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ABSTRACT
Biological traits result in part from interactions between different genetic loci. This can lead to sign

epistasis, in which a beneficial adaptation involves a combination of individually deleterious or neutral
mutations; in this case, a population must cross a ‘‘fitness valley’’ to adapt. Recombination can assist this
process by combining mutations from different individuals or retard it by breaking up the adaptive
combination. Here, we analyze the simplest fitness valley, in which an adaptation requires one mutation at
each of two loci to provide a fitness benefit. We present a theoretical analysis of the effect of recombination
on the valley-crossing process across the full spectrum of possible parameter regimes. We find that low
recombination rates can speed up valley crossing relative to the asexual case, while higher recombination
rates slow down valley crossing, with the transition between the two regimes occurring when the
recombination rate between the loci is approximately equal to the selective advantage provided by the
adaptation. In large populations, if the recombination rate is high and selection against single mutants is
substantial, the time to cross the valley grows exponentially with population size, effectively meaning that the
population cannot acquire the adaptation. Recombination at the optimal (low) rate can reduce the valley-
crossing time by up to several orders of magnitude relative to that in an asexual population.

MOST phenotypes depend on interactions between
many different genes. For any given trait, there

are likely to be many possible adaptations that involve
combinations of mutations at different loci. Examples
include signaling pathways that require coevolution
of receptors and ligands (Goh et al. 2000), pathogens
that may require several mutations to escape their hosts’
immune response or to become resistant to drugs (Levin
et al. 2000), and bacteria that require multiple mutations
toevolvetheability tometabolizeanewnutrient(Blount
et al. 2008). While such complex adaptations may be
acquired through successive individually beneficial mu-
tations (Bridgham et al. 2006), it is likely that some ad-
aptations require a combination of mutations that are
each individually neutral or deleterious in the absence of
the other mutations. Using the fitness landscape met-
aphor, populations must cross a ‘‘fitness valley’’ to acquire
such adaptations. Valley crossing provides a means for
populations to escape local ‘‘fitness peaks’’ or ‘‘plateaus’’
where no single mutation is individually beneficial. It may
also be a common mode of adaptation even when in-
dividually beneficial mutations are available, especially in
large populations (Weissman et al. 2009), as is typical of
microbes or Drosophila.

Understanding the dynamics of crossing fitness valleys
is particularly important for understanding pathogen

evolution. An adaptation that requires crossing a fitness
valley should generally be more difficult for a population
to acquire than an adaptation that can be reached by
going straight ‘‘uphill.’’ For a method of combating a
pathogen to be effective, it must be difficult for the
pathogen to adapt to it; this suggests that treatments
should typically confront the pathogen with a fitness
valley. Similarly, for an attenuated strain of a virus to be
useful for a vaccine, it must be difficult for it to revert to
virulence, so one would like the attenuated genotype to be
separated from pathogenic genotypes by fitness valleys.
But as we will see, in many parameter regimes fitness
valleys can be crossed rapidly, so it is important to
understand how wide and deep a valley must be for a
particular large population to be highly unlikely to cross it.

Intuitively, recombination affects the valley-crossing
process in two opposing ways. First, recombination can
speed up valley crossing by bringing together separate
neutral or deleterious mutations present in different
individuals, perhaps producing a beneficial combina-
tion. Second, recombination can slow down valley
crossing by breaking up beneficial combinations of
mutations once they have been formed. In this article,
we provide a quantitative description of the dynamics by
which a sexual population crosses a fitness valley,
focusing on the effect of recombination on the ex-
pected time this takes. We find that over a broad region
of parameter space, a small amount of recombination
speeds up valley crossing, while a large amount slows it
down, often drastically, with the scale for the recombi-
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nation rate at which the behavior changes set by the
selective advantage obtained by crossing the valley.

In general, the dynamics of complex adaptation will
depend on the population size, the mutation rates, the
recombination rates between the different loci, the
selective advantage provided by the adaptation, and
the selective disadvantages of each of the intermediate
genotypes. The population size will generally be very
large and the mutation rates very small compared to unity,
but both vary over many orders of magnitude between
different populations and species. Recombination rates
and selection coefficients typically range over many
orders of magnitude among different sets of loci within
one organism. Given this wide parameter space, the
potentially subtle interactions between very large and
very small parameters, and the difficulty of accurately
measuring these underlying parameters in real popula-
tions, arriving at a detailed theoretical picture of all
possible dynamics by simulations is neither practical nor
particularly useful. Here we focus on the simplest
possible model for understanding valley crossing with
recombination: a population with a single possible
adaptation requiring one mutation at each of two
different loci, with both mutations individually neutral
or deleterious. Even in this simple case, a complete
description is quite complicated, and exact mathemat-
ical expressions for dynamics cannot, generally, be
obtained. However, given the inaccuracies involved in
applying our simple mathematical model to any bi-
ological system, the increased precision given by exact
expressions is of limited usefulness. On the other hand,
given the large range in possible parameter values
mentioned above, approximate expressions giving the
dependence of quantities of interest on the parameters
can be very informative. We focus on developing an
intuitive understanding of the major features of the
dynamics, emphasizing aspects that are insensitive to
the details of the model and that can serve as a basis for
understanding more complicated situations. Detailed
calculations are provided in appendix b.

Our analysis of crossing simple fitness valleys provides
a basis for understanding more complicated fitness
valleys, as Weissman et al. (2009) did for asexual
populations. But it also serves as one step toward
understanding how recombination and other popula-
tion parameters act in general fitness landscapes to
determine the rate and mode of adaptation. It is not
known (even in simple models) under what circum-
stances adaptation proceeds primarily via the fixation of
alleles that provide a selective advantage in a wide range
of genetic backgrounds or when, instead, adaptation
primarily involves formation and selection of particu-
larly advantageous combinations of alleles. Neher and
Shraiman (2009) recently analyzed the interplay be-
tween selection on alleles and selection on complicated
combinations of alleles in populations with high di-
versity initially, but no new mutations. Their results

share with ours the feature that which type of adaptation
dominates is controlled by the relative magnitudes of
the selective advantage of a combination of alleles and
the recombination rate among the loci involved.

The problem of the acquisition of an adaptation
requiring individually deleterious mutations at two loci
was analyzed in the limit of infinite population size by
Haldane (1931), Crow and Kimura (1965), Eshel and
Feldman (1970), and Karlin and McGregor (1971),
who found that a sufficiently high recombination rate
made adaptation impossible. Michalakis and Slatkin
(1996) considered several combinations of population
parameters for finite populations and found that re-
combination generally slows valley crossing, while not-
ing that recombination can have a positive effect if
selection against single mutants is much weaker than
selection for double mutants. Christiansen et al.
(1998) quantified the increase in the production of
double mutants caused by recombination in the case of
neutral single mutants, while for deleterious single
mutants and weak recombination Hadany (2003)
calculated the expected time for the population to cross
the valley. In the limit of extremely weak recombination,
the population becomes effectively asexual, a case that
has been analyzed by Komarova et al. (2003), Iwasa
et al. (2004), Weinreich and Chao (2005), Durrett
and Schmidt (2008), Weissman et al. (2009), and Lynch
and Abegg (2010). Simulations have usually found that
recombination reduces the rate of valley crossing (e.g.,
Takahata 1982; Kim 2007), although some have found
a slight increase for small amounts of recombination
(Takahasi and Tajima 2005; Weinreich and Chao
2005; De Visser et al. 2009). In this article, we provide a
quantitative framework tying together these previous
results and describe the dynamics in new regions of
parameter space. We also describe the parameter range
for which the general analysis of the rate of transitions
between local fitness peaks in Barton and Rouhani
(1987) is valid and apply this analysis to our case. While
we are primarily concerned with the rate of adaptive
evolution, the problem of purely compensatory evolu-
tion (where the single mutants are deleterious but the
double mutant has the same fitness as wild type) is
closely related and has been analyzed by, e.g., Kimura
(1985), Stephan (1996), and Carter and Wagner
(2002). We do not consider the effect of environmental
change on valley crossing; this has been investigated by,
e.g., Masel (2006) and Kim (2007). While this article was
being revised, another article (Lynch 2010) examining
similar questions was published; we compare those
results with ours in the discussion.

MODEL

We consider a haploid population of N individuals
with two diallelic loci with recombination rate r be-
tween them. Genotype ab is initially fixed in the pop-
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ulation, with allele a mutating to A at rate mA and b
mutating to B at rate mB. (We neglect back mutation, as it
will have only a minor effect on the dynamics in the
interesting regions of parameter space.) The four
possible genotypes have fitnesses

wab ¼ 1

wAb ¼ 1" dA

waB ¼ 1" dB

wAB ¼ 1 1 s;

with dA, dB $ 0 so that the mutant alleles are individually
neutral or deleterious, and 1/N > s > 1, so that the
double mutant has a substantial but not enormous
selective advantage over the wild type (Figure 1). For
finite N, the fittest genotype AB will eventually dominate
the population. We wish to find the distribution of the
time T that it takes for this to occur, in particular the
expected time t [ E[T]. Except in very large popula-
tions, the time that it takes for AB to sweep to fixation in
the population will be a negligible component of t,
which will be dominated by the waiting time before the
selective sweep begins (Weissman et al. 2009) We
therefore ignore the sweep time and refer to the
beginning of the sweep (when the double mutants
establish and begin to increase in number exponen-
tially) as the point at which the population has crossed
the valley.

SUMMARY OF RESULTS

We find that the time t for the population to acquire
the adaptation is usually minimized at an optimum level
of recombination r & s, which balances the two effects
of recombination on valley crossing: bringing together

single mutants and breaking up double mutants. For
higher recombination rates, r ? s, recombination
effectively breaks up the double-mutant combination;
thus double mutants can increase in frequency only
along with single mutants, slowing down the former’s
spread (Figure 2). In this case, if single mutants have a
significant fitness disadvantage, then these mutants
must drift against selection to the frequency at which
they can begin to take over the population. The
probability of this happening decreases exponentially
as N increases, so t increases exponentially: this means
that large populations effectively cannot acquire adap-
tations that require individually deleterious mutations
at unlinked genes. For less deleterious single mutants,
mutation and drift are strong enough to allow the
mutants to reach the necessary frequency relatively
easily. In this regime, the two effects of recombination
approximately cancel, and t is close to its asexual value
tr¼0, which decreases with increasing N—the opposite
dependence.

For r > s, recombination is rare enough that it has
only a small effect on the increase in double mutants
once they are present in the population. If r is not too
small, however, it can effectively bring together A and B
alleles from single mutants and reduce the valley-
crossing time. In the regime where this is true, t
decreases roughly as a power of r and is minimized at
an intermediate recombination rate r & s, just below
the value at which recombination starts effectively break-
ing up double mutants (Figures 3 and 4). Interestingly,

Figure 1.—The fitnesses of the four genotypes. The wild-
type ab has fitness 1, and the double-mutant AB has fitness
1 1 s . 1. The single mutants Ab and aB are no more fit than
wild type, with fitnesses 1" dA # 1 and 1" dB # 1, respectively.
Allele a mutates to A at rate mA, and b mutates to B at rate mB.

