results in a Hopf bifurcation. This is illustrated in figure 2,

using parameter values shown in figure 1b (black points

http://rspb.royalsocietypublishing.org/
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Figure 1. Phase diagrams for the internal equilibrium of the two-dimensional evolutionary system. Horizontal axis is the prey trait (u1) and vertical axis is the predator
genetic variance (H ). (a) Complete dominance (u1¼ u2¼–u3) and (b) semidominance (u1 ¼–u3 and u2¼ 0). Light grey regions: the stable internal equilibrium.
White regions: the unstable internal equilibrium. Solid black line/curve: Hopf bifurcations. Dashed black line: a saddle-node bifurcation. Solid grey curves: Hopf bifurcations of
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with H ¼ 0.2). We used an R [52] implementation of the

pplane program (math.rice.edu/�dfield/dfpp.html) to

compute and plot fixed points, nullclines, phase arrows, tra-

jectories and local stable and unstable manifolds for saddle

points (see the electronic supplementary material for our

pplane R scripts). Increasing the prey trait distance first

changes the equilibrium from a stable node to a stable

focus (figure 2a). Then, a Hopf bifurcation occurs and the

system shows a limit cycle (figure 2b). The cycle amplitude

at first increases with the prey trait distance, but as prey

allele frequency is bounded (0 � p � 1), trajectories spend

longer periods of time near p ¼ 0 and 1 (figure 2c,d ). The

dynamics in figure 2c,d look like heteroclinic (saddle-to-

saddle) trajectories, but in fact they are more extreme versions

of figure 2b: the unstable manifolds of the saddles on the

boundary (red curves) quickly converge onto a limit cycle

that passes very close to the saddles, approaching one

saddle almost along its stable manifolds (the boundaries

p ¼ 0 and 1), then leaving almost along the unstable manifold

and approaching the other saddle. This process repeats

ad infinitum, so that the prey allele frequency has recurrent

jumps between p ¼ 0 and 1 (figure 2c,d ).

As the prey trait distance increases further, the unstable

focus changes to an unstable node (figure 2c), and then

(when an eigenvalue passes through zero) the node becomes

a saddle and at the same time splits into three equilibria

(figure 2d; electronic supplementary material, appendix S2).

The two new equilibria (figure 2d ) are initially unstable

when H is small, but they are locally stable when H is large

and predators evolve rapidly. In that case, increasing the

prey trait difference results in a bifurcation to bistable equili-

bria (figure 3a) and then to bistable limit cycles (figure 3b;

electronic supplementary material, figures S1 and S2:

a dashed black line and grey curve in figure 1b). Further

increase in the prey trait difference causes the two bistable

cycles to grow and then merge.
Bistability means that the outcome of coevolution depends

on the initial condition (solid and dotted lines in figure 3). In

the semidominance model (figure 1b), it is possible for rapid

predator evolution to constrain predator trait dynamics

between the heterozygote (�x ¼ 0) and either one of homozy-

gotes (�x ¼ u1 or –u1) depending on the initial state, when

predator evolution is rapid (H is large) and the prey trait differ-

ence is intermediate (u1 is around 1.2), as follows. If the

predator mean trait is near one of the homozygote phenotypes,

heterozygotes increase in frequency in response to predation.

Once heterozygotes are common enough, the predator trait

evolves rapidly (owing to large H ) towards the heterozygote

phenotype (�x ¼ 0); as a result, the predator phenotype is

closer to zero than the prey mean phenotype, and this reverses

the direction of prey evolution back towards the original homo-

zygote (figure 3). When the prey trait difference is small,

predators can exploit the three prey phenotypes simul-

taneously and the system is stabilized. When the prey trait

difference is large, the homozygotes are so different from the

heterozygote that it becomes difficult for the predator trait to

get ahead of the prey phenotype. Thus, large H and intermediate

u1 are necessary for bistability to occur.
(b) Eco-evolutionary dynamics
By local stability analyses (electronic supplementary material,

appendix S3) and numerical simulations, we found that coevo-

lutionary dynamics in the four-dimensional eco-evolutionary

system shows stable equilibria, limit cycles, bistable equilibria,

bistable cycles or deterministic predator extinction depending

on the prey trait (u1) and predator mortality (d) (figure 4).

Limit cycles are a consequence of coevolution, because the eco-

logical subsystem is always stable with prey logistic growth

and predator linear functional response (electronic supplemen-

tary material, appendix S3). The bifurcations of the complete

dominance model are not affected by the speed of predator

http://rspb.royalsocietypublishing.org/
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evolution, V, but increasing V stabilizes the semidominance

model (electronic supplementary material, figure S3).

