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The evolution of natural organisms is ultimately driven by the invasion and possible fixation of mutant alleles. The invasion

process is highly stochastic, however, and the probability of success is generally low, even for advantageous alleles. Additionally,

all organisms live in a stochastic environment, which may have a large influence on what alleles are favorable, but also contributes

to the uncertainty of the invasion process. We calculate the invasion probability of a beneficial, mutant allele in a monomorphic,

large population subject to stochastic environmental fluctuations, taking into account density- and frequency-dependent selection,

stochastic population dynamics and temporal autocorrelation of the environment. We treat both discrete and continuous time

population dynamics, and allow for overlapping generations in the continuous time case. The results can be generalized to

diploid, sexually reproducing organisms embedded in communities of interacting species. We further use these results to derive

an extended canonical equation of adaptive dynamics, predicting the rate of evolutionary change of a heritable trait on long

evolutionary time scales.
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Although the ecological importance and basic principles of adap-

tation to a variable environment have been long known, the cor-

responding genetic processes are not yet sufficiently understood.

Ultimately, evolution is dependent on the fate of mutant alle-

les, and during the first generations after the appearance of a

new variety its success is to a large extent dependent on chance

events and the probability of extinction is high. A large body

of theory (nicely reviewed by Patwa and Wahl 2008) treats the

probability that an advantageous mutant survives the first crucial

generations and becomes sufficiently abundant so that the risk

of stochastic extinction can be ignored. This has in the literature

been called the probability of “survival,” “establishment,” “fixa-

tion,” or “invasion,” depending on the context. We will here use

the term “invasion.” In many cases invasion implies fixation, but

not necessarily so if fitness is frequency dependent, such that a

polymorphism is possible.

Starting with the simpler case of a constant environment,

Haldane (1927) famously stated that the invasion probability of a

mutant allele equals 2s, where s is the relative fitness advantage

of the invading allele (Haldane assumed a constant, large popula-

tion size, Poisson distribution of offspring and a small s). Later,

Ewens (1969) and Eshel (1981) (see also Athreya 1992) gener-

alized Haldane’s result to arbitrary offspring distributions. They

found the invasion probability to be approximately equal to 2s/σ2,

where σ2 is the variance in the number of offspring from a single

individual, that is, a measure of the strength of genetic drift (or

demographic stochasticity). For example, the Poisson distribution

has a variance equal to its mean, which by assumption is equal to

1 + s here. Thus, Ewens’ and Eshel’s approximation agrees with

Haldane’s result because s is assumed to be small.

Taking variable survival and/or reproduction rate into ac-

count is inherently difficult in the general case. The case of a
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variable fitness advantage s but constant population size N has

been studied several times (e.g., Kimura 1954; Jensen 1973;

Karlin and Levikson 1974; Takahata et al. 1975). Alternatively, a

branching process approach can be used, which usually requires

the assumption of an infinite resident population size. Smith and

Wilkinson (1969) showed by this approach that an invading mu-

tant will go extinct with certainty if E(ln(mt)) < 0, where mt is

the time-dependent average number of offspring per individual

and E(·) denotes the long-term, stationary, mean (Dempster 1955

fore-shadowed this result, see also Gillespie 1973). It is assumed

that each mt is chosen independently from a fixed distribution—

a so-called white noise environment. Later, Athreya and Karlin

(1971) generalized this result to autocorrelated environments, and

Karlin and Lieberman (1974) to diploid populations. Together,

these results underline the importance of mean log growth rate

for adaptations to variable environments, a fundamental result

in bet-hedging theory (e.g., Cohen 1966; Seger and Brockman

1987). In a recent paper, Peischl and Kirkpatrick (2012) used

novel analytical techniques to calculate the probability of inva-

sion, given small fluctuations of s. They show that the invasion

probability is proportional to a weighted time average of s, with

more weight on points in time with low mutant abundance.

If the invading mutant has a fixed fitness advantage relative

to the resident type, then the mutant growth rate will vary over

time just like that of the resident population. This assumption has

been used in a number of studies. Ewens (1967) showed that the

probability of establishment in a cyclic population equals 2s nH
n(0)

(again assuming a Poisson distribution of offspring and a small

s), where nH is the harmonic mean population size and n(0) is

the resident population size at the time when the mutant first

appears. This shows that the invasion of a mutant type is less

likely if the amplitude of the population cycle is large (assum-

ing a fixed arithmetic mean), since the harmonic mean is sensi-

tive to variation, as opposed to the arithmetic mean. It can also

be shown that invasion is more likely in a growing population

than in a declining population (Ewens 1967; Kimura and Ohta

1974; Otto and Whitlock 1997). The results by Ewens (1967)

and Otto and Whitlock (1997) for cyclic populations were later

generalized to arbitrary offspring distributions by Pollak (2000),

who among other things confirmed that the probability of in-

vasion in a cyclic population is proportional to the harmonic

mean population size divided by the population size at mutant

introduction.

The more general case of both a variable strength of selection

and a variable resident population size has been treated recently

by Waxman (2011) and Uecker and Hermisson (2011) . In both

studies, quite general expressions, but rather implicit, for the in-

vasion probability are derived, Uecker and Hermisson (2011) fur-

ther analyze simplifying special cases such as a deterministically

growing population or a periodic (sinusoidal) environment.

Lastly, we would like to highlight a rarely cited result by Hill

(1972) who, somewhat offhandedly, derived the expression

P = 1 − e−2nes̄q

1 − e−2nes̄
, (1)

where P is the probability of mutant invasion, ne = nH is again the

harmonic mean population size, s̄ is the arithmetic mean selective

advantage and q is the initial proportion of the mutant type. We

will return to this result, and its assumptions, in later sections.

We here generalize several of the aforementioned results to

the case of arbitrary ergodic population dynamics, subject to er-

godic environmental fluctuations. We calculate the invasion prob-

ability of a mutant of small phenotypic effect in a large resident

population. Mutant fitness, and in particular its selective advan-

tage s, depends on the resident population size as well as the

environmental fluctuations and may in some circumstances be

negative as long as the long-term mean s̄ is positive. Solutions are

given for both discrete time and continuous time dynamics. The

continuous time case allows for overlapping generations and is a

particularly suitable model for unicellular organisms that repro-

duce through fission, such as bacteria or protozoa.

Model Description: Basic
Assumptions
We consider the invasion of a mutant type in a monomorphic

resident population of asexually reproducing individuals, under

the assumptions that (1) all individuals are equivalent, that is, there

is no age, stage, or spatial structure, (2) the resident population

size is large enough that the growth of an invading mutant is

independent of its own density, at least until the mutant abundance

is large enough that the risk of stochastic extinction is negligible,

and (3) the mutation is of small effect, such that the mutant type is

ecologically close to the resident type, that is, it has in all possible

environmental circumstances a per capita growth rate close to that

of the resident.

CONCEPTS AND NOTATION

Because we will move back and forth between the established

conceptual frameworks of stochastic population dynamics, popu-

lation genetics, and long-term evolution, a couple of concepts may

have different meanings to readers with different background.

First, the “environment” of an invading mutant type consists

of two basic components—the “external environment” and the

“feedback environment.” We think of the external environment

as a stochastic, ergodic process, which affects the survival and

reproductive success of all individuals of the same type in the

same way, such as stochastic weather fluctuations or a variable

resource abundance. Ergodic means that irrespective of initial

conditions, the environment will in the long term visit its full
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stationary distribution. The external environment is in itself not

affected by the state of the focal population, in contrast to the

feedback environment, which by definition depends on the current

state of the focal population and possible interacting populations

(Metz et al. 1992; Mylius and Diekmann 1995; Heino et al. 1998).