Figure 2.—Typical slice of parameter space, showing the
expected time to cross the fitness valley, t, as a function of
the recombination rate r and the selective disadvantage of
the single mutants d. The other parameters are held constant
at N ¼ 105, m ¼ 5 3 10"7, and s ¼ 0.05. Color indicates the
effect of recombination on the expected time: recombina-
tion significantly reduces t in the green region [i.e.,
log(t(r)/tr¼0) , 0], significantly increases t in the red region
[log(t(r)/tr¼0) . 0], and has only a minor effect on t else-
where. We see that small recombination rates r , s can reduce
t, with this effect strongest at intermediate d, while frequent
recombination r ? s can drastically increase t for large d. The
rapid transition between these regimes occurs at r # s. Note
that increasing d always increases t, but can increase or
decrease the ratio t/tr¼0. Also note that recombination
tends to reduce t for small values of d and increase t for large
values of d, increasing the dependence of t on d.

Rate of Fitness-Valley Crossing in Sexual Populations 1391



the factor by which recombination reduces t, tr¼0/t(r),
is also maximized at intermediate values of the other
parameters, N, mA, mB, dA, and dB. In this region of
parameter space, recombination can reduce t by up to
several orders of magnitude—a large effect, although
small compared to the delay in valley crossing that can be
caused by too frequent recombination r ? s: see Figure
5. While frequent recombination can potentially slow
down valley crossing far more than occasional recombi-
nation can speed it up, recombination may still generally
increase the frequency of valley crossing in populations,
because the deep valleys for which recombination has a
negative effect are already far less likely to be crossed,
even by asexual populations, than the shallow valleys
where it has a positive effect (Figure 2).

While most of our analysis focuses on typical valley-
crossing dynamics, we also briefly consider the proba-
bility that a population crosses a fitness valley unusually
rapidly—a problem that is likely to be relevant to
subdivided populations, in which the first subpopula-
tion to cross the valley may then colonize the rest of the
population. We find that the most likely dynamics by
which populations cross fitness valleys change signifi-
cantly as a function of time, with several different
dynamics dominating at successively later times before
the long-term dynamics dominate. The naive inference
from the long-term rate of valley crossing can dramat-
ically overestimate the early-time probability. However,
even the early-time probability is typically maximized at
an intermediate rate of recombination r & s.

Quantitative summary: Here we provide a list of some
of the expressions for t derived below and in appendix b
for readers who wish to skip the calculations but want a
more quantitative summary than the one given above.

We omit all numerical factors and leave most of the
interpretation of the results for other sections of this
article. For simplicity, we assume here and in the
heuristic arguments below that the two loci are equiv-
alent; i.e., dA¼ dB [ d, mA¼ mB [ m (see appendix c for
the effect of relaxing this assumption).

First, in the asexual case r ¼ 0 it has been shown that
the rate of valley crossing, t"1, is given approximately by

t"1
r¼0 #

N
ffiffiffiffiffiffiffiffi
m3s

p
for d > ffiffiffiffiffiffi

ms
p

;N m>1
m
ffiffiffiffiffiffi
Ns
p

for d > m
ffiffiffiffiffiffi
Ns
p

;N m?1
N m2s

d
for d ?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 1 N mÞms

p
:

8
>><

>>:
ð1Þ

Equation 1 is invalid for very small and very large N ; see
Weissman et al. (2009) for a detailed discussion.

For frequent recombination, r ? s, and single mutants
no more than mildly deleterious, d>maxf ffiffiffiffiffiffi

ms
p

;
ffiffiffiffiffiffiffiffiffi
s=N

p
g,

t is given approximately by

tr.s # tr¼0; ð2Þ

where tr¼0 is given by Equation 1. (See appendix b for
the derivation of Equation 2.) For substantially delete-
rious single mutants, maxf ffiffiffiffiffiffi

ms
p

;
ffiffiffiffiffiffiffiffiffi
s=N

p
g>d>s, t is

given approximately by

log tr.s #
N d2

s
: ð3Þ

(See the heuristic analysis below and Barton and
Rouhani 1987.)

Figure 3.—Analytical approximation and simulation re-
sults for t, the expected time in generations to cross the valley,
as a function of the recombination rate r, for N¼ 105, m ¼ 5 3
10"7, d ¼ 10"5, and s ¼ 0.05, so that single mutants are effec-
tively neutral. t decreases with increasing r until it reaches a
minimum at r # s/2, after which it quickly increases back to
roughly its asexual value. The overall effect of recombination
is weak in this regime, with t varying only by a factor of #2 ¼
O((N 2ms)1/6) over seven orders of magnitude of recombina-
tion rates.

Figure 4.—Analytical approximation and simulation re-
sults for t, the expected time in generations to cross the valley,
as a function of the recombination rate r, for N ¼ 108, m ¼ 2 3
10"9, d¼ 5 3 10"5, and s¼ 0.05, so that selection against single
mutants is strong enough to affect the dynamics, but not so
strong to prevent the two single-mutant genotypes from occa-
sionally arising together and recombining to produce double
mutants. t decreases with increasing r until it reaches a min-
imum at r # s/2 &20 ¼ Oð

ffiffiffiffiffiffiffi
N d
p

Þ times lower than its asexual
value, after which it quickly increases to a maximum &200 ¼
O ðeN d2=sÞ times higher than its asexual value.
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For infrequent recombination, r > s, and Nm > 1
(single-mutant lineages arising infrequently), the rate
of valley crossing is given approximately by

t"1
r , s #

t"1
r¼0 for r > max 2d;min 1

N

ffiffiffiffi
s
m

q
; s

N d

" #" #

ðN 4m5rsÞ1=3 for maxf ffiffiffiffiffiffi
ms
p

; dg> ðN m2rsÞ1=3

m2
ffiffiffiffiffiffiffiffi
N 3rs

d

q
for max s

Nr ; ðN m2rsÞ1=3
$ %

> d > rs
N

& '1=3

N m2rs
d2 for rs

N

& '1=3 > d > r
2 :

8
>>>>>>>>><

>>>>>>>>>: ð4Þ

(See the heuristic analysis below and appendix b.)
Equation 4 remains valid for intermediate recombination
rates r & s if we replace s with s̃ [ s " r . Note that t ge-
nerally decreases with increasing r s̃, meaning that a
recombination rate r # s/2 maximizes the rate of valley
crossing.

For r > s and Nm ? 1 (single-mutant lineages arising
frequently), t is given by Equation B27 in appendix b.

The boundaries of the parameter regimes in Equations
1–4 are somewhat complicated; see Figure B1 in appen-
dix b for an illustration of a typical slice of parameter
space. Note that when r ? s and single mutants are
substantially deleterious, t grows exponentially with
increasing N—in this parameter regime, the population
relies on drift to cross the fitness valley. However, in all
other parameter regimes, t decreases with increasing N.

We now turn to the derivation and explanation of
these results.

HEURISTIC ANALYSIS

For much of parameter space, the valley-crossing
dynamics can be analyzed at least semideterministically,
with the numbers of single mutants nAb and naB ap-
proximated by their expected values and only the double
mutants treated stochastically (see, e.g., Christiansen
et al. 1998). However, in other parameter regimes, the
stochastic fluctuations in the numbers of single mutants
are crucial to the dynamics; these include the parameter
regimes where recombination has the largest effect.
Here we give a heuristic analysis of the effect of re-
combination on the time for the population to cross the
fitness valley in two of these regimes where the semi-
deterministic approximation fails. First, we consider the
regime where recombination slows down valley crossing
the most: r ? s and d2/s ? max{m, 1/N }, where the
mutants must drift far above mutation–selection balance
before they begin to be favored by selection. Second, we
consider the regime r > s with Nm > 1, where recom-
bination can speed up valley crossing. Together, these two
regimes display all the interesting qualitative behavior of
the system.

Our goal in this section is to provide an intuitive
understanding of the dynamics underlying the results
summarized above, focusing only on the most important
features and the regimes in which stochastic fluctuations
in the number of single mutants are important. More
careful derivations are unfortunately quite long and
technical and are reserved for appendix b. While we
explicitly analyze only a limited subsection of parameter
space in this section, this should provide the tools for
similar heuristic analyses of the rest of parameter space.
Indeed, we hope that these kinds of heuristic arguments
can be used broadly for understanding evolutionary
processes that depend on rare mutant lineages.

Frequent recombination, r ? s: First we consider a
high rate of recombination, r ? s, d. In this case, re-
combination is frequent enough to keep the population
close to linkage equilibrium, meaning that the double
mutants will not begin to spread deterministically in the
population until the mean fitness of all mutants is
significantly greater than that of the wild type. When
mutants are rare, this condition on the mean fitness of
the mutants can be expressed in terms of the allele
frequencies xA, xB as

ðs 1 2dÞxAxB " dðxA 1 xBÞ.
1
N
: ð5Þ

The left-hand side of this inequality is the mean selective
advantage of a mutant individual over wild type assuming
linkage equilibrium, while the right is the strength of drift;
when the inequality is satisfied, selection is likely to over-
come drift and drive the mutant alleles to fixation.

For the double mutants to spread deterministically
while the single mutants are still at low frequencies, the
condition (5) must have a solution with xA, xB > 1. This

Figure 5.—Analytical approximations and simulation re-
sults for t, the expected time in generations to cross the valley,
as a function of the population size N, for r¼ 0.5 (frequent re-
combination), r¼ 0.025 (occasional recombination), and r¼ 0
(asexual), with the other parameters held constant at m ¼ 5 3
10"7, d ¼ 10"3, and s ¼ 0.05. Lines show analytical approxima-
tions (dashed for r ¼ 0.5, dotted for r ¼ 0.025, and solid for
r ¼ 0). Diamonds, crosses, and circles show simulation results
for r ¼ 0.5, r ¼ 0.025, and r ¼ 0, respectively. Note that when
t depends on the recombination rate, it is always lowest for oc-
casional recombination and highest for frequent recombina-
tion, with the value for asexuality lying in between.
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is possible only if d ? s; we focus on this case here. When
selection against single mutants is sufficiently strong
compared to mutation and drift (specifically, when d2/s ?
max{m, 1/N }—see appendix b for the derivation of this
condition), the rate at which the single mutants reach
frequencies satisfying the condition (5) is strongly re-
duced. In the limit of infinite population size, this rate
goes to zero: there are two deterministic equilibria, one
with ab as the dominant genotype and the other with AB
as the dominant genotype, and the population will
remain at the first equilibrium (Karlin and McGregor
1971). The boundary between the two basins of attrac-
tion is given by the curve for which the left-hand side of
this inequality (5) is zero, with an unstable fixed point
at xA ¼ xB # d/s.

If the population is large (N ? d2/s) but finite, the
analysis of Barton and Rouhani (1987) can be applied
to find the rate of valley crossing. Because this analysis is
quite general and involved, we provide a brief heuristic
summary before quoting the result. For finite N, there
will be an equilibrium probability distribution for the
allele frequencies, C(xA, xB). Assuming linkage equilib-
rium and using a diffusion approximation, C(xA, xB) is
given by

CðxA; xBÞ& exp½"N ðdðxA 1 xBÞ " sxAxBÞ( ð6Þ

for 1/N > xA, xB > 1, with a prefactor that is changing
slowly compared to the exponent near the saddle point
(Kimura 1964); see Figure 6. The infinite-population
deterministic equilibria correspond to peaks in C, and
the unstable fixed point at xA ¼ xB # d/s corresponds
to a saddle point. The lower peak at xA, xB# 0, the saddle
point, and the higher peak at xA, xB # 1 are joined by a
ridge in C running along xA ¼ xB. For d > s, the most
likely way for the population to cross from the lower
peak to the higher peak is to drift along the ridge to the
saddle, after which selection will drive the mutant alleles
to fixation. Since C falls off rapidly away from the ridge,
we can treat the population as being effectively one-
dimensional, with a single two-allele locus subject to
disruptive frequency-dependent selection. The largest
factor in t comes from the tiny probability of reaching
the saddle point from the initial peak. Since the
probability of being near the saddle point is lower than
the probability of being near the wild-type-dominated
peak by a factor of &exp("Nd2/s), the time to cross the
valley is exponentially large,

log t # N d2

s
; ð7Þ

with additional smaller terms that depend on the
mutation rate, the rate of drift, higher-order terms in
the location of the saddle point, and linkage disequi-
librium. Using the calculations leading to Equation 17
in Barton and Rouhani (1987), we can find the more
accurate expression

t # GðN mÞ2

d

N d2

s 1 2d

( )1"2N m

exp
N d2

s 1 2d

* +
; ð8Þ

where G is the gamma function. For large populations,
Equation 7 is an enormously long time; they essentially
cannot cross the valley.

