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Abstract: Why do species not adapt to ever-wider ranges of conditions, gradually expanding their eco-

logical niche? Theories of niche evolution typically omit spatial context, yet all species experience

spatially variable conditions. Gene flow across environments has two conflicting effects on adaptation:

while it increases genetic variation, which is a prerequisite for adaptation, gene flow may swamp adap-

tation to local conditions. We show that genetic drift can generate a sharp margin to a species’ range, by

reducing genetic variance below the level needed for adaptation to spatially variable conditions. Dimen-

sional arguments and separation of ecological and evolutionary time scales reveal a simple threshold that

predicts when adaptation at the range margin fails. Two observable parameters describe the threshold: i)

the effective environmental gradient, which can be measured by the loss of fitness due to dispersal to a

different environment, and ii) the efficacy of selection relative to genetic drift. The theory predicts sharp

range margins even in the absence of abrupt changes in the environment. Furthermore, it implies that

gradual worsening of conditions across a species’ habitat may suddenly lead to range fragmentation – as

adaptation to a wide span of conditions within a single species becomes impossible.
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Introduction

Why a species’ range sometimes ends abruptly, even when the environment changes smoothly across

space, has interested ecologists and evolutionary biologists for many decades (1–8). Haldane (2) pro-

posed that when the environment is spatially heterogeneous, a species may be unable to adapt and expand

its range because gene flow from the centre swamps the populations at the range margins, preventing their

adaptation. Theory showed that when genetic variance is fixed, adaptation indeed fails if the environ-

ment changes too steeply across space (9): the population remains well adapted only in the centre of the

range, and gene flow swamps variants adapted to the margins, preventing range expansion.The result also

explains range margins in the presence of competitors: then, interspecific competition in effect steepens

the environmental gradient (10). Yet, this limit to adaptation assumes that local genetic variation is fixed.

Current theory states that when genetic variance can evolve, there is no sharp limit to a species’

range (11). With environmental heterogeneity, genetic variance is generated by gene flow across the en-

vironment which supports a gradient in trait mean. Even for shallow environmental gradients, migration

generates much larger variance than would be maintained by mutation alone (12, 13). When variance is

maintained by gene flow across environments, deterministic theory predicts that adaptation to environ-

mental differences is feasible until the fitness cost of maladapted variants becomes too high (i.e., when

mean Malthusian fitness (growth rate) declines below zero). However, range margins are often associated

with lower genetic variance (4) and experimental evidence suggests that low genetic variance coupled

with high gene flow can prevent adaptation at the edge of a species’ range in nature (14–16). Thus, there

is clear evidence that low genetic variation may limit adaptive range expansion. This may be because

genetic drift reduces local variance (17, 18) and hence the potential of the population to adapt (19). Yet,

though genetic drift is necessarily strong at the range margins, studies of range expansion with genetic

drift are few, and limited to simulations (20–22). By manipulating dispersal and carrying capacity, these

studies demonstrated that genetic drift may be important to theory of species’ range evolution. However,

without establishing the key parameters, no quantitative predictions can be made that generalise beyond

specific simulation models.

We explain when genetic drift limits species’ range, and give the combination of parameters that de-

scribes the dynamics of evolution of a species’ range when genetic variance can evolve, environment is

heterogenous, and the populations are finite. We assume that as environment changes across space, there

is a corresponding change in an optimal value of some phenotypic trait. A deviation from the optimum

is associated with a fitness cost, and hence range expansion requires adaptation to this environmental
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gradient. Demography and evolution are considered jointly, and both genetic variance and trait mean

can freely evolve via change in allele frequencies. Crucially, we include both genetic and demographic

stochasticity. The model is first outlined at a population level, in terms of coupled stochastic differential

equations (Materials and Methods: Evolutionary and ecological dynamics). Using this formalisation,

we can identify the effective dimensionless parameters. Further, if we separate time-scales of ecology

(fast) from evolution (slow), these reduce to just two key driving parameters. Next, individual based

simulations (SI: Individual-based model) serve to determine the driving relationship between the derived

key parameters, and to test its robustness.

Results

Deterministic limit

First, we show that the individual-based model matches the predictions at the deterministic limit. Fig.

1 illustrates the joint evolution of population size and trait mean and variance via change in allele fre-

quencies, when genetic drift is weak. This is when Nσ
√
s� 1 (23, 24), where population size within a

dispersal distance σ is given by Nσ, and s is the strength of selection per locus. N represents the local

population size within each deme, which corresponds to population density in continuous space. Genetic

variance VG evolves, and it is generated primarily by gene flow due to mixing of genes from individuals

with different phenotypes, well adapted to the diverse environments (Fig. 1D); the contribution due to

mutational variance is negligible.