In the simplest of cases, the feedback environment is population

size and the external environment is a single parameter, such as

temperature. Our analysis is staged in this simplified scenario but

it is straightforward to generalize to the multidimensional case

(see below).

Second, “fitness” can be understood either as long-term fit-

ness, that is, the long-term average per capita growth rate of any

given clone, or as the instantaneous per capita growth rate at

any given moment. We use the qualifications “mean fitness” and

“instantaneous fitness” to denote the two concepts, respectively

(more precise definitions follow).

Finally, we use E[z(t)], V[z(t)], and C[z(t),w(t)] to denote

the mean, variance, and covariance, respectively, of the stochastic

process(es) z(t) (and w(t)). If nothing else is specified, the sta-

tionary mean, variance and covariance, respectively, are intended.

For brevity, we will sometimes use to denote the mean.

CONTINUOUS TIME MODEL

We start with the continuous time case—assuming individuals

reproduce and die according to a time-inhomogeneous birth-and-

death process. More formally, we assume that a resident-type

individual has a birth rate, b(n(t), ε(t)), and death rate d(n(t), ε(t)),

where n(t) is the resident population size and ε(t) is an environ-

mental process. It is assumed that ε(t) is an ergodic, stochastic

process continuous in time. The instantaneous fitness, that is, the

per capita growth rate, f , is given by the difference between birth

and death rate,

f (n(t), ε(t)) = b(n(t), ε(t)) − d(n(t), ε(t)). (2)

We denote the total dynamic environment determining the

instantaneous fitness E(t). In the formalism here, E(t) = {n(t),

ε(t)} and the growth, birth, and death rates can be written

f (E(t)) = b(E(t)) − d(E(t)). (3)

We assume E(t) is ergodic, which should be a realistic as-

sumption for many scenarios, albeit excluding long-term environ-

mental trends or a steadily growing or declining population. Note

that autocorrelation of the environmental process ε(t) is allowed,

as long as it declines to zero at large time lags. More precisely,

the total environment E(t) should explore its full stationary distri-

bution much faster than the time scale of a mutant invasion (1/s̄,

see below). It should also be noted that technically speaking the

population process is not ergodic because n = 0 is an absorbing

state. However, in the large population limit considered here, this

is of minor importance.

Given the growth function above, it is straightforward to

express the resulting dynamics of the resident population. Because

we assume population size n to be large enough that demographic

stochasticity can be ignored, the resident population dynamics are

given by

dn

dt
= f (E(t))n(t). (4)

We assume a single mutant individual appears in the popula-

tion at t = 0. The mutant birth, death, and per capita growth rates

are denoted by b̃(E(t)), d̃(E(t)), and f̃ (E(t)), respectively. The

instantaneous mutant fitness advantage is written

s(E(t)) = f̃ (E(t)) − f (E(t)). (5)

Note that E(t) is still the environment given by the population

dynamics of the resident population (and the external environ-

ment). A mutant type may have a fixed fitness advantage (s), but

can also differ in its density dependence, its sensitivity to fluc-

tuations of the external environment, or all of the above. s(E(t))

can in the general case change sign depending on the state of the

environment E(t), but we assume its long-term (stationary) mean,

s̄, is positive. In other words, the mutant type may be at a disad-

vantage for shorter periods of time, as long as it is advantageous

on average.

DISCRETE TIME MODEL

For the discrete time case, we assume nonoverlapping genera-

tions. Each individual (independently) gives birth to a geomet-

rically distributed number of offspring, with the mean number

of offspring determined by the individual’s instantaneous fitness.

The probability of k offspring is

Pr(k) = (1 − p)k p, (6)

where p = 1/(1+λ) and λ is the mean number of offspring. The

variance in offspring number is λ(λ + 1), which can be com-

pared to the commonly used Poisson distribution, which has a

variance equal to its mean, λ. A mechanistic motivation for the

geometric distribution arises if an individual makes repeated re-

production attempts, each with the same probability of success,

but stops at the first failure. From a more pragmatic point of view,

however, there is clearly no natural population where individual

reproductive success exactly follows a geometric or Poisson dis-

tribution. The geometric distribution is used here for mathematical

convenience, in lack of a more general theory for all, or at least a

family of distributions.

In discrete time, we define the instantaneous fitness function

f as the natural logarithm of the per capita growth rate (λ), such

that the mean number of surviving offspring of an individual of
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the resident type is given by e f (n(t),ε(t)) = e f (E(t)), where ε(t) here

is a discrete time process, but with otherwise the same properties

as in the continuous time case above. The dynamics of a large

population of resident-type individuals is thus

n(t + 1) = e f (E(t))n(t)). (7)

Mutant Invasion
We here derive the main result—the probability of invasion of

a mutant type, starting as a single individual at time t = 0. In-

vasion does not necessarily imply fixation. If coexistence of the

mutant and resident types is possible, we assume the equilibrium

mutant abundance is large, such that the invasion process can

safely be analyzed under the assumption that mutant abundance

has no effect on mutant fitness. More precisely, we assume there

is a population size ni of the mutant type at which invasion can

be considered certain but that at the same time ni << n, where

n is the equilibrium resident population size. If the probability

that a mutant population starting with a single individual invades

is equal to P, then the probability that a population of ni mu-

tants goes extinct is approximately given by (1 − P)ni ≈ e−ni P

as long as P is small. A requirement is thus that e−ni P is close

to zero, that is, that niP is large (niP > 5 gives an error less

than 1%). If, as we will show, P is the size of s̄, we can ex-

press the necessary requirement that ns̄ >> 1 for our analysis to

hold.

CONTINUOUS TIME

As a starting point, we use a result by Kendall (1948), which states

PE = 1

1 + IE
, (8a)

where PE is the ultimate survival probability of a time-dependent

birth-and-death process and

IE =
∫ ∞

0
d̃(E(t))e− ∫ t

0 f̃ (E(τ))dτdt. (8b)

A heuristic interpretation of equation (8b) is a weighted total

death rate, with most weight on periods, usually at low t-values,

with low numbers of mutants (the exponential factor can be in-

terpreted as 1/(expected mutant population size at time t)). As

mentioned in the Introduction, a similar weighting was found by

Peischl and Kirkpatrick (2012).

The environment E(t) is in the general case stochastic and un-

predictable. The necessary interpretation of PE (eq. 8a) is thus the

“conditioned” survival probability (Waxman 2011), conditioned

on the future environment E(t), t ≥ 0, which is the reason for the

subscript E.

The unconditioned probability of invasion is given by the

mean PE, and we here calculate the mean probability P0,

P0 = E[PE |E(0)], (9)

averaged across all possible future developments of environmental

states, but still conditioned on initial conditions E(0). In particular,

we seek the linear dependence of P0 on the mean fitness advantage

s̄ as s̄ becomes small, that is, we seek the limit

lim
s̄→0

P0

s̄
= lim

s̄→0
E
[

PE

s̄
|E(0)

]
= lim

s̄→0
E
[

1

s̄ + s̄ IE
E(0)

]
. (10)

In Appendix S1, we show that

lim
s̄→0

s̄ IE = n(0)E
[

d(E(t))

n(t)

]
(11)

for almost all possible future environments E(t), t ≥ 0 (the excep-

tions have probability zero). n(0) is the resident population size

at the time of mutant arrival, but all other dependencies on initial

conditions average out. Inserting equation (11) into equation (10)

gives (see Appendix S1 for details)

lim
s̄→0

P0

s̄
= 1

n(0)E
[

d(E(t))

n(t)

] = 1

n(0)(d/n)
, (12)

and we can finally express the approximate invasion probability

as

P0 ≈ s̄

n(0)(d/n)
= 2

s̄

b̄

ne

n(0)
, (13a)

where we define the effective population size ne as

ne = d̄

2(d/n)
= b̄

2(b/n)
= (b + d)

2(b + d)/n
. (13b)

The identities b̄ = d̄ and (d/n) = (b/n) = 1/2(b + d)/n fol-

low from the ergodicity assumption of n(t). More precisely, they

follow from the assumptions that ln(n(t)) and 1/n(t) have a long-

term mean growth rate of zero.