Equations 7 and 8 are valid for r?s?d?maxf ffiffiffiffiffiffi
ms
p

;ffiffiffiffiffiffiffiffiffi
s=N

p
g. The case of infrequent recombination, in

which the first inequality is violated, is discussed below;
the case of shallow valleys, in which the third inequality
is violated, is discussed in appendix b. As mentioned
above, for deeper valleys, d ? s (but r ? d), the condi-
tion (5) is satisfied only for xA, xB close to 1—before the
single mutants can begin to increase deterministically in
frequency, at least one must drift close to fixation.
The expected time for this to happen is very long, with
log t # Nd (Kimura 1962). Note that this matches
smoothly with Equation 7 at the boundary of the
two approximations, d # s. Finally, for very deep valleys,
d ? r, selection against single mutants is strong enough
to keep the population in linkage disequilibrium. In this
case, we expect that the most likely way for the pop-
ulation to cross the valley is for an AB lineage to drift
close to fixation while undergoing unusually little
recombination. The expected time for this to happen
is extremely long, with log t # Nr.

Infrequent recombination, r > s: Now we consider
infrequent recombination, r > s. We focus on calculat-
ing the rate of valley crossing in populations large

Figure 6.—Schematic contour plot of equilibrium allele
frequency probability distribution for a large population with
deleterious single mutants and frequent recombination (Equa-
tion 6). The red curve shows the most likely path through fre-
quency space from the initial wild-type-dominated state to the
final mutant-dominated state. This path passes through the
saddle point, shown in blue, separating the two deterministic
equilibria. The probability of being near the saddle point at
xA# dB/s, xB# dA/s is lower than the probability of being near
the initialpeakbya factor&exp("NdAdB/s),producingafactor
in the expected time t to cross the valley of &exp(NdAdB/s).
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enough that they are likely to cross via ‘‘stochastic
tunneling’’ (Komarova et al. 2003), in which double
mutants take over the population without single mu-
tants ever reaching high frequencies. For a double-
mutant lineage to take over the population, it must
avoid going extinct due to drift or being broken up by
recombination. This occurs with probability # s " r [ s̃
(Hadany 2003). We refer to a mutant individual as
successful if its descendants include double mutants
that eventually take over the population; we wish to find
the waiting time for the first such successful single mutant.

If the population is large enough that new mutants
are continually being produced, Nm ? 1, the dynamics
of the single mutants can be treated approximately
deterministically; this case is discussed in appendix b.
Here we focus on low population mutation rates, Nm >
1. In this case, the total waiting time T is generally
dominated by the waiting time for the production of the
first successful single mutant, with the first successful
double mutant being produced shortly afterward. Since
single-mutant lineages are produced at rate 2Nm, T will
have an approximately exponential distribution with
expected time t # (2Nmp)"1, where p is the probability
that a single-mutant lineage will be successful (Komarova
2006; Weissman et al. 2009). To find t, it thus suffices to
find p.

Lineage dynamics: A single-mutant lineage must be
lucky to be successful, but this luck can come in several
different places: for instance, the lineage could luckily
drift to such an unusually large size that it becomes likely
to produce so many double mutants that one will be
successful, or it could drift to only a small size and
produce one double mutant that luckily is successful. To
distinguish between these cases, we can decompose p
into the probability prob(T ) that a lineage drifts for T
generations before going extinct and the probability P j T
that it will be successful given that it does so, integrated
over all possible drift times T:

p #
ð

P jT probðT ÞdT : ð9Þ

To evaluate Equation 9, we need to understand the
typical dynamics of a single-mutant lineage. Here we
summarize the aspects of the dynamics that are impor-
tant for calculating p; slightly more detailed expressions
are given in appendix a. Let the number of individuals
in the lineage at time t be given by n(t), with n(0) ¼ 1.
For t > min{N, 1/d}, the lineage is effectively neutral
and unlikely to reach a high frequency. For the rest of
this section, we assume that N is sufficiently large that
all single mutants remain at low frequency. In this case,
for t > 1/d (and ?1), the probability that the lineage
has avoided extinction by time t is approximately pro-
portional to t"1, with the constant of proportionality
depending on the strength of drift. This can be seen by
modeling the dynamics of the lineage by a nearly critical

branching process (as in appendix a for continuous
time or in Athreya and Ney 1972, pp. 19ff, for discrete
time) or by using a diffusion approximation (Ewens
2004, p. 162). We use the symbol ‘‘&’’ to denote
approximate proportionality up to a model-dependent
constant. (In appendix b, we use a continuous-time
Moran model chosen such that this constant is 1 for
most expressions of interest.)

Since the expected number of individuals in the
lineage E[n(t)]¼ exp(–dt) remains#1 until t¼O(1/d),
the typical size of the lucky lineages that avoid extinc-
tion for a time t ? 1 is E ½nðtÞjnðtÞ. 0( ¼ E ½nðtÞ(=
ProbðnðtÞ. 0Þ & t. At longer times, t * 1/d, the
probability that the lineage has avoided extinction
decreases like exp(–dt), as does E[n(t)]: selection
makes it very unlikely that lineages will persist for much
longer than &1/d generations, and the few that do last
for a long time typically do not grow past a characteristic
size of n & 1/d. Thus, the distribution of lineage drift
times T (and sizes n) has a long tail until it is cut off by
selection at T, n & 1/d. This suggests for small d, rare
large lineages may play an important role in the pop-
ulation dynamics. Note that these basic features of the
lineage dynamics are the most important for determin-
ing the rate of valley crossing; we expect our results to be
insensitive to changes in the model details.

While T is broadly distributed over t , 1/d, the
distributions of the other random variables that play a
role in valley-crossing dynamics are for the most part
relatively narrow. In particular, besides the distribution
of T for t . 1/d, the distributions of n(t), the number
of mutants produced by a lineage with a given trajec-
tory, the number of mutants produced in a given time
interval, and the number of recombinations between
two lineages with given trajectories all have exponential
tails. Thus, as a good first approximation, we can
generally treat the drift times of the mutant lineages
as the only random variables, with all other variables
having fixed values given the drift times, and treat even
the drift times as being limited to values ,1/d. The
exponentially unlikely valley-crossing dynamics that
violate this approximation produce only small rates of
valley crossing, as seen in the case of frequent re-
combination and deep valleys discussed above.

Given these lineage dynamics, we can now find an
approximate expression for P j T, the probability that a
lineage that lasts for T generations will be successful. We can
write P j T as the sum of two terms: Pas j T, the probability of
success via the asexual path, in which a single-mutant
individual acquires an additional mutation, and Pr j T , the
probability of success via the sexual path, in which an Ab
individual recombines with an aB individual. In the next
section, we derive approximate expressions for Pas j T and
Pr j T, assuming for simplicity that single mutants are
neutral, d ¼ 0. (We discuss the effect of larger d later.)
Recall that in this case we expect rare large lineages to be
important.
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Neutral single mutants—asexual path across the valley:
First consider the probability PasjT of a single-mutant
lineage being successful via the asexual path given that it
drifts for at least T generations. For a detailed discus-
sion of this case, see Weissman et al. (2009); here we
provide just a brief summary to introduce the heuristic
arguments that we use in the more complicated sexual
path below. To be successful, the single-mutant lineage
must produce a successful double mutant. Each double
mutant has a probability s̃ # s " r of being successful, so
if the single-mutant lineage gives rise to n2 double
mutants, it will be successful with probability P asjT #
n2s̃, until this saturates at 1 for n2 # 1=s̃—lineages that
give rise to *1=s̃ double mutants are likely to be
successful.

Thus, to find PasjT, we need to find the typical number
n2 of double mutants that the lineage will produce. Each
individual in the lineage has a probability m per
generation of producing a double mutant, so the total
number produced over T generations will typically be
n2 # m

Ð
nðtÞdt. To evaluate this integral, we must use the

fact, mentioned above, that the size of the lineage will
typically grow like n(t) & t; doing so, we find that the
typical number of double mutants produced in T
generations is n2 & T 2m. Multiplying by s̃ to get the
total probability of success gives an approximate expres-
sion for PasjT :

P as j T &
T 2ms̃ for T > 1ffiffiffiffi

ms̃
p

1 for T ? 1ffiffiffiffi
ms̃
p :

(

ð10Þ

Since PasjT grows like T2 and the probability of lasting
for T generations only falls off like T "1, the asexual valley-
crossing dynamics are dominated by the rare lineages that
grow to a large size over a long time; the vast majority of
lineages that reach only much smaller sizes make little
contribution to the total rate of valley crossing. In other
words, the luck needed to cross the valley is likely to be
concentrated in a single very large lineage rather than
spread out over multiple moderately sized lineages.
(When single mutants are strongly deleterious, the
opposite is true; see Weissman et al. 2009.)

Neutral single-mutants—sexual path across the valley: We
now turn to finding Pr j T , the probability that a lineage
that drifts for at least T generations is successful via the
sexual path. To do so, we must consider the lineages
with complementary genotypes that will coexist with the
focal lineage. During the T generations for which the
focal lineage (of genotype, say, Ab) drifts, #NmT aB
lineages typically arise. The probability of being success-
ful therefore grows like pr jT # N mTp9T , where p9T
denotes the probability that a single aB lineage will be
successful by recombining with the focal lineage.

As in Equation 9, we can decompose the probability
p9T that an aB lineage will be successful into the
probability that it avoids extinction for T 9 generations

and the probability Pr j T,T 9 that it is successful given that
it does so: p9T #

Ð
P r jT ;T 9 probðT 9ÞdT 9. The total proba-

bility that the focal Ab lineage will be successful
therefore grows like

Pr jT # N mT

ð
P r jT ;T 9 probðT 9ÞdT 9 ð11Þ

until saturating at 1 for sufficiently large T.
We already know the distribution of the lineage sizes

T9, so to evaluate Equation 11 it remains to find PrjT,T 9.
The number of AB individuals produced by the pair of
the lineages via recombination is typically # ðr=N ÞÐ

nAbðtÞnaBðtÞdt. We know that nAb & T and naB & T 9;
assuming T9 # T, the two lineages coexist for T 9
generations. (It is easy to check that T9 . T makes only
a small contribution to Equation 11.) Evaluating the
integral, we find that the two lineages typically recom-
bine to produce & ðr=N ÞTT 92 AB individuals. Thus
Pr j T,T 9 grows like P r jT ;T 9 & ðr s̃=N ÞTT 92 until it app-
roaches 1 at T 9 &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N =Tr s̃

p
. Using this to evaluate

Equation 11, we find that the probability of success is

P r jT &
T 3mr s̃ for T > N

r s̃

& '1=3

T 3=2m
ffiffiffiffiffiffiffiffi
Nr s̃
p

for N
r s̃

& '1=3 >T > ðN m2r s̃ Þ"1=3

1 for T?ðN m2r s̃Þ"1=3:

8
>><

>>:

ð12Þ

For small Ab lineages (T>ðN =r s̃ Þ1=3), the most likely
path to being successful requires an aB lineage to arise
at roughly the same time and grow to roughly the same
size. Larger Ab lineages, however, are most likely to be
successful by recombining with an aB lineage much
smaller than themselves, because PrjT,T9 saturates at 1 for
T9 > T. Because PrjT grows faster than linearly with T
before saturating, the sexual valley-crossing dynamics,
like the asexual dynamics, are dominated by the rare
single-mutant lineages that grow so large that they are
then likely to be successful [T & ðN m2r s̃ Þ"1=3]. Note
that this means that in the most likely sexual valley-
crossing path, the two single-mutant lineages are likely
to be of very different sizes, even when the two loci are
symmetric. (See Figure 7 for a typical valley-crossing
trajectory.)