Scaling and separation of time scales

We now proceed by reducing the number of parameters (Table 1) in the model, including stochastic-

ity (Materials and Methods: Rescaling). Rescaling space, time, trait, and population density reveals

that three dimensionless parameters fully describe the system, neglecting mutation and assuming link-

age equilibrium between loci. The first parameter carries over from the phenotypic model of (9): i) the

effective environmental gradient B = bσ
r∗
√
2VS

. Two additional dimensionless parameters come from

including stochasticity: ii) the efficacy of population regulation relative to demographic stochasticity

Nσ
√
r∗; and, iii) the efficacy of selection relative to the strength of genetic drift Nσ

√
s.

The dynamics of evolution of species’ range simplifies further because selection per locus s is typ-
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ically much smaller than the rate of return to equilibrium population density r∗ (see (25) and (26, Ap-

pendix D); Fig. S1 for values used here). This has two consequences. First, the ecological dynamics

∂N/∂t are faster than the evolutionary dynamics ∂p/∂t of the individual loci. Importantly, the genetic

variance evolves yet substantially slower: whereas the trait mean changes with the product of strength

of selection and the genetic variance, the directional change in the variance is slower by the inverse of

the number of locally polymorphic loci (precisely, the “effective number of loci” (27). Genetic drift only

slowly degrades expected heterozygosity 〈pq〉 at each locus (Fig. S2), reducing the variance. Hence,

over ecological time scales, genetic variance can be treated as constant. Second, the effect of fluctuations

due to genetic drift, scaling in one-dimensional habitat with 1/(Nσ
√
s) (see Fig. S2), is expected to

dominate over the effect of demographic fluctuations, that rise with 1/(Nσ
√
r∗). Hence, we expect that

the basic behaviour will be described by just two of the dimensionless parameters. These are the effec-

tive environmental gradientB and the efficacy of selection relative to the strength of genetic driftNσ
√
s.

Note that we define “parameter” as a quantity that describes a full set which defines the system and

predicts its behaviour. As we are interested in the higher-order dynamics of species’ range expansion or

collapse, for whichN (orNσ) will be a measured quantity, we denote both 1/(Nσ
√
s) and 1/(Nσ

√
r∗)

as parameters. Our key arguments propose that the dynamics of species’ range evolution can be under-

stood based on bulk parameters B and Nσ
√
s, rather then by focusing on asymmetric gene flow near the

range margins. Later, we show that the prediction holds even when B and Nσ
√
s change steadily across

space.

Threshold for collapse of adaptation

We simulated the basic model with a linear gradient, assuming equal allelic effects α (equal phenotypic

change due to substitution at every locus). Parameters were drawn at random from distributions consis-

tent with our knowledge of the range of parameters expected in nature and ensuring that without genetic

drift, all ranges would expand (see Fig. S1 and (26, Discussion). This is denoted the “random set” of

1000 runs. At the start of all simulations, the population is perfectly adapted in the central part of the

available habitat; over the 5000 generations of the simulation, expanding populations never reach the

margin of the available habitat. We also performed additional runs to test whether the threshold obtained

from the linear gradient applies when parameters are changing gradually across space. Namely, we tested

whether a stable range margin forms at the predicted value when the environmental gradient varies across

space or when the carrying capacity is non-uniform. Last, we tested the model assuming allelic effects
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αi (and hence the selection coefficients si) are exponentially distributed.

Fig. 2 shows our key result: the effective environmental gradient, B, and the efficacy of selection

relative to the strength of genetic drift, Nσ
√
s, determine the threshold for collapse of adaptation. This

is because the genetic variance evolves primarily in response to Nσ
√
s and B, whilst the effect of demo-

graphic stochasticity Nσ
√
r∗ is relatively weak. When B & 0.15Nσ

√
s, genetic drift strongly degrades

adaptation to a steeply changing environmental optimum, and the species’ range contracts. The constant

0.15 is obtained as the best fitting threshold for the data in Fig. 2. Populations typically start to contract

from the margins and ultimately collapse to a state with no or very little clinal variation. However, when

genetic drift is very strong, populations collapse abruptly or even fragment (Fig. S3): this second thresh-

old, based on a “critical gradient” of a phenotypic model, is explained later. This model with idealised

linear gradient and uniform carrying capacity is used to identify the relationship between the driving

parameters Nσ
√
s and B, which determine whether a population can adapt to environmental gradient.

In reality, the environment does not vary precisely linearly, and the carrying capacity is not uniform.