The definition of effective population size (eq. 13b) is some-

what arbitrary. Otto and Whitlock (1997) suggest defining ne such

that P0 = 2s̄ne/n(0)(the “fixation effective population size”),

which in our case implies setting ne = 1/(2b/n). However, our

proposed definition of effective population size (eq. 13b) has the

appealing properties that (1) it is unitless—it does not depend

on the chosen time unit, (2) it simplifies to ne = n/2 in cases

when n is constant, (3) it can be interpreted as half the weighted

harmonic mean population size, weighted by the total per capita

event rate (b + d), and is thus congruent with the discrete time

case below. A possible disadvantage with our definition is that

the average fitness advantage, s̄, must be standardized with the

mean birth rate, b̄. On the other hand, the unitless ratio s̄/b̄ (eq.

13a) can be interpreted as a standardized selection coefficient,
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measured on the time scale of the average generation time (in

the deterministic case, with a constant population size, generation

time equals 1/d = 1/b). Irrespective of the preferred definition of

effective population size, equation (13a) is directly comparable to

several previous results in discrete time (e.g., Ewens 1967; Otto

and Whitlock 1997; Pollack 2000).

The approximation in equation (13a) is valid for small s, that

is, not only is s̄ small, but also its fluctuations. The mutant type

can thus not be inherently different from the resident type—its

instantaneous fitness must for all environmental states be close to

that of the resident. The only realistic interpretation is a mutation

of small phenotypic effect. We further investigate the applicabil-

ity of this result in the Model Examples section below and in

Appendix S3.

THE DISCRETE TIME CASE

Using the assumption of geometrically distributed offspring, the

ultimate survival probability of a mutant strategy appearing at

t = 0 can be expressed exactly as (Haccou et al. 2005, Box 5.5):

PE = 1

1 + IE
(14a)

where

IE =
∞∑

t=0

e−∑t
τ=0 f̃ (E(τ)). (14b)

The striking similarity between equations (14a,b) and the

continuous time version equations (8a,b) makes it possible to carry

out almost exactly the same derivation as above, only exchanging

integrals with sums and setting the death rates d and d̃ to 1. Due to

the great similarity of the calculations we refrain from presenting

the discrete time derivation here, and instead present the major

results:

P0 ≈ 2s̄
ne

n(0)
, (15a)

where

ne = nH

2
, (15b)

and, just like above, P0 is the probability of invasion conditioned

on initial conditions E(0), n(0) is the resident population size at

the time of mutant appearance, and nH is the harmonic mean

population size. The requirement that the mutant phenotype is

close to the resident is the same as above. This result agrees

well with that of Ewens (1967), which gives the probability of

fixation as 2s nH
n(0) in a population with cyclic dynamics. Our result

is generalized to a variable, density-dependent fitness advantage

and arbitrary ergodic population dynamics. The difference by a

factor two is due to different assumptions on the distribution of

surviving offspring – the geometric distribution [used here], as

opposed to the Poisson distribution [as used by Ewens].

The Diffusion Approximation
The diffusion approximation is very often utilized in population

genetics and it can be used, with care, for the problem of mutant

invasion in stochastic environments. Classically, the proportion

p of the invading type is the dynamic state variable and under

the assumption that p changes slowly (between generations) it

is sufficient to calculate the mean and variance of the change

�p (Kimura 1962). In a stochastic setting, it is further necessary

to assume that p changes slowly enough that the full stationary

distribution of environmental states is experienced during a time-

step �t. Still, �t has to be small enough that �p is small. In other

words, it is required that the invasion process is much slower

than the stochastic environmental dynamics. Nonetheless, Hill

(1972) derived the following expressions under the assumptions

of discrete generations and Poisson distributed offspring:

E(�p) = sA p(1 − p) + O(1/n2) (16a)

V(�p) = p(1 − p)/ne + O(s2
A) + O(1/n2), (16b)

where ne is the harmonic mean population size and sA is the arith-

metic mean selective advantage (sA =E (es − 1) = s̄ + O(s2) in

our notation). Inserting equations (16a,b) into the standard equa-

tions of Kimura (1962) yields

P0 = (1 − e−2nesA/n(0))/(1 − e−2nesA ), (17)

expressing the invasion probability of a mutant appearing as a

single individual at time 0 (p0 = 1/n(0)). Hill’s result has as a

first-order approximation (assuming nesA is large and discarding

terms of order s2
A and higher)

P0 ≈ 2sA
ne

n(0)
, (18)

which coincides with our result (eq. 15a), apart from the difference

in effective population size.

It is possible to derive equations similar to equations (16a,b)

also for our models in discrete and continuous time (not shown).

The resulting expressions, similar to equations (17) and (18),

match our results above using the branching process approach

(eqs. 13a, b and 15a, b). In short, it is possible to acquire much

the same results using the diffusion approximation. This is not too

surprising, because the necessary assumptions (large population

size, slow invasion) are much the same. However, the condi-

tions under which the diffusion approximation is valid, especially

the averaging across the stationary distribution of environmen-

tal states in equations (16a, b), are somewhat unclear to us. For

example, Hill’s (1972) derivation misses the fact that in discrete

time, fitness should be averaged on a logarithmic scale. We leave

it to future studies to more thoroughly evaluate the conditions
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under which the diffusion approximation is appropriate. Here, we

conclude that it is correct at least to the first order of s.

Model Examples and Tests
of Accuracy
CONTINUOUS TIME

As a continuous time example of our main finding—the proba-

bility of mutant invasion—we choose a theta-logistic model with

a birth rate, b, subject to environmental variation and a density-

dependent death rate, d, according to

b(ε(t)) = d0 + r + ε(t) (19a)

and

d(n(t)) = d0 + r

(
n(t)

K

)θ

(19b)

such that the instantaneous fitness becomes

f (n(t), ε(t)) = b(ε(t)) − d(n(t)) = r

(
1 −

(
n(t)

K

)θ
)

+ ε(t),
(19c)

n(t) is the total population size, K is the carrying capacity, cor-

responding to the deterministic equilibrium population size, r is

the per capita growth rate at low densities, and θ (together with

r) controls the shape and strength of density dependence. ε(t) is a

Gaussian process (more precisely an Ornstein–Uhlenbeck process

[Stirzaker 2005]) with zero mean and an autocovariance function

C[ε(t), ε(t − τ)] = σ2
ε e−|τ|/TC , (20)

where σ2
ε is the stationary variance of the environmental fluctua-

tions and the (auto-) correlation time TC dictates the environmen-

tal autocorrelation (the limit TC → 0 corresponds to white noise,

with no autocorrelation).