Deterministic predator extinction can occur when the pred-

ator equilibrium density becomes negative at the internal

equilibrium (‘extinction’ regions in figure 4). Here the prey phe-

notypes are so different that predators cannot exploit them to
invade with the intermediate trait (�x ¼ 0) even when the

prey density is at its equilibrium. In addition, coevolution

can drive deterministic extinction with distinct prey pheno-

types, as gradual predator evolution cannot keep up with

jumping prey evolution (figure 5b: ‘extinction by coevolution’

regions in figure 4). This occurs because of the genetic

http://rspb.royalsocietypublishing.org/
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asymmetry between prey and predator: while predator evol-

ution is gradual, the prey trait distribution can shift from one

extreme phenotype to the other by changing allele frequencies.

Therefore, the complete dominance model (figure 4a) causes

predator extinction more easily than the semidominance

model (figure 4b) because the heterozygous phenotype

works as a bridge between the two extreme phenotypes of

homozygotes in the semidominance model.

Predator extinction depends on initial conditions as well as

the predator trait heritability, h2 ¼ s2
G=ðs2

G þ s2
EÞ: Increasing

the heritability (and the speed of predator adaptation, H
and V ) tends to stabilize purely coevolutionary cycles

(figure 1; electronic supplementary material, figure S3), but it

can also result in deterministic predator extinction (figure 5).

When the speed of evolution is slow, the predator stays in

between the prey homozygotes and behaves as a generalist

that exploits both homozygotes simultaneously (figure 5a).

However, fast evolution can cause overreaction of the predator

trait to specialize on one of the homozygotes. After the prey

approaches one extreme (homozygote) phenotype, the pre-

dator phenotype follows and gets close enough to the

homozygote, and then the other prey allele starts to become

common. The predator continues to evolve in the direction of

the mean prey phenotype until the mean prey phenotype (evol-

ving now in the opposite direction) crosses the predator

phenotype. As the prey phenotype escapes, predator density

drops until the predator no longer affects prey evolution and

prey allele frequency stops changing. At this point, the homozy-

gote that was previously common is rare, but it still exists. The

predator is then trapped in a local basin around the now-rare

homozygote (an evolutionary trap, sensu [53]) and cannot

return to the intermediate trait value (figure 5b). Because preda-

tor abundance is a continuous variable it never becomes exactly

zero in our model, so the predator trait continues to evolve even

when predator density is extremely low (figure 5b). Therefore,

increasing the speed of predator evolution expands the ‘extinc-

tion by coevolution’ regions in the phase diagrams (figure 4;

electronic supplementary material, figure S3).

Adding population densities to the purely evolutionary

model allows a greater range of dynamics to occur including

anti-phase cycles (figure 6a), in-phase cycles (figure 6b) and

chaotic dynamics (figure 6c). Anti-phase cycles are characterized

by out-of-phase oscillations in predator and prey densities
(i.e. predator maxima coinciding with prey minima and vice

versa), and arise when the predator mortality and prey trait

difference are large. In-phase cycles have a longer cycle period

and occur when predator mortality and prey trait difference

are both small (black points in figure 4b). Chaotic dynamics

arises when the attack rate and heritability are large enough

(electronic supplementary material, figure S4).
4. Discussion
(a) Comparing discrete – continuous with continuous –

continuous coevolution
Our results show that genetic asymmetry is potentially

important for understanding and predicting ecological and

evolutionary dynamics. We explored the consequences of

antagonistic coevolution between quantitative predator and

Mendelian prey traits. As we did not include stabilizing selec-

tion towards an intermediate optima [14,45] or the Holling

type II functional response, a continuous–continuous analogue

of our model will result in either stable equilibrium or runaway

escalation towards infinite trait values [15]. By contrast,

we found a wide variety of possible dynamics in discrete–

continuous coevolution, including coevolutionary cycles

(figure 2), bistable equilibria and bistable cycles (figure 3) in

the purely evolutionary system (figure 1). When we couple

population and evolutionary dynamics, deterministic predator

extinction (figure 5), anti-phase cycles, in-phase cycles

and chaotic dynamics (figure 6) are also possible (figure 4).

Therefore, continuous–discrete coevolution is more similar to

discrete–discrete coevolution in terms of stability, as it can pro-

duce coevolutionary cycles without stabilizing selection.

Furthermore, the rich dynamics from simple models demon-

strate that traits’ genetic architectures can determine the

dynamics of coevolution [15,45,54].

(b) Semidominance versus complete dominance
We found that semidominance can promote trait cycling

when the prey trait difference is small, stabilize dynamics

when the prey trait difference is large (figure 1), and prevent

predator extinction (figure 4) compared to the complete dom-

inance model, as heterozygotes work as a bridge between the

http://rspb.royalsocietypublishing.org/
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two extreme homozygotes. Interestingly, predators mostly

exploit heterozygotes in stable coexistence, and heterozygotes

are maintained by subsidy from homozygotes via sexual

reproduction (phenotypic subsidy) [55]. As stable coexistence

of three asexual genotypes sharing the same predator and

resource is impossible [56], sexual reproduction is an

important factor for coevolution with semidominance.