When the steepness of environmental gradient varies across space, this threshold, B ∼ 0.15Nσ
√
s,

indicates where a stable range margin forms (Fig. 3). Without genetic drift, the genetic variance would

steadily inflate, gradually reducing local population size due to an increasing number of maladapted indi-

viduals (see dashed lines in Fig. 3D). With genetic drift, the variance is pushed below the level necessary

to maintain adaptation, the trait mean abruptly fails to match the optimum, so a sharp margin to the

range forms. Similarly, a sharp range margin forms whenB & 0.15Nσ
√
s, if carrying capacity declines

across the habitat for extrinsic reasons (Fig. S4).

A sharp range margin forms not only when all loci have equal allelic effects (i.e., the trait changes

by a fixed value due to every substitution), but also when allelic effects are exponentially distributed.

Then, range expansion slows down progressively around the threshold (Figs. S5 and S6), described by

B∗ = 0.15Nσ
√
s, where the mean selection coefficient is s ≡ α2

2Vs
. The mean selection coefficient gives

an estimate for the expected range margin because clines at weakly selected loci are degraded by genetic

drift (Fig. S7 and (24), reducing the genetic variance. For the population to expand further beyond the

threshold, positively selected alleles with increasingly large effect need to arise (Fig. S7). In natural

populations, these become ever rarer; for any finite distribution of allelic effects (as in our model), these

become exhausted.

Neglecting genetic drift, low dispersal can enhance adaptation by reducing swamping by gene flow
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(11,15). However, with genetic drift, this is no longer true. To a first approximation, both the efficacy of

selection relative to genetic driftNσ
√
s and the effective environmental gradientB = bσ√

2Vsr∗
increase at

the same rate with dispersal. Only a weak dependence on dispersal remains via r∗ (because N̂ = K r∗
rm

),

which favours low to intermediate dispersal: see Fig. S10. This beneficial effect of intermediate disper-

sal (21) can be much stronger in one-locus models where gene flow brings both new targets for mutation

and positively selected mutants but does not directly swamp adaptation: the fitness decreases due to

crowding in the new habitat (28) and mutation of the advantageous mutants back to the old habitat (29).

Note that inbreeding depression, implied in the experimental study (30) is not necessary for dispersal to

be beneficiary – but it would strengthen its beneficial effect.

In a deterministic phenotypic model with fixed genetic variance, there is a “critical gradient” Bc ∼√
2A (where A = VG

r∗Vs
), above which the trait mean fails to track the spatially changing optimum, and

the population is well adapted only in the centre of its range (9). If genetic variance evolves due to gene

flow across environments, in the absence of genetic drift, such a limit does not exist (11). We show that

when genetic variance evolves due to selection, dispersal and genetic drift, populations can abruptly lose

genetic variation and suffer demographic collapse. As genetic drift reduces the variance (Fig. S2), first a

species’ range contracts from the margins (when B & 0.15Nσ
√
s) but further decrease of variance such

that A . B2/2 leads to a sudden demographic collapse (Fig. 4; the critical gradient for logistic popu-

lation regulation is given in (26, Fig. 3)). This demographic collapse may lead to range fragmentation,

when a species cannot maintain adaptation throughout the whole range, yet multiple isolated populations

persist (Fig. S3).

Our main result, that adaptation fails when the effective environmental gradient is large relative to

the efficacy of selection versus genetic drift, B & 0.15Nσ
√
s, can be rephrased to a form that is closely

related to Haldane’s cost of selection (31). Haldane showed that in a single population, each substitution

requires a certain number of selective deaths (i.e., reduction in mean fitness relative to the maximum

possible), which is nearly independent of the strength of selection per locus. In our model with a spa-

tially varying environment, b/α substitutions are required per unit distance: these substitution need to

also arise via selective deaths. If too many selected substitutions are needed relative to births in the pop-

ulation, such that b/α & 0.15N r∗, adaptation fails (Fig. S8). However, this failure is due to stochastic

fluctuations, and so depends on the effective number of deaths per generation, Nr∗.
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Discussion

We are just becoming to be able to assess the genomics of local adaptation across a species’ range (32).

Hence, there is a great need for a theory that integrates both genomic and demographic data. It would

be exciting to see how our prediction improves experimental tests of the causes of range limits in one-

dimensional habitats such as along a deep valley or a river (15), that were assuming fixed genetic vari-

ance. The predictive parameters can in principle be measured: the effective environmental gradient B

measures the loss of fitness due to dispersal σ across the environmental gradient. Transplanting individu-

als exactly one standard deviation away (across the environmental gradient) gives B2/r∗. The parameter

r∗, which describes the rate of return of population to equilibrium can be estimated (eg., following (33)).