Neutral single mutants—advantage of recombination:
We can now compare Equations 10 and 12 to find
whether the population is more likely to cross the
valley via the asexual or the sexual path. Since both
the asexual and the sexual valley-crossing dynamics
are dominated by rare large single-mutant lineages,
this is equivalent to asking whether the size at which a
lineage is likely to be successful is smaller for the
asexual or the sexual path. Success via an additional
mutation becomes likely at T & 1=

ffiffiffiffiffi
ms̃
p

, while success
via recombination becomes likely at T & 1=ðN m2r s̃Þ1=3.
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Therefore, the asexual path dominates for 1=
ffiffiffiffiffi
ms̃
p

> 1=
ðN m2r s̃ Þ1=3 (i.e., Nr

ffiffiffiffiffiffiffiffi
m=s̃

p
> 1), while for Nr

ffiffiffiffiffiffiffiffi
m=s̃

p
? 1,

the sexual path dominates. In these two extreme cases,
Equation 9 for the total probability p that a lineage is
successful simplifies to

p &

( ffiffiffiffiffi
ms̃
p

for Nr
ffiffiffiffiffiffiffiffi
m=s̃

p
> 1 ðeffectively asexualÞ

ðN m2r s̃ Þ1=3 for Nr
ffiffiffiffiffiffiffiffi
m=s̃

p
? 1 ðrecombination dominatesÞ:

ð13Þ

The characteristic time t for valley crossing is therefore
given by

t &
ð2N

ffiffiffiffiffiffiffi
m3 s̃

p
Þ"1 for Nr

ffiffiffiffiffiffiffiffi
m=s̃

p
> 1 ðeffectively asexualÞ

1
2 ðN

4m5r s̃ Þ"1=3 for Nr
ffiffiffiffiffiffiffiffi
m=s̃

p
? 1 ðrecombination dominatesÞ;

(

ð14Þ

corresponding to the first two lines of Equation 4.
Comparing the two expressions for t in Equation 14, we

see that an intermediate level of recombination,
ð1=N Þ

ffiffiffiffiffiffiffiffi
s=m

p
>r>s, reduces the time to cross the valley

by a factor of&(N 2mr2/s)1/6. However, because of the small
exponent, and the fact that Nm, r/s > 1 by assumption, this
is generally not a big effect (see Figure 3). Moderate
recombination thus typically provides a small increase
in the rate of crossing very shallow valleys. (This is also
true for Nm $ 1; see Figure 5 and appendix b.)

Deleterious single mutants: Intuitively, small amounts of
recombination reduce the time for valley crossing by
reducing the size to which a single-mutant lineage must
drift to be likely to be successful. Because the lineage
size distribution has a long tail for neutral single
mutants, this is only a small effect. However, if single
mutants are deleterious, d . 0, then the long tail is cut
off at T &1/d, and recombination can have a larger

effect. In particular, if
ffiffiffiffiffi
ms̃
p

> d > ðN m2r s̃ Þ1=3, then
selection against single mutants has little effect on the
rate of valley crossing via recombination, but slows down
the asexual route significantly.

For even larger values of d, both the asexual and the
sexual paths will be affected. This case can be approxi-
mately analyzed by simply recalculating the expressions
for Pas j T and Pr j T from the previous section using the
approximation prob(T . 1/d) # 0. The results are
somewhat complicated and are given in Equation 4 and
in Equations B21 and B23 in appendix b, where they are
derived by a more careful calculation. The most impor-
tant point to note is that for d>maxf

ffiffiffiffiffi
ms̃
p

; ðN m2r s̃Þ1=3g,
selection against single mutants does not significantly
affect the rate of valley crossing (i.e., t is given by Equation
14). Thus, in large populations, many mutations that are
strongly selected against (N d ? 1) may still be effectively
neutral for the purposes of valley crossing.

It is also interesting to note that while small values of
d affect the asexual path across the valley more strongly
than the sexual path, the opposite is true for large values of
d. This is because the sexual path requires two single-
mutant lineages; if d is large enough to affect both
lineages, then selection will impede the sexual path
more than the asexual path (which requires only one
single-mutant lineage). In fact, for d . s/2, Pr j T
becomes negligible compared to PasjT , and any amount
of recombination slows down valley crossing by redu-
cing s̃. At the intermediate values of d where recombi-
nation provides the greatest benefit, it reduces t by a
factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N dr=s

p
: for r # s/2, this factor is &

ffiffiffiffiffiffiffi
N d
p

,
meaning that recombination can increase the rate of
valley crossing by as much as several orders of magni-
tude (see Figures 2 and 4).

Distribution of valley-crossing times: We have fo-
cused on the expectation t of the time for the

Figure 7.—Typical simulated population
dynamics in the ‘‘stochastic tunneling’’ re-
gime, with neutral single mutants, Nm > 1,
and

ffiffiffiffiffiffiffiffi
s=m

p
=N > r> s. Light shading showsffiffiffiffiffiffiffiffiffiffiffiffiffi

nAbðtÞ
p

, dark shading shows
ffiffiffiffiffiffiffiffiffiffiffiffiffi
naBðtÞ

p
, and

solid shading shows
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nABðtÞ

p
. [Square roots

are shown to make low-frequency lineages
more visible and because this is the natural
scale for measuring the variance of the fre-
quency of rare mutants (Cavalli-Sforza and
Edwards, 1967).] The inset is a magnified view
of the last few thousand generations before AB
takes over the population, starting from the
birth of the first successful single mutant. We
see that the time to cross the valley is domi-
nated by the waiting time for an unusually large
single-mutant lineage that drifts to size nAb over
&nAb generations. While this lineage drifts,
many small aB and AB lineages arise and go ex-
tinct. The largest aB lineage drifts to a size naB

& NmnAb over &naB generations, recombining
many times with the Ab lineage and producing
the successful AB lineage.
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population to cross the valley. The full distribution of
the valley-crossing time T is close to exponential in the
regimes where it is typically dominated by the waiting
time for the first successful single mutant (because
mutations are rare, Nm ? 1, or because each mutant
is very unlikely to be successful, s > r, N d2), so it is given
by

PðT , tÞ # 1" exp

(
" t

t

)
: ð15Þ

This is valid, however, only for t large compared to the
typical time that a successful single-mutant lineage drifts
before the double mutants take over. This drift time
makes only a small contribution to t, but it reduces the
probability that T will be very small: even if the first
successful single mutant is produced extremely early, it
will still usually take time to generate the first successful
double mutant and for the double mutants to spread. It is
worth understanding this effect, because the left tail of the
t-distribution can be important for some processes. For
example, in a metapopulation made up of many demes
(say, for a pathogen or attenuated vaccine strain coloniz-
ing a host population), it may be that the lucky deme that
crosses the valley first will colonize the other demes; the
typical time for this to occur depends on the left tail of
P(T ) rather than t. The asexual case r¼ 0 is also relevant
for understanding the incidence of cancers that typi-
cally occur only after a series of mutations (see popular
accounts by Wodarz and Komarova 2005, Nowak
2006, and Frank 2007): the rare unlucky individuals
that develop any given form of cancer are likely to have
had cells that acquired multiple mutations anomalously
fast.

As an example, we now consider the case of infrequent
recombination (r > s) and rare mutation (Nm > 1)
described above. We saw that the successful single-mutant
lineage typically drifted for a time T & (Nm2rs)"1/3,
so Equation 15 is invalid for t , (Nm2rs)"1/3. We can,
however, perform a similar heuristic calculation to derive
P(T ) in this regime. We focus on calculating the
probability that the successful double-mutant lineage
has been produced by time t. We expect that this
probability will be dominated by the probability that a
lineage will be produced very early (with probability
&Nm) and will avoid extinction for T & t generations
and grow to a size n & t, which occurs with probability
&t"1. The lineage will then be successful with probability
P jt # Pasjt 1 Prjt (where Pasjt and Prjt are given by Equa-
tions 10 and 12 with T ¼ t), so the rate of valley crossing
at time t will be&Nmt" 1P jt, and the cumulative probability
of having produced a successful double mutant by time
t will grow like PðtÞ &

Ð t
0 N mt9"1P jt9dt9. (Here we are

ignoring numerical factors of order 1, as we will through-
out the rest of this section.)

Plugging in the values from Equations 10 and 12 to
get Pjt, we can find the complete T distribution. In the

regime Nr
ffiffiffiffiffiffiffiffi
m=s̃

p
? 1 where the sexual path dominates

at long times, we have

PðT , tÞ

&

N m2 s̃t2 for t> 1
r ðasexual route dominatesÞ

N m2r s̃t3 for 1
r > t > N

r s̃

& '1=3

m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 3r s̃t3
p

for N
r s̃

& '1=3 > t > ðN m2r s̃Þ"1=3

1" exp½"ðN 4m5r s̃Þ1=3t( for ðN m2r s̃Þ"1=3 > t

8
>>>>>>><

>>>>>>>: ð16Þ

(see Figure 8). We see that for very short times, the
population is more likely to cross the valley by the
asexual route, with the sexual route becoming more
likely at a time t ¼ O(1/r) when it becomes likely that
individuals will have undergone recombination.

Note that it is straightforward to use this approach
in combination with the analysis of Weissman et al.
(2009) to find the complete T distribution for an asex-
ual population crossing a fitness valley of arbitrary width
K. Doing so, one finds that for shallow valleys P(T , t)
generally grows like tK for small t and then like tK"1,
tK"2, . . . , t before exponentially approaching 1. This
suggests that we should expect cancer incidence curves
to generically show multiple different power-law behav-
iors as a function of age. Note the contrast between this
result and the prediction of, e.g., Frank (2007) or
Schweinsberg (2008) that the incidence should grow
like a single power of t at early times. (This result also
differs from those of Schweinsberg 2008 in that we
find the same early time dependence for populations
that have different long-time exponential behavior.)
Our results show that the use of time-dependent in-
cidence data to infer the number of mutations re-
sponsible for a cancer is seriously problematic. This is
especially so in the absence of much information about
relevant mutation rates, numbers of potentially onco-
genic mutations, and fitness effects of intermediaries.

SIMULATIONS AND NUMERICAL RESULTS

In addition to the analytical work described above, we
also performed stochastic simulations, similar to those
used in Weissman et al. (2009) (see appendix d for
simulation methods). The results of these simulations are
generally in good agreement with our analytical results
predictions, although there are significant differences in
the intermediate parameter regimes, particularly for r just
slightly larger than s, where the approximations made in
the analysis are invalid; see Figures 3, 4, and 5.