As a first example, we choose a resident population with

strong density dependence (θ = 2) and study the invasion of a

mutant with weaker density dependence (θ = 1.98), but the same

equilibrium population size. In the deterministic case (σ2
ε = 0),

the invasion fitness in this model depends only on the equilib-

rium population size of the resident, K, compared to that of the

invading mutant, and it is a standard result that evolution will max-

imize K (Charlesworth 1971). However, in a variable environment

selection will deviate from the deterministic prediction. The en-

vironmental fluctuations have no direct effect on mean fitness but

the resulting fluctuations in population size in combination with a

nonlinear density dependence create selection for weaker density

dependence in this case. This is illustrated in Figure 1, where the

density-dependent fitness of the resident (f , solid, grey line) and

the invading mutant ( f̃ , dash-dotted line, mostly overlapping with

f) are depicted together with the stationary distribution of resident

Figure 1. Instantaneous fitness of the resident type (solid, grey

line) and a rare mutant (dash-dotted line) as functions of the res-

ident population size in the continuous time theta-logistic model

(eqs. 19a–c), disregarding environmental stochasticity (ε is set to 0

when plotting these functions). The dashed line shows the differ-

ence between mutant and resident fitness (×100). The background

shading is a histogram (y-scale not shown) of the population sizes

from a simulation of the stochastic resident population dynamics,

where the environmental process is an Ornstein–Uhlenbeck pro-

cess (eq. 20). Parameter values: d0 = 1, r = 1, K = 106, θ(resident) =
2, θ(mutant) = 1.98, σ2

ε = 0.7, TC = 1.

population size (shaded histogram in background). The fitness

difference (s = f̃ − f , the thick dashed line is 100s) is negative

for population sizes below K but positive above K. Mean popu-

lation size is equal to K, but the strong curvature of s generates a

positive average fitness advantage for the mutant (s̄ = 0.0022).

We tested the predicted probability of invasion by, first, gen-

erating a set of initial conditions from the stochastic dynamics of

the resident population and, next, starting 105 separate invasion

attempts from each initial condition, all initiated from a single mu-

tant individual (simulation details are given in Appendix S2). Fig-

ure 2 shows the resulting estimated invasion probabilities plotted

against initial population size n(0) (points with 95% confidence

intervals). For the set of parameter values chosen here (see leg-

end), the results follow our prediction very well (dashed line, s̄ and

ne are calculated from simulations of the population dynamics).

We further investigate the robustness of our prediction in

Appendix S3. To summarize, we find good agreement between

our result and more exact numerical calculations (using eqs.

8a, b) as long as ns̄ is large and s̄ is small. For this par-

ticular model, with these particular parameter values, our ap-

proximation has an average error less than 5% in the region

50/K < s̄ < 0.007. At the lower limit, demographic stochasticity

of the resident dynamics is too strong and, more importantly, the

branching process approach is no longer valid because the resident
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Figure 2. Probability of mutant invasion (y-axis) as a function of

the initial resident population size (x-axis) for the stochastic con-

tinuous time theta-logistic model (eqs. 19a–c, 20). The black dots

(with 95% confidence intervals) indicate the estimated probability

from 105 simulations, started with a single mutant individual. All

invasion attempts for a given n(0) were started at the same initial

condition. Initial conditions were generated by simulating the res-

ident population for 100 time units and thereafter until the appro-

priate (equally spaced on the log x-axis) population size occurred.

The dashed line is the prediction given by equation (13), where

s̄ and (d/n) were calculated from simulations. The background

shading is a histogram of the resident population dynamics, with

log-spaced bins. Parameter values are the same as in Figure 1.

population cannot be considered infinite from an invasion per-

spective. Above the higher limit (s̄ > 0.007), the variation in PE

between alternative future environments is too large for our result

to hold. In principle, the relationship P0 ∼ 1/n0 fails. It should

here be noted that a diffusion approximation approach (sensu

eq. 17) likewise fails at this limit—the difference between the

two predictions is much smaller than the error. We also tested the

sensitivity to strong environmental variation and autocorrelation,

and found environmental autocorrelation to be more critical than

variation per se, except close to the boundary where the risk of

extinction of the resident population becomes substantial and the

population undergoes frequent severe bottlenecks. See Appendix

S3 for further details.

Technical note: In the derivation of equations (13a, b), we

show that for each possible future environment, the probability

of invasion converges to the limit as the mean fitness advantage

s̄ goes to zero. Numerical investigations (Appendix S3, Figs. S1

and S4) show that, at least for this model, the “mean” probability,

averaged across all possible future environments, converges much

faster than the invasion probabilities corresponding to single envi-

ronmental realizations. This means that the value of s̄ may not be

as restricted to really small values as one might conclude from our

derivation, and leaves room for future theoretical investigations

on this topic.

DISCRETE TIME

The discrete time example is based on the classical logistic equa-

tion, with a fitness (log per capita growth rate) of the resident

population given by

f (n(t)) = ln(1 + r (1 − n(t)/K )) + ε(t). (21)

We introduce minute amounts of environmental variation

here (V[ε(t)] = 10−6), merely to avoid completely deterministic

dynamics (and loss of ergodicity for some initial conditions) as

we let population size (K) grow large.

Given stable population dynamics (r < 2) and no environ-

mental fluctuations (V[ε(t)] = 0), selection is neutral on the r pa-

rameter. If environmental variation is introduced through stochas-

tic variation of K this model generates selection for decreasing

r-values, basically because a low-r type has weaker density de-

pendence (Turelli and Petry 1980). The mechanism is very sim-

ilar to that described in the previous, continuous time example

(Fig. 1). Here, we will instead consider the case of unstable dy-

namics, choosing a high r-value, which gives strong, overcom-

pensating density dependence and chaotic dynamics (in the de-

terministic case) (May 1974). Selection is still for lower values of

r. To illustrate several features of our results, we also introduce

a trade-off between density dependence r and carrying capacity

K, such that a high-r type is compensated with a higher K. More

precisely, we study the two alternative types 1 and 2: {r1 = 2.8,

K1 = 106} versus {r2 = 2.85, K2 = 1.0023 × 106}. Setting type

1 as the resident, type 2 has a fitness advantage (s̄ = 0.0023) and

can invade (Fig. 3A). On the other hand, if type 2 is dominating,

type 1 has an advantage (s̄ = 0.0034, Fig. 3B). The frequency

dependence comes from the shift in population dynamics as one

type or the other dominates the population. Type 2 has the higher

r-value, which generates more variable population sizes (compare

the distributions of the resident populations in Fig. 3A and B). The

strong density fluctuations give type 1 an advantage because it has

the lower r-value. However, once type 1 becomes more common,

the population dynamics stabilize somewhat, such that the ad-

vantage is lost. The two types will thus both increase from low

abundances and can coexist in the population. Figure 3C shows a

successful invasion of type 2 (black dots) when type 1 (gray dots)

is resident, and the subsequent coexistence.

Figures 3A and 3B show a good correspondence between

the approximation in equations (15a,b) and simulation results. In

Appendix S3, we investigate the sensitivity of our approximation

to changes in the resident population size and the strength of

selection (s̄). We find that the average error is within 5% in the
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A B

C

Figure 3. Mutual invasions of two types in the discrete time logistic model (eqs. 6, 7, 21). (A) Probability of type 2 invading type 1.

(B) Probability of type 1 invading type 2. (A, B) Estimated invasion probability (black dots with 95% confidence intervals), based on 105

simulations starting at different initial resident population sizes. The dashed line indicates the prediction based on equations (15a,b),

where s̄ and nH were calculated from simulations. Background shading is a histogram of simulated resident population dynamics (y-scale

not shown, but the same in (A) and (B). (C) A successful invasion of type 2 (black dots) into a resident population of type 1 (gray dots).

The two types coexisted for at least 104 generations and showed no signs of one excluding the other (not shown). Parameters, type 1:

r = 2.8, K = 106; type 2: r = 2.85, K = 1.0023 × 106.

region 40/K < s̄ < 0.02. The upper limit here is about seven

times higher than in the continuous time case, presumably at least

partly due to the fast mixing of the wildly fluctuating dynamics—

even rapidly invading mutants will during the invasion be exposed

to a large, representative, portion of the stationary distribution of

the resident type.