Neigbourhood size in a one-dimensional habitat,
√
πNσ, can be estimated from neutral markers (34).

The efficacy of selection relative to genetic drift,Nσ
√
si, will vary across loci. The selection coefficients

si = αi
2/Vs can then be estimated either by mapping allelic effects αi from the QTLs (quantitative trait

loci) underlying an adaptive trait and measuring the strength of stabilising selection 1/(2Vs), or by esti-

mating the selection per locus directly from the steepness of the clines in allele frequencies across space.

Given a fixed (finite) distribution of selection coefficients si, we can predict when adaptation is expected

to fail: for example, when, given a reduction in population size, a species’ range would become prone to

fragmentation.

The interface between ecology and evolution is critical in understanding the evolution of the species’

range. Yet until now, no predictive theory included the fundamental stochastic process of genetic drift

and demographic stochasticity – although close to the margin of a species’ range, both are necessarily

strong. Our theory explains that there is an inherent limit to adaptation arising in any (finite) natural

population, and identifies the key parameters that determine this limit to a species’ range. It explains

that a sharp range margin forms when fitness cost, induced by a spatially varying environment, becomes

too high relative to the efficacy of selection in the presence of genetic drift – even in the absence of

fixed genetic constraints, such as insufficient genetic variance (9, 35) or rigid fitness trade-offs between

traits (36, 37). Because the threshold depends only on the fitness cost of dispersal and the efficacy of

selection per locus relative to genetic drift, it readily generalises to many traits. Note the prediction does

not involve any asymmetry in gene flow, emphasised by (2).

The theory also implies that gradual decrease in population size can lead to a collapse of adaptation

as genetic drift erodes the genetic variation, causing a sudden collapse or a fragmentation of a species’

range. This is important for management of biological invasions when adaptation is required (38, 39)
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and for biological conservation (40): a species’ range may collapse due to genetic drift well before

demographic factors (emphasised in (41)) become significant (40). Understanding species’ range limits

in a constant environment is also essential before extending the model to account for temporally changing

environments, such as when modelling joint adaptation and range expansion in species’ responding to

climate change (42). Furthermore, the predicted emergence of inherent limits to species’ ranges across

steadily varying environments offers extensions to the theory of ecological speciation, and eventually,

may help us to elucidate macroecological patterns of biodiversity.

Materials and Methods

Evolutionary and ecological dynamics

We model the joint evolution of i) population size and ii) trait mean and its variance via change in allele

frequencies. The fitness of an individual declines quadratically with the deviation of the trait z from an

optimum θ that changes linearly across space: θ = b x, where b is the gradient in the environment and x

is the distance in one dimension. The phenotypic trait z is determined by many additive di-allelic loci,

so that genetic variance can evolve. For simplicity, we use a haploid model: for additive allelic effects,

the extension to a diploid model is straightforward.

The Malthusian fitness of a phenotype z is r(z,N) = re(N) + rg(z), where re(N) is the growth

rate of a perfectly adapted phenotype, and includes density dependence; rg(z) ≤ 0 is the reduction in

growth rate due to deviation from the optimum. N is the population density. The ecological component

of growth rate re can take various forms: we assume that regulation is logistic, so that fitness declines

linearly with density N : re = rm(1 − N/K), where rm is the maximum per capita growth rate in the

limit of the local population density N → 0. The carrying capacity K is assumed uniform across space.

Stabilising selection on the optimum θ has strength 1/(2Vs). Hence, for any individual, the drop in

fitness due to maladaptation is rg(z) = − (z−θ)2
2Vs

. The local mean fitness is then rg(z) = − (z−θ)2
2Vs

− VP
2Vs

,

where VP = VG + VE is the phenotypic variance. The loss of fitness due to environmental variance VE
can be included in r∗m = rm − VE/(2VS); hence in this model, VE is a redundant parameter. For any

given additive genetic variance VG (assuming a Gaussian distribution of breeding values), the trait mean

z satisfies:

∂z

∂t
=
σ2

2

∂2z

∂x2
+ σ2

∂ ln(N)

∂x

∂z

∂x
+ VG

∂r

∂z
+ ζ (1)
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The first term gives the change in the trait mean due to migration with mean displacement of σ, the

second term describes the effect of the asymmetric flow from areas of higher density and the third term

gives the change due to selection (43, Eq. 2 ). The last term ζ gives the fluctuations in the trait variance

due to genetic drift (following (23), and using VG,LE =
∑

i α
2
i piqi): ζ =

√
VG,LE/N dWζ(x, t), where

dW. represents white noise in space and time.