In Figures 3 and 4, we show our analytical predictions
and simulation results for the expected valley-crossing
time t as a function of the recombination rate r, with
the lowest recombination rate r ¼ 10"6 corresponding
to, e.g., a distance of &100 bp in Drosophila (Hilliker
et al. 1994; Andolfatto and Wall 2003) and the
highest recombination rate r ¼ 0.5 corresponding to
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unlinked genes. In Figure 3, the other parameters are
chosen such that

ffiffiffiffiffiffi
ms
p ? d ¼ 1=N ?m, so that single

mutants are effectively neutral (even though they would
normally be described as being weakly deleterious) and
we are in the stochastic tunneling regime, described above
for r > s. We see that a small amount of recombination
indeed reduces t compared to its asexual value, but only
slightly: at the optimal recombination rate, r # s/2, t is
reduced only by a factor of #(N 2ms/2)1/6 # 2. We also
see that at large values of the recombination, t returns
to approximately its asexual value.

In Figure 4, the fixed parameters are chosen such that
d2 .

ffiffiffiffiffiffi
ms
p

; s=N and Nm , 1, so that for r , s we are in
the stochastic tunneling regime with deleterious single
mutants, and for r ? s we are in the exponentially
suppressed regime discussed above. We see that re-
combination has a much stronger effect on the valley-
crossing time for deleterious single mutants than it does
when single mutants are neutral, with t reduced by a
factor of # 20 &

ffiffiffiffiffiffiffi
N d
p

from its asexual value at the
optimum recombination rate and increased by a factor
of# 200 & eN d2=s at the maximum recombination rate.
Because the population parameters are chosen to be
closer to the boundaries of our analytical approxima-
tions, the agreement between the analysis and the
simulations is not as close in Figure 4 as it is in Figure
3, although it is still quite good.

In Figure 5 we show our analytical predictions and
simulation results for t as a function of the population
size N. For small population sizes, the two loci are
essentially never simultaneously polymorphic, so re-
combination has no effect. In this small-population

regime, the most likely way for the population to cross
the valley is for one single mutant to drift to fixation, so
t increases as population size increases and selection
against single mutants becomes more effective. At
intermediate population sizes, the single mutants can
produce a successful double-mutant lineage while still at
low frequency in the population, and valley crossing
becomes easier, with t decreasing as N increases, and
mutants are produced more frequently. A small amount
of recombination increases the rate at which double
mutants are produced, decreasing t. Frequent recom-
bination both increases the rate of production of
double mutants and reduces the probability that a
double-mutant lineage will be successful; these two
effects cancel and t is approximately the same as for
an asexual population. At larger population sizes, t
continues to decrease with N when recombination is
rare or absent, but rapidly increases with N for fre-
quent recombination. At very large population sizes,
double mutants are essentially produced instantly, and
the population crosses the valley instantly as long as
recombination is not too frequent. The agreement
between the analytical predictions and the simulation
results is very close for most of parameter space. The
biggest differences occur at the boundaries of the
analytical approximations, particularly at Nm # 1 for
occasional recombination and N # s/d2 for frequent
recombination.

DISCUSSION

We have provided a complete and intuitive descrip-
tion of the rate at which populations acquire adapta-
tions requiring two mutations at different loci; these
span a very broad range of parameter space and
multiple regimes. Several subregimes of parameter
space have previously been examined in detail. In
particular, the case of strongly deleterious single mu-
tants has been described for r > s by Michalakis and
Slatkin (1996) and Hadany (2003) and for r ? s as a
special case by the results of Barton and Rouhani
(1987), while for the case of neutral single mutants and
r > s, Nm * 1 is examined in great detail in Christiansen
et al. (1998). That r # s is the critical value of the
recombination rate, above which recombination effec-
tively breaks up double mutants, was described by Crow
and Kimura (1965) and further investigated by Eshel
and Feldman (1970), Karlin and McGregor (1971),
Weinreich and Chao (2005), and Jain (2009), among
others. The present work serves to tie together these
previous results, providing the boundaries of the re-
gions of parameter space that they describe. In addition,
we explore new regions of parameter space, including
the case of mildly deleterious single mutants, the region
in which recombination can speed up valley crossing the
most. We also discuss the early-time dynamics most
relevant for understanding cancer rates and many

Figure 8.—Analytical approximations and simulation re-
sults for the full distribution of T, the time in generations to
cross the valley, with parameters N ¼ 105, m ¼ 5 3 10"7, r ¼
0.01, d ¼ 10"5, and s ¼ 0.05. The dotted curve shows the expo-
nential approximation Equation 15, the solid curve shows the
more accurate approximation Equation 16 (with numerical
factors included), and the circles show the results of simula-
tions.For theseparameters, theexpectedtimetocross thevalley
is t# 4 3 104 generations. We see that for times short compared
to t, Equation 15 overestimates the probability of having
crossed the valley, while Equation 16 is accurate for all times.

Rate of Fitness-Valley Crossing in Sexual Populations 1399



aspects of pathogen evolution; these have not previously
been analyzed at any depth for the most part, and our
results contradict previous findings (Schweinsberg
2008) in the one part of parameter space to have been
considered in detail.

As mentioned earlier, Lynch (2010) recently ad-
dressed some of the same questions. Here we compare
his results to ours for the regions of parameter space
where the two overlap. For the interplay between the
asexual and sexual processes, Lynch’s (2010) Equation
1 for t is incorrect. It relies on the assumption that for
each single-mutant lineage, success via the asexual path
occurs independently from success via the sexual path.
But it follows from our heuristic arguments that the
converse is true, since for neutral single mutants both
paths depend primarily on the same random variable T,
the time that the lineage drifts (see our Equations 9, 10,
and 12). (And since drifting to fixation is also primarily
dependent on T, earlier asexual versions of this equa-
tion such as Equation 3b in Lynch and Abegg 2010 are
also incorrect.) For neutral single mutants and r > s,
Equation 2 in Lynch (2010) is similar to the second line
of our Equation 13 and is found using a method that
appears to be similar to our heuristic argument.
However, the approximations given for the two parts
of the process are valid in opposite limits and thus
inconsistent: an anomalously long-lived first mutant
dominates when Nm > 1, but the second mutant can
be treated only deterministically, as assumed, for Nm ? 1.
For r ? s and large population sizes, Nm ? 1, Lynch
(2010) claims t ? tr¼0, in contrast with our result t #
tr¼0, although it is not clear in this case how he has
defined t or the boundaries of the regime. For delete-
rious single mutants and r > s, Equation 5 in Lynch
(2010) is clearly incorrect, since it adds Equation 4b,
which is valid only for strongly deleterious single
mutants, and Equation 4a, which overcounts the asexual
path across the valley that is already included in Equation
4b. The (fairly poor) agreement with simulations is
obtained only by the use of a fitting parameter with no
biological meaning. For r ? s, the regime where re-
combination slows down valley crossing the most, Lynch
(2010) gives an expression for t (Equations 6 and 7) that
differs somewhat from our Equation 8 because it is taken
from results for a different kind of fitness valley from the
one that both he and we are considering.

It was previously established that large asexual pop-
ulations can rapidly cross shallow valleys, suggesting
that complex adaptation may be common in such pop-
ulations (see, e.g., Weissman et al. 2009 and Lynch and
Abegg 2010). Here we find that crossing shallow valleys
is made even easier by moderate amounts of recombi-
nation (and is not affected by large amounts of re-
combination), suggesting that this kind of complex
adaptation may be even more common in large sexual
populations, especially among different sites within
single genes for obligately sexual populations. On the

other hand, we have found that sexual populations are
less likely than asexual populations to cross deep valleys.
Thus, recombination increases the existing bias in favor
of crossing shallow rather than deep valleys toward
large rather than small peaks.

Previous studies such as Stephan and Kirby (1993)
have found that the rate of compensatory double
substitutions at distant loci is suppressed in natural
populations, evidence of the decrease in the rate of
valley crossing for r ? s predicted by our work as well as
many previous results. Our results further suggest that
for very closely linked loci, adaptive double substitutions
should actually increase as a function of the genetic
distance between the loci. However, this signal is likely to
be harder to detect in data from natural populations,
because it is difficult to identify adaptive double
substitutions. (Piskol and Stephan 2008 do observe
that the rate of double substitutions at a certain set of
interacting sites does increase with genetic distance at
short distances, but this is unlikely to be due to
recombination, as the double substitutions in question
are expected to be only compensatory, not adaptive.)

This article has focused on the specific case of a
population with a single possible adaptation, requiring
two specific individually neutral or deleterious muta-
tions. Real populations, however, are likely to have many
possible adaptations, some requiring only a single
mutation and others requiring many, with each adapta-
tion potentially reachable by multiple different muta-
tional paths. Understanding what determines the rate
and manner of adaptation in these more realistic
situations remains a very difficult problem, but the work
in this article should be helpful. In particular, for
populations with possible complex adaptations requir-
ing mutations at several loci, we expect that it will still be
true that a small amount of recombination among the
necessary loci will make the adaptation more likely to be
acquired, while a large amount will make it unlikely,
with the scale separating small and large recombination
rates being set by the advantage provided by the
adaptation. Such an effect has indeed been observed
in simulations (Suzuki 1997). More generally, we
should expect to see a transition from selection acting
on some combinations of mutations at tightly linked loci
to selection acting roughly independently on different
haplotype blocks at longer genetic distances. Neher
and Shraiman (2009) find such effects in simulations
and analyses of evolution on certain types of (random)
fitness landscapes. Because the genetic length scale at
which this transition occurs depends on the strength of
selection, we expect that complex adaptations that
provide large selective advantages may involve longer
regions of chromosomes than adaptations providing
smaller advantages.
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APPENDIX A: BRANCHING PROCESS DYNAMICS

When mutants are sufficiently rare in the population that they do not influence each other, the dynamics of a mutant
lineage can be described by a continuous-time branching process in which individuals reproduce via binary fission at
rate 1" d (with d > 1) and die at rate 1. Here we list several basic facts about the dynamics of such lineages that serve as
the basis for the analysis in the rest of the article. Let nAb(t) be the number of individuals at time t, with nAb(0)¼ 1, and
let T be the extinction time, T [ inf{t: nAb(t)¼ 0}. The probability that the lineage persists for at least t generations is
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PðT . tÞ ¼ 1 1
edt " 1

d

( )"1

ðA1Þ

# 1=t for 1>t>1=d
de"dt for t?1=d

" #
ðA2Þ

(Kendall 1948), and given that it does so, it has size nAb(t) ¼ n with probability

ptðnAb ¼ n jnAb . 0Þ ¼ d

1" ð1" dÞe"dt

ð1" dÞð1" e"dtÞ
1" ð1" dÞe"dt

( )n"1

#
1
t ð1 1 1=tÞ"n for t > 1

d

dð1" dÞn"1 for t ? 1
d :

(

ðA3Þ

Note that the distribution of extinction times has a long tail before falling off exponentially for t * 1/d. Note
also that the number of individuals at a given time has an approximately geometric distribution, falling off
exponentially for n * min{t, 1/d}. The exact expressions above are also valid for d , 0, corresponding to a lineage
with a selective advantage. Thus we can see from Equation A1 that (ignoring recombination) an AB lineage has
a probability #s of succeeding and that those AB lineages that do go extinct typically do so in t & 1/s generations.

If we instead start with nAb(t ¼ 0) ¼ n0 individuals, then the expected number of individuals at time t will be

E ½nAbðtÞ( ¼ n0e"dt ;

and the variance will be

Var½nAbðtÞ( ¼ ð2" dÞn0e"dt1" e"dt

d

#
2n0t for t > 1

d

2n0e"dt=d for t ? 1
d :

(

Note that the number of individuals is likely to remain nAb(t)& n0 until t#min {n0, 1/d} and that the lineage is likely
to be much smaller or extinct for t . 1/d, regardless of n0.