This example illustrates three things. First of all, that our

results are valid for all types of ergodic dynamics of the resi-

dent type (chaos in this case). Second, that they are applicable

to situations when invasion does not imply fixation. Third, that

population dynamics may induce frequency dependence. In a con-

stant environment with stable population dynamics, the feedback

environment in the present model is one-dimensional—it is char-

acterized by a single parameter, the equilibrium population size.

If population sizes fluctuate, on the other hand, the environment

in which a new mutant finds itself can no longer be described so

easily—the full distribution of population sizes is necessary to

determine its probability of invasion.

A few technical notes: This example is not as superficially

constructed as it might appear at first sight. If an r-K trade-off is

modeled as r = r0 + x and K = K0(1 + cx) (c > 0), one quite eas-

ily finds parameter values for which there exists an evolutionary

branching point of the trait x (not shown). In other words, grad-

ual evolution of x will converge to a parameter region in which

coexistence of closely positioned types is possible (cf. Geritz

et al. 1998). In conclusion, such parameter values are not totally

unlikely—they will be provided by natural selection, given a suit-

able trade-off. Yet, the model as such is admittedly superficial and

should not be taken too seriously. We choose it here for its sim-

plicity and the possibility to demonstrate several features of our

results with a single model. Also note that the resident dynamics

are strictly speaking not chaotic—the state space is finite (there

can only be a discrete number of individuals) and the dynamics

are stochastic. However, the stochastic dynamics are very simi-

lar to the truly chaotic dynamics of a deterministic, continuous

version of the same model.
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Generalizations
MULTISPECIES AND MULTITYPE EVOLUTION

The ergodic environment E can easily be generalized to a commu-

nity context, or the case of several coexisting types in a population

(or both). As long as the mutant represents a small phenotypic

change of one of the interacting species or one of the coexisting

types, the mean fitness advantage s̄ is well defined and our results

are readily applicable. Note that in the multitype case resident

population size n has to be replaced with the number of individu-

als of the type from which the mutant descends.

DIPLOID, SEXUAL ORGANISMS

It is likewise straightforward to consider the case of a diploid,

randomly mating population. A new, invading mutant will initially

only occur as a heterozygote and its growth is then equivalent to

the asexual case. In continuous time, a “birth event” has to be

interpreted as the event of coupling with a random individual

and producing a single offspring. Each birth event produces a

new heterozygote with probability 1/2, which means the birth

rate b that goes into the equations is the rate of birth events each

heterozygote is involved in divided by two. The assumption of

random mating is crucial here because we cannot allow different

mating success for males and females.

In the discrete time case, the reproductive success of each

allele copy needs to follow a geometric distribution for our anal-

ysis to hold. This is, for example, the case if all individuals are

mated and the number of offspring from each pair of mates has

a geometric distribution (a binomial sampling, due to Mendelian

segregation, of a geometrically distributed number yields a new

geometric distribution).

In both the discrete and continuous time cases, it is the mean

heterozygote fitness advantage that enters the equations as s̄. Com-

pletely recessive alleles, which only have an advantage as a ho-

mozygote, are thus not allowed. Further, it is not straightforward

to generalize to the diploid, multitype case, because the multiple

genotypes in which a mutant allele may then occur creates an extra

source of “demographic stochasticity” not taken into account here.

Adaptive Dynamics
Given the probability of mutant invasion one can derive expres-

sions for the rate at which new varieties will invade a population

and the consequential rate of trait evolution. If new types appear

as mutants of the resident type with a fixed mutation rate μ per

individual, the rate of mutant appearance at any point in time is

equal to the number of births times μ, which yields the average

rate of successful invasions

E[μbn(0)P0] ≈ 2μnes̄ (22a)

and

E[μn(0)P0] ≈ 2μnes̄ (22b)

in the continuous (eq. 22a) and discrete (eq. 22b) time case, re-

spectively. Note, however, that μ has to be low enough such that

only one mutant is invading at any one time. An immediate conclu-

sion from equations (22a,b) is that evolution is generally slower

in populations with highly variable population sizes, given the

same arithmetic mean population size. This finding is certainly

not new, but is here extended to more general conditions.

It is also possible to derive a generalized canonical equation

of adaptive dynamics (Dieckmann and Law 1996), predicting the

rate of evolutionary change over long evolutionary time. Consid-

ering the evolution of a continuous, heritable trait x we assume the

instantaneous fitness of any individual in the population is given

by f (xi, E(t)), where xi is the trait value of the individual and E(t)

is the ergodic environment set by a resident type with trait value

x. We can then write

s(t) = f (x̃, E(t)) − f (x, E(t)) = g(t)�x + O(�x2),

where x̃ is the trait value of a mutant type,

g(t) = ∂ f

∂xi

∣∣∣∣
xi =x

(23)

is the instantaneous selection gradient and �x = x̃ − x is the

phenotypic difference in x between the mutant and the resident

type. Accordingly, we get

s̄ = ḡ�x, (24)

as long as �x is small, which can be substituted into the expres-

sions for P0 above. Following much, the same procedure as in

Dieckmann and Law (1996) gives

dx

dt
= μσ2

μneḡ (25)

for both the continuous and discrete time case. μ is the mutation

rate per individual and σ2
μ is the variance in mutational effects

(on x). μ, σ2
μ, and ne may all depend on the resident trait value x.

The effective population size, ne, is in the continuous time case

given by equation (13b). In discrete time, ne is equal to half the

harmonic mean population size if the assumption of geometri-

cally distributed number of offspring is used (eq. 15b). A Poisson

distributed number of offspring instead yields an effective popu-

lation size equal to the harmonic mean population size, using the

diffusion approximation by Hill (eq. 18).

Equation (25) seemingly differs by a factor 1/2 from the

original expression derived by Dieckmann and Law for the con-

tinuous time case. However, this difference is due to our definition

of effective population size, which converges to n/2 in the deter-

ministic, continuous time case. The expression given here has the
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advantage that it is the same for discrete and continuous time

and that the effective population size in discrete time agrees with

earlier definitions.

Equation (25) gives the expected long-term evolutionary

change of a continuous trait x, given mutations are of small

phenotypic effect and rare, such that consecutive invasions are

separated in time. It constitutes a generalized canonical equation

of adaptive dynamics, applicable to arbitrary ergodic environ-

ments and population dynamics.

Discussion
We have here calculated the invasion probability of an advan-

tageous mutant type under quite general conditions. We assume

a large, unstructured, monomorphic population and a mutant of

small effect, but put no restrictions on the type of population

dynamics or the variability of the stochastic environment, other

than the assumption of ergodicity. Environmental autocorrela-

tion or slow population dynamics are allowed, as long as s̄ is

small enough that the invasion process is much slower than the

population dynamics and environmental fluctuations. The mutant

fitness advantage may depend on population density as well as

environmental conditions. We have outlined how our results can

be generalized to multitype, multispecies scenarios, as well as

diploid, sexually reproducing organisms. We further use the de-

rived invasion probability to calculate the rate of invasions of new

types and to extend the canonical equation of adaptive dynamics,

which shows how our results relate to the rate of adaptation in

stochastic environments.