(c) Effects of increasing heritability
Increasing the predator trait heritability (h2) intuitively

appears beneficial for the predator because it accelerates

adaptive responses to prey phenotypic changes. Indeed,

increasing heritability promotes population persistence

under directional environmental change [8]. However,

larger heritability can cause the predator trait to overreact

to prey frequency change, and eventually results in predator

extinction (figure 5). This phenomenon was previously dis-

cussed in the context of periodic abiotic environmental

change [57]; evolution of prey traits has a similar effect on

the predator in discrete–continuous coevolution.

Using a different parameter rescaling (electronic sup-

plementary material, appendix S4), we can examine the

effects of heritability and trait variance separately. In the com-

plete dominance model, the system is always stable when

the prey trait difference is small (electronic supplementary

material, figure S5a), but large trait variance stabilizes

the system otherwise (electronic supplementary material,

figure S5b). In the semidominance model, on the other hand,

both heritability and variance are necessary for the system to

be stable (electronic supplementary material, figures S5c,d).

This underlines that the components of trait variation matter,

not just the total amount of trait variation [47,55].

(d) Complicated cycles
Anti-phase cycles were observed in predator–prey micro-

cosm experiments with rapid prey evolution [7,58]. Our

findings suggest that in-phase and chaotic cycles might also

occur as a result of eco-evolutionary feedbacks in experimen-

tal studies. The possibility of in-phase cycles [59] and chaotic

cycles [24,45] of (co)evolving predator–prey systems has been

theoretically suggested, but our study illustrates another

possible mechanism.

Our model’s in-phase cycles (figure 6b) are similar to the

canard cycles in models for prey evolution with multiple preda-

tors [60]. A canard is a trajectory that spends a long time near an
unstable object. In the in-phase cycles, prey allele frequency

spends a long time near each extreme ( p ¼ 0 or 1) after the direc-

tion of selection has shifted to favour the opposite extreme,

because of low trait variance, and then suddenly moves to the

other extreme. As a result, the lag between traits is larger than

that in anti-phase cycles (figure 6).

(e) Comparison of empirical systems: snake – snail and
cichlid systems

Our model is a simple representation of coevolution between

quantitative and Mendelian traits, not a specific model for

snake–snail coevolution mediated by handedness [36].

For example, snail coiling direction is determined by their

maternal genotypes [42], and this delayed inheritance can

stabilize coevolutionary cycles (electronic supplementary

material, appendix S5, and figure S6). In addition, the repro-

ductive incompatibility between snails with opposite coils

[43] will affect coevolutionary dynamics, because rare geno-

types have low fitness [42]; even with complete dominance,

reproductive incompatibility causes bistability [42]. Therefore,

the combination of delayed inheritance and reproductive

incompatibility in land snails makes cyclic dynamics unlikely

compared to our model.

Scale-eating cichlid fish and their prey are a classical example

of negative frequency-dependent selection [37]. There are right-

and left-handed scale eaters, with ‘handedness’ determined by

one locus with two alleles [38]. Because prey fish behaviourally

adapt to more frequent phenotypes [37] and learning can be

described bya quantitative trait model [61], this may be regarded

as coevolution between discrete predator and continuous prey

traits. This reversed system also results in coevolutionary

bistability with the reversed effects of parameters: smaller pred-

ator trait difference and larger prey evolution speed destabilize

dynamics (electronic supplementary material, appendix S6

and figure S7). As behavioural dynamics are probably fast rela-

tive to evolution, the cichlid system may become unstable

(electronic supplementary material, figure S7).
5. Conclusion
Quantitative genetics models for trait change along a fitness

gradient are commonly used to model evolution, phenotypic

plasticity and even learning by changing the time scale of

adaptation [61]. On the other hand, recent studies showed

http://rspb.royalsocietypublishing.org/
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that different mechanisms of rapid adaptation can produce

distinct ecological dynamics. For example, phenotypic plas-

ticity, rapid evolution and evolution of plasticity can cause

distinct eco-evolutionary dynamics [62]. The number of loci

that control ecologically important traits also affects ecologi-

cal speciation [42], evolutionary rescue [63] and coevolution

[14,28,45]. Our study suggests that different genetic architec-

tures can result in distinct eco-evolutionary dynamics.

Functional genomic approaches (e.g. [34,35]) and further

studies on coevolution with different forms of genetic asym-

metry such as ploidy [31], epigenetics [64] and recombination

[65] may produce insights on contemporary eco-evolutionary

dynamics with diverse genetic architectures.
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