APPENDIX B: GENERATING FUNCTION CALCULATIONS

Why generating functions: We want to estimate the rate of stochastic tunneling, in which all mutants are rare until
the double mutants begin to take over the population. Let pt(nAb, naB, nAB) be the probability that at time t there
are nAb Ab individuals, naB aB individuals, and nAB AB individuals in the population. It is useful to consider the
generating function Z of pt defined by

ZðfAb ;faB ;fAB ; tÞ[ E ½expð"fAbnAb " faBnaB " fABnABÞ(: ðB1Þ

In particular, to calculate the probability P(t) that the double mutants dominate the population at time t (i.e., that
the population has crossed the valley by this time), it is useful to consider the generating function for the distribution
of nAB, Z(0, 0, h, t) ¼ E[exp("hnAB)]. In typical valley-crossing dynamics, nAB will remain small for a time, until it
reaches a threshold number at which selection begins to effectively favor the double mutants, after which they quickly
sweep to near fixation. In large populations, this threshold number will be >N, so we can choose h ? 1/N such
that nAB will typically remain >1/h until the double mutants take over the population. For such h, the random variable
exp(–hnAB) remains #1 until the population crosses the valley, at which point it rapidly drops to #0 (because nAB

approaches N ? 1/h). Thus exp(–hnAB) is an approximate indicator variable. Therefore, its expected valueZ(0, 0, h, t)
approximately gives the probability of not having crossed the valley by time t, and we can write

PðtÞ # 1" Zð0; 0; h; tÞ: ðB2Þ

We see that if we find Z, we will have found the distribution of valley-crossing times T.
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Partial differential equation for Z: To calculate Z, we use a continuous-time Moran model for the population. All
individuals die at an equal rate, which sets the unit of time, and are chosen to replace dead individuals with a
probability proportional to their fitness. Mutation and recombination occur independently from each other and from
reproduction. (It is trivial to adjust the parameters to allow for mutations or recombinations occurring at birth.) When
mutants are rare, so that mutants essentially do not compete with each other, pt evolves according to the approximate
differential equation

@ptðnAb ;naB ;nABÞ
@t

# ½ð1" dAÞðnAb " 1Þ1 N mA(ptðnAb " 1;naB ;nABÞ1 ðnAb 1 1ÞptðnAb 1 1;naB ;nABÞ

1 ½ð1" dBÞðnaB " 1Þ1 N mB (ptðnAb ;naB " 1;nABÞ1 ðnaB 1 1ÞptðnAb ;naB 1 1;nABÞ
1 ½ð1 1 sÞðnAB " 1Þ1 mAnAb 1 mBnaB (ptðnAb ;naB ;nAB " 1Þ
1 ðnAB 1 1ÞptðnAb ;naB ;nAB 1 1Þ1 r ðnAB 1 1ÞptðnAb " 1;naB " 1;nAB 1 1Þ

1
r

N
ðnAb 1 1ÞðnaB 1 1ÞptðnAb 1 1;naB 1 1;nAB " 1Þ

" N ðmA 1 mBÞ1 ð2" dAÞnAb 1 ð2" dBÞnaB 1
r

N
nAbnaB

h

1 ð2 1 s 1 r ÞnAB

i
ptðnAb ;naB ;nABÞ: ðB3Þ

It is straightforward to use Equations B1 and B3 to write down a partial differential equation for Z. For
fAb, faB, fAB > 1, this is approximately

@Z
@t
# "N ðmAfAb 1 mBfaBÞZ1

r

N
fAb 1 faB " fAB½ ( @Z

@fAb@faB

1 mAfAB " dBfaB " f2
aB

. / @Z
@faB

1 mBfAB " dAfAb " f2
Ab

. / @Z
@fAb

1 ðs " rÞfAB 1 r ðfAb 1 faBÞ " f2
AB

. / @Z
@fAB

: ðB4Þ

Note that if it were not for the recombination between Ab and aB individuals, which gives rise to the second-order
term @Z=@fAb@faB , Equation B4 would describe the evolution of the generating function of a familiar multitype
branching process. For such processes, the problem of finding the probability of fixation of mutant alleles has been
extensively studied (see, e.g., Barton 1995 and the references therein). Unfortunately, the addition of recombination
makes our problem significantly more complicated; Equation B4 cannot be solved exactly.

Small populations (Nm > 1): To simplify the problem, we must make some approximations. For Nm ? 1, nAb

and naB are usually well approximated by their expected values (Fisher 2007), greatly simplifying the analysis; see
below for a discussion of this case. Here we focus on Nm > 1. In this case, single-mutant lineages arise infrequently, so
for an Ab lineage and an aB lineage to coexist and recombine to produce an AB lineage, one of two rare events must
occur: either the first lineage to arise must persist for an unusually long time or the two lineages must arise unusually
close together in time. Recalling the heuristic description of lineage dynamics given in the main text (with the
distribution of lineage lifetimes T having a long tail like &1/t until it begins to fall off exponentially at t &1/d), we
expect that the former possibility will be more common for sufficiently small d (neutral or mildly deleterious single
mutants) while the latter will be relatively more common for larger d (strongly deleterious single mutants).

We focus on the first possibility, that the first single-mutant lineage persists for an unusually long time. In this case,
there is an asymmetry between the two successful single-mutant lineages, since one arises well before the other. Here
we find pAb, the probability that an Ab lineage will be successful by drifting for a long time and then producing a
successful AB individual either directly by mutation or by recombining with a later aB lineage. paB, the probability
that an aB lineage will be successful by drifting for a long time, will be the same (with dA 4 dB, mA 4 mB), and when
this is the dominant mode of valley crossing, P(t) at long times will be given by

PðtÞ # 1" exp "NtðmApAb 1 mBpaBÞ
. /

: ðB5Þ

Probability that an Ab lineage will be successful: Now we turn to finding pAb. By assumption, the Ab lineage arises
and drifts for many generations without interacting with aB individuals, so its dynamics can be modeled by a simple
single-type branching process. The approximate dynamics of such a process are discussed in the main text, while the
exact distributions of the extinction time and the number of individuals are given in appendix a. Because the Ab
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lineage is likely to be large by the time the aB lineage arises (at least for dA not too large), we make the approximation
that the Ab lineage’s dynamics are relatively unaffected by the aB and AB lineages until these lineages become large
and the mutants are beginning to sweep to fixation.

The Ab lineage will, however, affect the other mutant lineages. To find pAb, we consider the dynamics of naB(t) and
nAB(t) conditioned on a particular trajectory {nAb(t)} and then take the expectation over all possible trajectories. Let
Z(faB, fAB, t j {nAb }) be the generating function of this conditioned process, defined as in Equation B1 by Z(faB, fAB,
t j {nAb }) [ E[exp(–faBnaB – fABnAB) j {nAb }]. Then, as in Equation B2, the probability that the Ab lineage with trajectory
{nAb } has produced a successful AB lineage t generations after it has arisen is

P jnAb ðtÞ # 1" Zð0; h; t j fnAbgÞ; ðB6Þ

and the total probability that the Ab lineage is successful is

pAb # 1" lim
t/‘

E ½Zð0; h; t j fnAbgÞ(: ðB7Þ

We can thus find pAb by finding Z.
Generating function for the aB and AB lineages: To find Z, note that it satisfies the partial differential equation

@Z

@t
¼ "ðN faB 1 nAbfABÞmBZ 1 ðs " r ÞfAB 1 rfaB " f2

AB

. / @Z

@fAB

1 ðrxA 1 mAÞfAB " ðrxA 1 dBÞfaB " f2
aB

. % @Z

@faB
; ðB8Þ

where xA [ nAb/N, with xA > 1 by assumption. (Equation B8 can be derived either directly from the master equation
for the conditioned process or by simply substituting fAb/0; @Z=@fAb/" nAbZ; Z/Z in Equation B4.)

Equation B8 describes the evolution of a two-type branching process with time-dependent transition rates, and we
can solve it using the method of characteristics (Kendall 1948). Taking the generating function variables to be
functions of time, fi ¼ fi(t), the total time derivative of Z is given by

dZ

dt
¼ "ðN faB 1 nAbfABÞmBZ 1 ðs " rÞfAB 1 rfaB " f2

AB 1
dfAB

dt

* +
@Z

@fAB

1 ðrxA 1 mAÞfAB " ðrxA 1 dBÞfaB " f2
aB 1

dfaB

dt

* +
@Z

@faB
: ðB9Þ

Note that if we choose faB(t) and fAB(t) to cancel the second and third terms on the right-hand side of Equation B9,
we are left with a simple ordinary differential equation for Z, with the solution

ZðtÞ ¼ exp "mB

ðt

0
ðN faBðt9Þ1 nAbfABðt9ÞÞdt9

* +
: ðB10Þ

Note that Equation B10 implies that the probability that a lineage with trajectory {nAb } is successful after t
generations is

P jnAb ðtÞ # 1" exp "mB

ðt

0
ðN faBðt9Þ1 nAbfABðt9ÞÞdt9

* +
; ðB11Þ

and the total probability of success is

pAb # 1" E exp "mB

ðt

0
ðN faBðt9Þ1 nAbfABðt9ÞÞdt9

* +* +
: ðB12Þ

From Equations 11 and 12, we see that faB and fAB can be naturally interpreted as the conditioned probability of
success for an aB lineage and an AB lineage, respectively. (The first term in the integrand corresponds to the aB
lineages that arise while the Ab lineage drifts, while the second term corresponds to the AB lineages produced
directly by mutation from Ab.) See Barton (1995) for similar expressions obtained in a slightly different way.

Characteristic equations for probabilities of success: For Equation B11 to be valid, faB and fAB must satisfy the
(Riccati) differential equations
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" dfaB

dt
¼ "ðrxA 1 dBÞfaB 1 ðrxA 1 mAÞfAB " f2

aB ðB13Þ

" dfAB

dt
¼ rfaB 1 ðs " rÞfAB " f2

AB : ðB14Þ

We are interested in the parameter regime where aB individuals are much more likely to produce AB individuals
by recombining with Ab than by mutating (rxA ? mA), so we neglect the term proportional to mA in Equation B13 for
the rest of this article. (Note that Equation B11 does include the possibility that the focal Ab lineage produces
AB individuals via mutation.)