The branching process approach used here requires that the

average fitness advantage s̄ is small and that s̄n is large. For the-

oretical purposes this may not be such a large problem, but it

certainly restricts the number of natural or experimental popu-

lations to which our results can be readily applied. Single inva-

sion experiments in the laboratory commonly involve selection

coefficients larger than a percent or two, and experimental pop-

ulations (except bacteria or protozoans) are commonly too small

in numbers. In the laboratory or in the field, our predictions can

nonetheless serve as benchmark values, in the lack of a more com-

plete theory. We made some attempts to extend the theory using a

diffusion approximation, but found the results largely conflicted

with the same problems as our first derivation, especially when

s̄ is not small. There is still the possibility that the diffusion ap-

proximation does a better job in situations when s̄n is small to

intermediate—our numerical investigations were not suitable for

that type of evaluation—but a more thorough investigation of the

accuracy of the diffusion approximation for this problem is out of

scope here. Moreover, the basis for the application of the diffu-

sion approximation in this context is in our minds still somewhat

shaky and needs further analysis.

Uecker and Hermisson (2011) used an analytical approach

very similar to ours. (In fact, their eq. 16b is equivalent to our eq.

A4) However, instead of considering the stochastic case and tak-

ing the limit s̄ → 0, Uecker and Hermisson studied a set of special

cases where more complete solutions are attainable—letting the

environment or the resident population change, but in a determin-

istic fashion. Despite the differences, many of their conclusions

match ours. Among other things, Uecker and Hermisson demon-

strate that in a periodic (sinusoidal) environment, the probability

of invasion is independent of initial conditions if the frequency

of environmental change is high enough (see also Otto and Whit-

lock 1997). In other words, if the environment changes much

faster than the process of invasion, it is sufficient to take into

account the averaged environmental conditions to calculate the

probability of invasion (save for initial population size). Further,

Uecker and Hermisson demonstrated that the strength of demo-

graphic stochasticity has a direct negative effect on the probability

of invasion (our eq. 13a). It is also possible to show that several

of the derived expressions by Uecker and Hermisson agree with

ours if the limit s̄ → 0 is taken. In our minds, the two studies

complement each other nicely.

The importance of the geometric mean fitness, as empha-

sized in classical bet-hedging theory, is somewhat implicit in our

presentation. In the discrete time case, we define instantaneous

fitness f as the natural logarithm of per capita growth rate, which

directly makes “mean fitness” correspond to the (logarithm of

the) geometric mean growth rate. The classical trade-off between

a high arithmetic mean and a low variance is thus not immediately

apparent here, but is incorporated in our definition of “fitness.”

Instead, the formalism here emphasizes nonlinearities of the den-

sity dependence, sensitivity to environmental fluctuations, and

frequency dependence (see also a conceptual discussion in Ripa

et al. 2010 on the definition of bet-hedging when fitness is fre-

quency dependent).

In a broader perspective, our results and examples have high-

lighted several important but sometimes neglected aspects of

trait evolution. Natural populations are subject to environmen-

tal stochasticity, fitness is density and frequency dependent, vari-

able population sizes induce extra frequency dependence, and the

strength or even direction of selection may differ depending on

environmental circumstances. It is our hope that this study may in-

spire future work toward a more complete theory of trait evolution

by natural selection.
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Figure C1. Samples of simulated invasion probabilities, PE (y-axis, eq. 8a), of the continuous time example model (eqs. 19, 20).

Figure C2. The average relative error (eq. C1) of the predicted P0 (eq. 13a) (grey shading and contour lines), depicted as a function

of the mean fitness advantage s̄ (x-axis) and the carrying capacity K (y-axis).

Figure C3. The average relative error (eq. C1) of the predicted P0 (eq. 13a) (grey shading and black contour lines), depicted as a

function of the variance (x-axis) and correlation time (y-axis) of the external environment (εt, see eqs. 19, 20).

Figure C4. Same as Figure C1, but for the discrete time model (eq. 21).

Figure C5. The average relative error (eq. C1) of the predicted P0 of the discrete time model (eq. 21), depicted as a function of

the mean fitness advantage s̄ (x-axis) and the carrying capacity K (y-axis).
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Appendix S1 
The limit 0→s  

We here show that 
 

lim
s→0

sIE = n(0)E
d(E(t))
n(t)
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#
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&
' , (A1a) 

 
where 
 

IE = d(E(t))e
− f (E (τ ))dτ

0

t
∫ dt

0

∞

∫ . (A1b) 

First of all, equation (3) in the main text yields by integration 
 

n(t) = n(0)e
f E (τ )( )dτ

0

t
∫ . (A2) 

 
This implies that 
 

e
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− s(E (t ))dτ
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− s(E (t ))dτ
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which substituted into equation (A1b) gives 
 

IE = n(0)
d(E(t))
n(t)

e
− s(E (τ ))dτ

0

t
∫ dt

0

∞

∫ = n(0) q(t)e
− s(E (τ ))dτ

0

t
∫ dt

0

∞

∫ , (A4) 

 
where q(t) = d(E(t)) / n(t) . 

The inner integral 

We need to consider in some detail the behaviour of the inner integral in equation 
(A4), 
 

S(t) = s(E(τ ))dτ
0

t
∫ , (A5) 

 
which is simply a summation of s(E(t)) over time. We assume E(t) is an ergodic 
process and we can use the strong or pointwise ergodic theorem (Krengel 1985) to 



state that for every realization E(t) and every δ > 0, there exists with probability one a 
tδ < ∞ such that 
 

δδ +<<− 1)(1
ts
tS , t > tδ. (A6) 

 
The relative importance of initial conditions disappear over time, but we note the 
possibility of realizations E(t) where the above is not fulfilled, although such possible 
futures have probability measure zero. 

We also need to know the behavior of tδ as s becomes small, which has to do with 
how fast S(t) converges to its expectation. It is necessary that tδ has a finite upper 
bound in the limit 0→s . For this we assume, without loss of generality, the mutation 
corresponds to a small change Δx in a heritable trait x and that the instantaneous 
fitness advantage has a Taylor expansion according to 
 
s(E(t)) = g(E(t))Δx +Ο(Δx2 ) , (A7) 
 

where 
x
tEstEg

∂
∂

=
))(())((  is the instantaneous fitness gradient. The limit 0→s  here 

corresponds to 0→Δx . Inserting equation (A7) into equation (A5) gives 
 
S(t) = Δx g(E(τ ))dt

0

t
∫ +Ο(Δx2 ) = ΔxG(t)+Ο(Δx2 ) , (A8) 

 
where  
 

G(t) = g(τ )dτ
0

t
∫ . (A9) 

 
Just like S(t), G(t) is a simple summation and for every δ > 0 there exists a finite time 
uδ such that  
 

(1−δ)< G(t)
gt

< (1+δ) , t > uδ. (A10) 

 
Note that G(t), and thereby uδ, is independent of Δx. Hence, uδ remains fixed (and 
finite) as we take the limit 0→Δx  below. Using equations (A8) and (A10) we get 

S(t)
st

=
ΔxG(t)+Ο(Δx2 )
Δxgt +Ο(Δx2 )

=
G(t)
gt

+Ο(Δx)
. (A11) 



and 

(1−δ)+Ο(Δx)< S(t)
st

< (1+δ)+Ο(Δx) , t > uδ. (A12) 

Comparing equations (A6) and (A12) we conclude that for any fixed δ we get 

δδ ut →  as Δx goes to zero. 

Lower and upper bounds on sIE  

From equation (A6) it follows that 

)1()()1( δδ −−−+− << tstSts eee , t > tδ, (A13) 

which can be used to put lower and upper bounds on EIs : 

2121 UUIsLL E +<<+ , (A14a) 

where 

∫ +−−=
δ δt tstS teetqsnL
0

)1()(
1 )d-)(()0(

, (A14b) 

∫
∞ +−=
0

)1(
2 d)()0( tetqsnL ts δ

, (A14c) 

∫ −−−=
δ δt tstS teetqsnU
0

)1()(
1 )d-)(()0(

,  (A14d) 

∫
∞ −−=
0

)1(
2 d)()0( tetqsnU ts δ

. (A14e) 

It is clear that L1 and U1 will go to zero as s → 0 , since we know from above that tδ 
remains bounded (it has a finite limit uδ as 0→s ). L2 and U2 are in principle 
weighted averages of the ergodic process q(t), with an exponentially decaying weight 
function. However, as 0→s  the exponential decay is slower and slower and more 



and more values of q(t) contribute substantially to the integrals. In short, we use the 
conjecture that integrals of the type 

∫
∞ −=
0

)( dtetxcI ct
c  (A15) 

go to x  as c goes to zero, as long as x(t) is ergodic. A formal argument, albeit not a 
proof, is obtained from the substitution )1(1 ctec −− −=τ , which gives 

∫=
c

cc dxcI
/1

0
)(~ ττ

, (A16) 

where ))1ln(()(~ 1 ττ ccxxc −−= −  is the process x(t) with an accelerating time. As c 
approaches zero the time-transform becomes increasingly linear at lower time-values 

(a Taylor expansion gives )(
2
1)1ln( 3221 ττττ cOccc ++=−− − ), which supports the 

conclusion that with probability one 

xIcc
=

→0
lim

. (A17) 

Returning to L2 (eq. A14c) and U2 (eq. A14e), we can use equation (A17) to conclude 
that with probability one 

δ+
=

→ 1
)0(lim 20

qnL
s  (A18) 

and 

δ−
=

→ 1
)0(lim 20

qnU
s . (A19) 

Using equation (A18) and (A19) in equation (A14a) we get 

n(0) q
1+δ

< lim
s→0

sIE < n(0)
q
1−δ  (A20) 



which is valid for any δ > 0. Since we can choose δ arbitrarily close to zero we get 

lim
s→0

sIE = n(0)q  (A21) 

with probability one. Returning to the probability of invasion PE we have 

lim
s→0

PE
s
= lim

s→0

1
s + sI

=
1

n(0)q  (A22) 

for every possible future environment with probability one. Consequently, the 
expectation of PE converges to the same limit, i.e. 

lim
s→0

P0
s
= lim

s→0

E[PE | E(0)]
s

= lim
s→0
E PE

s
| E(0)

"

#$
%

&'
=

1
n(0)q  (A23) 

Ruling out ∞→sPE /  

Equation (A23) follows from eq. (A22) if we can completely rule out the possibility of 
PE / s  going to infinity. It is thus necessary to show that sIE → 0 is not only unlikely, 
with probability zero, but impossible for all possible future environments E(t), t ≥ 0. 
For this, we first write (using the substitution T = st ) 

∫∫
∞ −∞ − ==
0

)/(

0

)( d)/()0(d)()0( TesTqntetqsnIs sTStS
E , (A24) 

which in principle behaves as ∫
∞ −

0
d)/()0( TesTqn T . It follows that sIE → 0  implies 

the mutant has, for some unlikely E(t), a death rate equal to exactly zero always, or 
during a longer-than-zero time-interval an infinite selective advantage s (such that S(t) 
is infinite). The first options implies a forever immortal mutant, and the second that 
the mutant has infinite fitness. We regard both these alternatives as not only unlikely, 
but impossible (no organism is immortal and infinite fitness of a small mutation 
requires a discontinuous fitness function), which is sufficient for (A23). 
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Appendix S2  
Computer simulation details 

Continuous time 

The continuous time birth-and-death process was approximated by a discrete time 
process, with a time interval Δt (a more exact waiting-time approach was in this case 
too time-consuming). At each time-step, each individual gives birth with probability 
bΔt and dies with probability dΔt, where the birth and death rates b and d depend on 
the individual’s θ -value as well as total population size n and current environmental 
state ε (eqs. 19a,b). Each reproduction produced a new individual identical to the 
parent. Δt was in the simulations set to 3.17x10-4, chosen such that the total event 
probability per individual (b + d) was equal to 0.001 at equilibrium conditions 
(Figures 1 and 2). However, Δt was increased to 0.01 in Appendix S3 to save 
computer time (This applies to Figures C1, C2 and C3. We also tested Δt = 0.001 for 
a few parameter values, but with no noticeable difference in the results).  

The environmental Ornstein-Uhlenbeck process was approximated by a discrete time 
AR(1) process (Box et al. 1994), with the same autocovariance function (eq. 20). In 
other words, the environmental process was implemented as 

εt+Δt = aεt +ν t , (B1) 

where  

tea Δ−= γ  (B2) 

and νt is drawn from a normal distribution with zero mean and variance 

V[ν ]=σε
2 (1− a2 ) . (B3) 

Since the discrete time implementation assumes the environment stays constant across 
a time-step, Δt also has to be small enough that εt and εt+Δt only differ by a small 
amount, i.e. that the simulation constant a (eq. B2) is very close to one. 

Invasions (Figure 2) were simulated by replacing a single individual of the resident 
type with an individual of the invading type, and the abundances of the two types 
were followed over time. A simulation was interrupted as soon as one of them went 
extinct, and a successful invasion was recorded if the invading type had become fixed.  



Discrete time 

At each time-step, each individual was given a geometrically distributed number of 
offspring (eq. 9), with the mean number of offspring equal to ef, where the fitness f is 
given by the individual’s r and K parameters (eq. 21). All parents died after 
reproduction. A successful invasion was recorded as soon as the invading type had 
reached an abundance equal to K/10. At this cutoff point numerical investigations 
showed that invasion and a long-term coexistence was certain.  

All simulations were run in MATLAB® (R2007b, The MathWorks). 
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Appendix S3  
Tests of accuracy 

We tested the accuracy of the approximate expressions for P0 in equations (13a,b) 
(continuous time) and (15a,b) (discrete time) by comparing them to the original 
expressions for PE in equations (8a,b) and (14a,b), averaged across a suite of 
simulated possible future environments. This was done instead of more explicit 
simulations of individual invasion attempts, which would be too computer time 
consuming. We thus rely on the validity of the assumption of an infinite population 
size, which underlies equations (8a,b) and (14a,b), but gain the ability to investigate 
larger portions of parameter space.  

To estimate the error of equations (13a,b), we used the example continuous time 
model described in the main text, selected 100 initial conditions from the (simulated) 
stationary distribution of {n(t), ε(t)}, and started 50 independent simulations of the 
resident population dynamics from each initial condition. We then used each 
simulation to calculate the integrals of equations (8a,b), (Euler method, Δt = 0.01, see 
Appendix S2). We thus acquired 50 measurements of PE from each initial condition 
and calculated their arithmetic mean to get an estimate of P0, which was compared to 
the predicted value given by equations (13a,b). Figure C1 shows a sample of 
estimated PE-values (black dots) together with the corresponding estimated P0-values 
(red crosses), our prediction (eqs. 13a,b, blue lines) and a diffusion approximation 
(eq. 17, green lines).  