We can solve Equations B13 and B14 approximately for the trajectory of faB and fAB, moving backward in time.
Let u be a backward-time variable, with u ¼ 0 corresponding to the time t at which faB ¼ 0, fAB ¼ h, and u ¼ t
corresponding to the time at which the Ab lineage arises. For small u (i.e., at late times), faB and fAB are very small
and we can ignore the quadratic terms in Equations B13 and B14. The eigenvalues of these linearized equations are

l6 ¼
1
2

s " r ð1 1 xAÞ " dB 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs " rð1 1 xAÞ " dBÞ2 1 4xArs " 4dBðr " sÞ

q( )
: ðB15Þ

After an initial transient of the order of ðl1 " l"Þ"1 ¼ Oðminf1=s; 1=r ; 1=dBgÞ generations, the larger eigenvalue
l1 dominates and faB and fAB increase as exp

Ð u
0 l1du9

& '
until the quadratic terms in Equations B13 and B14 be-

come important. Note that l1 is a function of xA and therefore changes over time. However, we will see that the
dynamics of faB and fAB are fast compared to the changes in xA for many of the most important trajectories {nAb}. For
such trajectories, fAb and fAB quickly approach the fixed point (f*

aB ; f*
AB) of Equations B13 and B14, which then

changes slowly as xA changes.
Fixed point and heuristic interpretation: Setting the left-hand sides of Equations B13 and B14 to 0, we find that the

first coordinate f*
aB of the constant-xA fixed point satisfies

0 ¼ f*
aB rxAs 1 ðs " rÞdB 1 s " r " rxA 1 1

dB

rxA

( )2( )
f*

aB " 2 1 1
dB

rxA

( )
f* 2

aB "
1

rxA
f* 3

aB

* +
: ðB16Þ

Equation B16 can be solved exactly using the cubic formula, but the solution is not illuminating. Given that it is already
an approximation, it is more useful to look at the simple approximate solutions in different limits, along with the
corresponding approximate value of f*

AB :

ðf*
aB ;f

*
ABÞ #

ð ffiffiffiffiffiffiffiffiffirxAs
p

; sÞ for r>s; d2
B> rxAs

rxAs
dB
; s

0 1
for r>s; d2

B?rxAs

ðxAs " d; xAs " dÞ for r?s; dB , xAs

ð0; 0Þ for r?s; dB . xAs:

8
>>>>><

>>>>>:

ðB17Þ

Recalling that faB and fAB can be interpreted as the conditioned probabilities of success of aB and AB indivi-
duals, respectively, we can understand some aspects of Equation B17 intuitively. For r > s, we have f*

AB # s (the asexual
probability of success for AB), because in this case recombination is unlikely to break up the beneficial combination.
For small dB, f*

aB #
ffiffiffiffiffiffiffiffiffi
rxAs
p

is the probability of drifting over &1=
ffiffiffiffiffiffiffiffiffi
rxAs
p

to a size & ffiffiffiffiffiffiffiffiffi
rxAs
p

, at which point the lineage
is likely to produce&1/s AB individuals via recombination and be successful. (Note that this agrees with the heuristic
argument given in the main text.) For larger dB, f*

aB # rxAs/dB is the probability of being successful by drifting for
&1/dB generations to a size &1/dB and producing rxA=d2

B AB individuals.
For r ? s we have f*

AB # f*
aB , indicating that linkage is not important (i.e., given nAb ? 1, a B allele has roughly

the same probably of success on an a background as on an A background). The probability of success xAs" d is just the
mean selective advantage of the B allele when rare. Note that the B allele has lower mean fitness than the b allele for
xA , d/s, so for these values of xA the mutants will not succeed and f*

aB # f*
AB # 0. (In fact, there is still a small

probability &e"N d that a B allele drifts against selection to fixation, and a small probability &e"N(r"s) that an AB lineage
avoids recombination while sweeping to fixation, but we neglect them here.)

Timescale for aB and AB dynamics: As mentioned above, faB and fAB will approach the values given in Equa-
tion B17 only when their dynamics are fast compared to the rate at which xA changes. When faB and fAB are far from
the fixed point, they change at a rate l1. To find the rate of change as they approach the fixed point, we can linearize
Equations B13 and B14 about the fixed point and find the eigenvalues l96 of this system. The rate of approach will be
set by l91 (where l9" , l91 , 0). Skipping the straightforward but tedious calculations, we find that in the asymptotic
regimes of Equation B17, the dynamics occur at rates l1 and l91 given by
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ðl1; j l91 j Þ #
ðs; 2 ffiffiffiffiffiffiffiffiffi

rxAs
p Þ for r>s; d2

B>rxAs

ðs;minfs; dBgÞ for r>s; d2
B?rxAs

ðxAs " dB ; xAs " dBÞ for r?s; dB , xAs :

8
><

>:
ðB18Þ

(Note that we have ignored the trivial fixed point in the last line of Equation B17, which does not contribute to the
probability of success.)

As with Equation B17, we can understand some aspects of Equation B18 intuitively. From the first two lines of
Equation B17, we saw that for r > s we could roughly neglect the effect of recombination on the dynamics of an AB
lineage once it is formed. As mentioned in appendix a, we thus expect an AB lineage to drift for &1/s generations
before either becoming successful or going extinct; we see that this timescale corresponds exactly to the time &l"1

1

that it takes for fAB to begin to approach its fixed point. For small dB, we argued that faB* # ffiffiffiffiffiffiffiffiffi
rxAs
p

corresponded to
the probability of an aB lineage drifting for & 1=

ffiffiffiffiffiffiffiffiffi
rxAs
p

generations; we now see that this is indeed the timescale jl91j"1

in the first line of Equation B18. For larger values of d, the dominant process is for the aB lineage to drift for &1/dB

generations; this, together with the 1/s timescale associated with the AB lineage, sets the scale jl91j"1 in the second
line of Equation B18. Finally, for r ? s, the B allele has mean selective advantage xAs " d and thus typically drifts for
&1/(xAs " d) generations before beginning to increase deterministically or going extinct.

Recall that we wish to compare Equation B18 to the typical rates of change of xA. As discussed in appendix a,
a trajectory that reaches nAb(t) ¼ n will typically remain O(n) for at least &min{n, 1/dA} generations. So if the values
in Equation B18 are large compared to max{1/(NxA), dA} for the trajectories making the largest contributions to pAb

in Equation B12, we can make the approximation that faB and fAB are given by their fixed-point values for almost
all the time that the Ab lineage is drifting. Doing so, Equation B12 becomes

pAb # 1" E exp "mB

ð‘

0
N f*

aBðnAbðtÞÞ1 nAbðtÞf*
ABðnAbðtÞÞ

. /
dt

( )* +
: ðB19Þ

We can now plug the values from Equation B17 into Equation B19 and evaluate the expectation to find pAb, check-
ing that the dominant trajectories are indeed changing slowly compared to l1 and l91.

Evaluating the probability that a single-mutant lineage will be successful: Unfortunately, there is no simple general
expression for Equation B19; instead, we consider the different asymptotic forms, as in Equations B17 and B18. To
reduce the number of different parameter regimes that we must consider, we now assume that the two loci are
symmetric, with mA ¼ mB ¼ m and dA ¼ dB ¼ d. (The generalization to the asymmetric case is straightforward—see
appendix c.) We then have paB ¼ pAb [ p, and Equation B5 for the probability of having crossed the valley at long times
becomes

PðtÞ # 1" exp
h"t

t

i
;

where t is the expected time to cross the valley, and t # (2Nmp)"1, with p given by Equation B19.
We now proceed to evaluate Equation B16 and find expressions for the approximate rate of valley crossing, t"1. Even

with the simplifying assumption of symmetric loci, there are a number of different limiting parameter regimes in
which t"1 takes different forms. (See Figure B1 for the different parameter regimes.) We skip the tedious details and
provide only the results of the calculations. The crucial fact that we use is the one mentioned in the main text and
described in appendix a: that lineages are exponentially unlikely to drift for a time t ? 1/d and that given that a
lineage drifts for a time t, it is exponentially unlikely to have a size n ? min{t, 1/d} for much of that time. Because
lineage trajectories that last longer than this or reach larger sizes are so unlikely, and because their contributions to
Equation B19 typically grow no faster than&nt 2 at the most, the trajectories that make the dominant contribution to p
for most of parameter space are the ones that last no longer than&1/d generations and reach typical sizes given their
lifetime. On the other hand, because the lineage size distribution has a long tail until it reaches these boundaries, large
(but not exponentially suppressed) lineages are generally important.

Asexual regime: First note that for very small r, the expressions for f*
aB in the first and second lines of Equation B17

go to 0, and the integrand in Equation B19 is dominated by Nf*
AB :

p # 1" E exp "ms

ð‘

0
nAbðtÞdt

( )* +
: ðB20Þ

In this case, double mutants are more likely to be produced by mutation of single mutants than by recombination
between single mutants, and the population is effectively asexual. We considered this case in Weissman et al. (2009).
The rate of valley crossing will be given by the asexual rate, t"1

r¼0, namely
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t"1
r¼0 #

2N
ffiffiffiffiffiffiffiffi
m3s

p
for d > ffiffiffiffiffiffi

ms
p ðeffectively neutral single mutantsÞ

2N m2s
d for d ? ffiffiffiffiffiffi

ms
p ðdeleterious single mutantsÞ:

(

ðB21Þ

Equation B21 holds in moderately large populations, with N ? minf1= ffiffiffiffiffiffi
ms
p

; 1=dg; for smaller populations, the
dominant valley-crossing process is for one mutant genotype to drift to fixation before the double mutant is produced.
(In this small-population regime, because the two loci are essentially never simultaneously polymorphic, re-
combination has no effect; see Figure 5.)

Infrequent recombination (r > s): Now we consider larger r (but still >s). First, we verify that our approximation
faB # faB* , fAB # fAB* is correct. We give the typical lifetime T for the trajectories that dominate p, along with the
corresponding timescale l"1 & l"1

1 1 l9"1
1 for faB and fAB to approach their fixed point value:

ðT ; l"1Þ #
N m2rsÞ"1=3; N 2m

rs

0 11=3
( )

for maxf ffiffiffiffiffiffi
ms
p

; dg> ðN m2rsÞ1=3

1
d ;

ffiffiffiffiffiffi
d

Nrs

q0 1
for max s

Nr ; ðN m2rsÞ1=3
$ %

> d > rs
N

& '1=3

1
d ;

1
d 1 1

s

& '
for rs

N

& '1=3 > d :

8
>>>><

>>>>:

ðB22Þ

In the first two regimes, l"1 > T and our guess is consistent, but for sufficiently deleterious single mutants it fails.
In this last case, selection limits both nAb and naB to &1/d, so valley crossing typically occurs via two similarly sized
lineages and the analysis of this appendix fails. Fortunately, in this case selection limits the size of fluctuations in the
numbers of single mutants, and nAb and naB can be approximated by their expectations. This actually allows the rate of
valley crossing to be calculated far more easily. We quote only the result here (see Equation B23 below); for a detailed
analysis, see Hadany (2003). (It is interesting to note that even in this case where our approximations fail, they
overestimate the rate of valley crossing only by a factor of 2.)

Evaluating Equation B19 in the regimes where l"1 > T, and combining this with the large-d result and Equation B21,
we finally have the rate of valley crossing for r > s:

t"1
r , s #

t"1
r¼0 for r > max 2d; min 1

N

ffiffiffiffi
s
m

q
; s

N d

" #" #
ðeffectively asexualÞ

2ðN 4m5rsÞ1=3 for max
ffiffiffiffiffiffi
ms
p

; d
$ %

> ðN m2rsÞ1=3g ðeffectively neutral single mutantsÞ

2m2
ffiffiffiffiffiffiffiffiffiffi
pN 3rs

d

q
for max s

Nr ; ðN m2rsÞ1=3
$ %

> d > rs
N

& '1=3 ðslightly deleterious single mutantsÞ

N m2rs
d2 for rs

N

& '1=3 > d > r
2 ðmoderately deleterious single mutantsÞ

8
>>>>>>>>>><

>>>>>>>>>>:

ðB23Þ

(see Figure B1). In the first line, we see that for sufficiently small r, the population is effectively asexual, and the
rate of valley crossing is given by Equation B21. For recombination to effectively speed up valley crossing, there must
be a significant probability that Ab and aB individuals are simultaneously present (N and m not too small, d not
too large) and the asexual valley-crossing process must not be too easy (s not too large). Given these conditions,
recombination will be the dominant means of producing double mutants, and the population will fall into one of
the three remaining parameter regimes in Equation B23, depending on the size of d. In the ‘‘effectively neutral’’
parameter regime, selection is sufficiently weak that the most likely way for the population to cross the valley is for
one single-mutant genotype, e.g., Ab, to drift to such a high number nAb # (Nm2rs)"1/3 that success becomes likely
(P jnAb

# 1); all the luck is concentrated in this initial large lineage. In the ‘‘slightly deleterious’’ regime, selection
makes it unlikely that a lineage will reach this size. Instead, the most likely way for the population to cross the valley is
for one lucky lineage to drift to size nAb&1/d, during which time another lucky lineage drifts to size naB &

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N d=rs

p
,

at which point success becomes likely. At even higher values of d, in the ‘‘moderately deleterious’’ regime, both
single-mutant lineages are limited to size&1/d, and the double mutants that they generate must get lucky to escape
drift and take over the population.

Frequent recombination (r ? s): Now we turn to the case r ? s. Note that since f*
aB # f*

AB in this case and nAb > N
by assumption, the integrand in Equation B19 is dominated by the first term, and p is approximately
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p # 1" E exp "m

ð‘

0
ðnAbðtÞs " dÞu nAbðtÞ "

N d

s

* +
dt

( )* +
; ðB24Þ

where u is the Heaviside step function. Note that for d ¼ 0, this is just Equation B20, the probability of success of a
single-mutant lineage in an asexual population. If d>

ffiffiffiffiffiffiffiffiffi
s=N

p
, then the extra terms in Equation B24 do not affect the

main contributions of the trajectories that dominate the asexual case, and tr.s# tr¼0. (It is easy to check that in these
cases the condition Ns ? 1 implies that the timescale l"1 in Equation B18 is small compared to the timescale for the
Ab lineage dynamics, so our approximations are consistent.)

On the other hand, if we have d?
ffiffiffiffiffiffiffiffiffi
s=N

p
, then only the exponentially unlikely trajectories with nAb > 1/d contribute

to p. In this case, because the integrand is positive only for nAb . Nd/s, we can see from Equation A3 in appendix a that
p ¼ O(exp("N d2/s)), and thus log t # Nd2/s. Note that this agrees with the result of Barton and Rouhani (1987)
quoted in the main text, although it was obtained via a very different method. Note also that p is tiny compared to its
values in other parameter regimes; this is why we can generally ignore unlikely trajectories that last much longer than
&1/d or reach disproportionate sizes—their contribution to p is negligible as long as the nonsuppressed lineages can
be successful.

Putting these results together, we find that the rate of valley crossing for r ? s is given approximately by

t"1
r . s #

t"1
r¼0 for d >

ffiffiffiffi
s
N

p

& e"N d2=s for d ?
ffiffiffiffiffi
s
N :

p
(

ðB25Þ

See Figure B1 for a typical slice of parameter space. We see that as long as the single mutants are not too deleterious,
the two effects of recombination on valley crossing (bringing together mutant alleles and breaking up the beneficial
combination) roughly cancel. In contrast, for deeper valleys, frequent recombination enormously decreases the
rate of valley crossing. Note that the arguments of this appendix are not sufficient to determine the prefactor in tr.s

given in Equation 8; this requires the detailed calculation in Barton and Rouhani (1987).
Assumptions and consistency checks: It is worth reviewing the assumptions required in the lengthy and admittedly

somewhat opaque derivation above. The most important assumption is that successful Ab lineages typically do not
follow exponentially unlikely trajectories. This is because the probability of success for a lineage typically grows much
slower than exponentially with the lineage size. It is straightforward to obtain rough estimates of the contributions of
the exponentially unlikely trajectories to the overall probability of success and confirm that they are small. We have
done so for the one regime (r?s; d?

ffiffiffiffiffiffiffiffiffi
s=N

p
) where the probability of success increases faster than exponentially in

the lineage size and where the exponentially unlikely lineages are therefore important. Note that this assumption is
only for the initial, large Ab lineage; we do not make a similar assumption for the aB and AB lineages. Rather, we
start with the full distribution of possible trajectories and find that the exponentially unlikely trajectories are
unimportant, verifying this part of the heuristic argument in the main text.

We have made the additional assumption that the Ab lineage is relatively unaffected by the aB and AB lineages
until the B allele is already increasing deterministically. As a check on this assumption, one can check that for r > s
the aB lineage dynamics are relatively unaffected by the much larger Ab lineage. While the two lineages must obviously
interact to produce recombinants, the total number of individuals affected (&1/s) is typically small compared not just
to nAb, but also to naB. For r ? s, one can check that the B-allele dynamics are only slightly affected by the more common
A allele until xAxB # 1/s (at which point the mutants begin to deterministically increase in frequency), and thus the
B allele has only a slight effect on the A dynamics before this point.

The remaining assumptions (e.g., that the aB and AB dynamics are fast compared to the Ab dynamics) are justified
within the derivation, and the (numerous) remaining approximations have effects that are small in the asymptotic
parameter regimes and straightforward to estimate.

Larger population sizes: Equations B23 and B25 are valid only for Nm > 1. For Nm ? 1, there will typically be many
single-mutant lineages in the population at one time, and the single-mutant frequencies initially increase
approximately deterministically. For r > s, their numbers are given by (assuming symmetric loci)

nAbðtÞ # naBðtÞ #
N m

d
ð1" e"dtÞ: ðB26Þ

As long as N is not so large that the successful double mutant is produced instantly (Nm2/s > 1), t is dominated by the
waiting time for the first successful double mutant to be produced. Double mutants are produced by recombination at
a rate ðr=N ÞnAbðtÞnaBðtÞ and by mutation at a rate m(nAb(t) 1 naB(t)), so the expected waiting time for the first
successful one is
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t #
ð‘

0
dt exp "s

ðt

0

r

N
nAbðt9ÞnaBðt9Þ1 mðnAbðt9Þ1 naBðt9ÞÞ

0 1
dt9

* +

#

ðm
ffiffiffiffiffiffi
Ns
p
Þ"1 for r ; d > m

ffiffiffiffiffiffi
Ns
p

ðeffectively asexual; neutral single mutantsÞ
d

2N m2s for d ? r ;m
ffiffiffiffiffiffi
Ns
p

ðeffectively asexual; deleterious single mutantsÞ

ðN m2rsÞ"1=3 for r ? m
ffiffiffiffiffiffi
Ns
p

; d>ðN m2rsÞ1=3 ðeffectively neutral single mutantsÞ

d2

N m2rs for r ? d?ðN m2rsÞ1=3 ðdeleterious single mutantsÞ
:

8
>>>>>>><

>>>>>>>:

ðB27Þ

For small r or large d, the population is effectively asexual; this regime is discussed in Weissman et al. (2009). For a
more detailed discussion of the the third case, where recombination dominates and single mutants are effectively
neutral, see Christiansen et al. (1998). The fourth case is discussed in Hadany (2003). Note that for deleterious
single mutants, t has the same value as it does for deleterious single mutants with Nm > 1 in Equations B21 and B23. In
the neutral cases, on the other hand, not only is the expected time t different, but also the rate of valley-crossing
increases with time, so that the distribution of the valley-crossing time is no longer exponential.

For r ? s, we can consider the population to have crossed the valley when the mean fitness of all the mutants is
significantly greater than that of the wild type; once this is true, selection will rapidly drive the mutants to
high frequencies. For d> ffiffiffiffiffiffi

ms
p

, single mutants are effectively neutral, and selection will begin to favor the mutants
when nAB # 1/s. This typically occurs at time t # ðm

ffiffiffiffiffiffi
Ns
p
Þ"1, approximately the same as for an asexual population.

(Note that t ? 1/r, so the population will be close to linkage equilibrium at t # t.) For d? ffiffiffiffiffiffi
ms
p

, the population
cannot cross the valley until the single mutants drift far higher than their frequencies at mutation–selection
balance, so the semideterministic approximation breaks down; this regime is discussed in the main text and in
Barton and Rouhani (1987). Note that in this case, while there are many single-mutant lineages in the population
at one time, only rare lineages drift to the frequencies needed to cross the valley, so the exponential dependence of t
on N d2/s is the same as for Nm > 1.

APPENDIX C: ASYMMETRIC LOCI

For most of this article, we have assumed that the two loci are equivalent to reduce the number of parameters.
Relaxing this assumption, i.e., allowing mA 6¼ mB and dA 6¼ dB, does not change the qualitative conclusions. It is
straightforward to repeat the heuristic arguments in the main text or the calculations in appendix b for any
particular choice of parameters, although it is tedious to do so for all possible parameter combinations. Two points
are worth briefly noting. First, asymmetry between the loci generally reduces the advantage of r > s and increases
the disadvantage of r ? s relative to asexual populations. This is because the asexual valley-crossing dynamics will be
dominated by the more favorable single-mutant genotype, while the sexual dynamics will necessarily involve both
genotypes. Second, for r ? s and very asymmetric loci, it is possible to be in the regime where valley crossing is
exponentially suppressed even if one of the single mutants is nearly neutral. For instance, suppose dA is very small.
As long as dB is large enough that the product satisfies dAdB ? max{mAs, mBs, s/N }, the population will be in the
regime discussed in the main text, where to cross the valley it must cross a saddle point in the equilibrium allele
frequency probability distribution. The saddle point in this case is at xA # dB/s, xB # dA/s, with Ab typically drifting
to a much higher frequency than aB. The expected valley-crossing time increases exponentially with the
population size, with

logðtÞ & N dAdB=s:

APPENDIX D: SIMULATION METHOD

We evolved populations using time steps of dt ¼ 10"2 generations, during each of which the state of the population
was updated via the following procedure:

1. The mean fitness !w of the population was calculated, and the number nij of individuals with genotype ij
was changed by random numbers of births bij & Binomialðnij ; ð1 1 wij " !wÞdtÞ, deaths dij & Binomial(nij, dt),
and mutations mij & diABinomial(naj, mAdt) 1 djBBinomial(nib, mBdt) (where dkl is the Kronecker delta):
n*

i;j¼nij 1 bij " dij 1 mij .
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2. If the total number of individuals N * ¼
P

n*
ij was different from N, the number of individuals of each genotype was

multiplied by N/N * and rounded to the nearest integer, and then the number of individuals with the most common
genotype was adjusted to bring the total back to N.

3. A random number of pairs of individuals with complementary genotypes (ab " AB or Ab " aB) underwent
recombination. For each pair of genotypes, the number of recombinations was distributed as Binomial(nij, rni9j9

dt/N ), with nij # ni9j9.

Each run of the simulation proceeded until the population was fixed for AB or 2 3 107 generations had passed.
Note that the simulation results for t include the time it takes for AB to sweep through the population. This has a
negligible effect, except for the smallest population sizes shown in Figure 5; in this case, we also included the sweep
time in the curves showing the analytical predictions.

Figure B1.—Typical slice of parameter space for 1=
ffiffiffiffiffiffi
ms
p >

N >1=m, showing regions where recombination has a strong
effect on t, the expected time for the population to cross the
fitness valley. Recombination reduces t in the green region,
increases t in the red region, and has only a minor effect
on t elsewhere. In the regions labeled A1 and A2, t is given
by the first and second lines of Equation B21 (the first and
third lines of Equation 1 in the main text), respectively. In re-
gions L1, L2, and L3, t is given by the second, third, and
fourth lines of Equation B23 (Equation 4 in the main text),
respectively. In region H2, t is given by Equation 8. In region
H3, t is approximately the expected time for a deleterious sin-
gle mutant to drift to fixation, with log t # Nd. In regions
A1 and L1, single mutants are effectively neutral.
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