 
Figure C1. Samples of simulated invasion probabilities, PE (y-axis, eq. 8a), of the continuous time 
example model (eqs. 19, 20). For each parameter setting (panel), 100 initial conditions {n(0), ε(0)} 
were chosen from the simulated stationary distribution of {n(t), ε(t)} and for each initial condition the 
future population dynamics was simulated 50 times to give 50 estimates of the conditional invasion 
probability PE (black dots, eq. 8a). Red crosses: The estimated unconditioned invasion probability, P0, 
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calculated as the arithmetic mean of the PE-values (eq. 9). Blue lines: The predicted P0 (eq. 13a).  
Green dashed lines (often coinciding with the blue lines): The diffusion approximation (eq. 17 with ne 
from eq. 13b). Black dash-dotted lines: The neutral prediction (1/n(0)). Resident population 

parameters: d0 = 1, r = 1, θ = 2, V(εt) = σε
2  = 0.4, TC = 1. The carrying capacity K differs between the 

panel rows and is indicated in the left hand margin. The invading type has a θ-value equal to 2 – Δθ, 
where Δθ = 0.00316, 0.0178, 0.178 and 1.00 in the panel columns, left to right, respectively. The 
corresponding mean fitness advantage, s , is indicated on the top of each column (the dependence on K 
is small, less than 2%).  

The error in the predicted P0 for each initial condition i was calculated as ei = 
log((predicted P0)/(estimated P0)), and the total error for each parameter setting was 
measured as the square root of the bias-corrected mean squared error, according to 

2
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P
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cv is the mean squared relative standard error, 2
,iPs  is the 

squared standard error of the estimated P0 for initial condition i, and µ0 is the 
(estimated) mean prediction error, across initial conditions. The bias correction is 
based on the assumption that PE has a constant coefficient of variation, independent of 
initial conditions, and Taylor expansions of the log transform. Qualitatively, our 
results are the same, with or without the bias correction. The error estimate in 
equation (C1) can be interpreted as the mean relative error of our prediction, averaged 
across initial conditions. It includes a possible constant bias (µ0) as well as variation 
between initial conditions not captured by the predicted 1/n(0) relationship (eq. 13a). 

Figure C2 shows the estimated relative error (eq. C1) for different values of the 
population carrying capacity, K, and the mean fitness advantage, s . The calculations 
are, to be precise, carried out for constant values of Δθ (–2.5 < log10(-Δθ) < 0), and 
the corresponding s  varies somewhat depending on the value of K. This variation is, 
however, very small and a correction for this would not change any conclusions 
drawn from Figure C2. The greyscale shading and solid line contour levels depict the 
estimated error. The dashed straight lines indicate the boundaries 007.0/50 << sK , 
which approximates the region where the error is less than 5%. 



 
Figure C2. The average relative error (eq. C1) of the predicted P0 (eq. 13a) (grey shading and contour 
lines), depicted as a function of the mean fitness advantage s  (x-axis) and the carrying capacity K (y-
axis). The effective population size ne (eq. 13b) is approximately 0.24K. The region 

007.0/50 << sK , roughly where the error is less than 5%, is indicated by a black dashed line. The 
figure is based on a grid of 11 Δθ-values and 12 K-values, equally spaced on a logarithmic scale (see 
Fig. C1 and the main text for further details).  

 
Figure C3. The average relative error (eq. C1) of the predicted P0 (eq. 13a) (grey shading and black 
contour lines), depicted as a function of the variance (x-axis) and correlation time (y-axis) of the 
external environment (εt, see eqs. 19, 20). The model and most parameter values are as in Fig C1. The 
resident has K = 108 and θ = 2. The invading type has θ = 1.995 and a K-value adjusted such that s  = 
0.0002, irrespective of strength and autocorrelation of the environmental fluctuations. In the dotted 
area, the extinction rate of the resident population was too high for meaningful measurements. 
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Figure C3 shows the dependence of the error on the variance ( 2
εσ , x-axis) and 

correlation time (TC, y-axis) of the environmental fluctuations (see eq. 20). The 
invading mutant has a θ-value of 1.995 (compared to the resident θ = 2), but the 
different environmental parameters would generate different values of s , all else 
being equal. For a fair comparison between different values of 2

εσ  and TC, we 
adjusted the mutant K-value such that the mutant has a fixed average fitness 
advantage s  = 0.0002.  This K-adjustment is always small (less than 10-5K) and shifts 
sign from positive at low values of σε

2  to negative at high values of σε
2 . Further, the 

initial conditions are always the same 50 conditions sampled from the stationary 
distribution of the standard parameter values σε

2 = 0.4 , TC = 1.  

The error depicted in Figure C3 is large at high values of TC and close to the region 
where the resident population goes extinct too quickly for measurements to be 
possible (dotted region). That our approximation fails in slowly fluctuating 
environments (a large TC) is not surprising, since one of the main assumptions is that 
the environmental fluctuations are much faster than the invasion process. This is 
confirmed by trial calculations with ten times faster invasions ( s  = 0.002), which 
basically shifts the error contour levels to ten times lower values of TC (not shown). 
When the population dynamics are very violent, close to the dotted region in Figure 
C3, a close inspection of the population dynamics shows that the resident population 
goes through repeated periods of very low densities, several orders of magnitude 
below K. Each such bottleneck of the resident population strikes the mutant too, since 
they are ecologically very similar, and has a large negative impact on the probability 
of invasion. The total probability becomes highly dependent on the exact number of 
bottlenecks during an invasion, which causes a large variation in invasion probability 
between different realizations of the environmental process, despite a very long 
invasion time. It follows that the assumptions of our derivation are not fulfilled and 
the approximation fails (it requires an even smaller value of s ).  

Figures C4-5 show the same calculations as Figures C1-2, but for the discrete time 
model (eq. 21). In figure C5 it can be seen that the region where the error is less than 
5% is now larger ( 40 /K < s < 0.019 ), especially at the upper end. The reason for this 
is hard to disentangle completely, but one answer might be the rapid chaotic 
fluctuations of population size in this model, which means an invading mutant is 
quickly exposed to the full range of environmental fluctuations. This model is also, at 
least in the short term, much more deterministic than the continuous time model. The 
resident population sizes during the important first few generations after the first 
appearance of a new mutant are highly predictable, given the initial population size. 
There is thus relatively little variation between different realizations of IE (there is a 
relatively small spread of black dots in Figure C4), which reduces the possible error 
related to taking the mean of a function as the function of the mean (P0 is the mean of 
PE, which is a non-linear function of IE (eq. 14a)). Finally, we would like to point out 



that a diffusion approximation succeeds within almost exactly the same region of 
parameter space, a region within which the difference between the two predictions is 
still small.  

 
Figure C4. Same as Figure C1, but for the discrete time model (eq. 21). The resident type has r = 2.8 
(corresponding to chaotic dynamics) and the invading mutant has r = 2.8 - Δr, where Δr ranges from 
10-2.5 to 1, equally spaced on a logarithmic scale, in steps of 100.5. The K-values are spaced similarly, 
from 104 to 108. At K-values below 104, the resident population went extinct too quickly. Only a 
sample of the simulation results are depicted here. Black dots: PE-values (eq. 14a). Red crosses: P0 
(mean PE). Blue lines: predicted P0 (eqs. 15a,b). Green dashed lines: diffusion approximation (eq. 17 
with ne given by eq. 15b). Black dash-dotted lines: The neutral prediction (1/n(0)). Each row of panels 
corresponds to a fixed value of K, as indicated in the left margin. Each column corresponds to Δr = 
0.00316, 0.0316, and 1.00, from left to right, respectively. The corresponding mean fitness advantage, 
s , is indicated on the top of each column (the dependence on K is small, less than 2%). 
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Figure C5. The average relative error (eq. C1) of the predicted P0 of the discrete time model (eq. 21), 
depicted as a function of the mean fitness advantage s  (x-axis) and the carrying capacity K (y-axis). 
The effective population size ne (half the harmonic mean) is roughly 0.34K. Other details are given in 
Figure C4 and Appendix S3. The dashed lines mark the boundaries of the region 40 /K < s < 0.019 , 
where the mean relative error is below 5%. 
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