The trait mean is z =
∑

i αipi for a haploid model,where pi is the i-th allele frequency, qi = 1− pi
and αi is the effect of the allele on the trait – the change of the trait mean z as frequency of locus i

changes from 0 to 1. For both haploid and diploid models, the allele frequencies pi change as:

∂pi
∂t

=
σ2

2

∂2pi
∂x2

+ σ2
∂ log(N)

∂x

∂pi
∂x

+ piqi
∂r

∂pi
− µ(pi − qi) + ε (2)

The expected change of allele frequency due to a gradient in fitness and local heterozygosity is

piqi
∂r
∂pi

= si piqi(pi− qi−2∆i), where selection at locus i is si ≡ α2
i /(2Vs) and ∆i = (z− bx)/αi (11,

two-allele model, Appendix 3). Here, the fourth term describes the change due to (symmetric) mutation

at rate µ. The last term ε describes genetic drift (following (23): ε =
√

piqi
N dWε(x, t).

Equation 2 is only exact at linkage equilibrium (i.e., neglecting covariance between allele frequen-

cies): but we will see that this is a good approximation for unlinked loci. Whereas migration across the

habitat generates positive linkage disequilibrium between any pair of loci, stabilising selection drives

negative disequilibrium, and these cancel precisely unless selection per locus is strong. The derivation,

which generalizes an ingenious but little known argument by (44), is given in Appendix.

Population dynamics reflect diffusive migration, growth due to the mean Malthusian fitness r, and

stochastic fluctuations. The number of offspring follows a Poisson distribution with mean and variance

of N . Fluctuations in population numbers are given by ξ =
√
N dWξ(x, t) (e.g. (45)):

∂N

∂t
=
σ2

2

∂2N

∂x2
+ rN + ξ (3)

Rescaling

The model can be further simplified by rescaling time relative to the strength of density dependence

r∗, distance relative to dispersal, trait relative to strength of stabilising selection and population density

relative to equilibrium density with perfect adaptation N̂ = Kr∗/rm; as in (9, 11): T = r∗t, X =
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x
√

2r∗
σ2 , Z = z√

r∗Vs
, Ñ = N/N̂ .

The rescaled equations for evolution of allele frequencies and for demographic dynamics are:

∂Ñ

∂T
=

∂2Ñ

∂X2
+RÑ +

√
Ñ

N̂σ
√
r∗
dWξ̃(X,T ) (4)

∂p

∂T
=

∂2p

∂X2
+ 2

∂ log(Ñ)

∂X

∂p

∂X
+

s

r∗
(pq − 2

Z −BX
α∗

)−

− µ

r∗
(p− q) +

√
pq

N̂σ
√
s
dWε̃(X,T ) (5)

where R ≡ r/r∗ = 1− Ñ − (BX − Z)2/2.

The rescaled equations show that four parameters fully describe the system. The first two are i) the

effective environmental gradient is B ≡ bσ/(r∗
√

2Vs) and ii) the strength of genetic drift relative to

selection 1/(N̂σ
√
s). As a third parameter, one can either take iii) demographic stochasticity relative

to strength of density-dependence 1/(N̂σ
√
r∗) or the ratio of N̂σ

√
s to N̂σ

√
r∗, which is the strength

of selection relative to density dependence s/r∗. Note, that the scaled effect of a single substitution,

α∗ ≡ α/
√
r∗Vs =

√
2s/r∗. The effect of this third parameter is small, because s ≪ r∗. The fourth

parameter, µ/r∗, will typically be very small, and hence we will neglect it. Note, that N̂ gives population

density, where population is still well adapted: N = N̂ throughout most of the species’ range away from

sink regions near the existing margins. Table 1 (bottom) summarises the full set that describes the system.

[Clines are at linkage equilibrium] Stabilising selection on a quantitative trait generates negative

linkage disequilibrium, whereas dispersal generates positive linkage disequilibrium. Felsenstein’s (44)

analysis of variance components showed that at equilibrium, the linkage disequilibrium generated by

dispersal cancels out with the negative linkage disequilibrium generated by stabilising selection.

The argument extends to a quantitative trait determined by many bi-allelic loci, here demonstrated for

a haploid genome. The genetic variance is VG =
∑
α2
i (pi(x)qi(x)) + 2

∑
i 6=j αiαjDij . The increase of

linkage disequilibrium at QLE (47) between dispersal with variance σ2 and recombination rij is given by

Dij|disp = σ2

rij
dpi
dx

dpj
dx (46). With allele frequencies at equilibrium, the linkage disequilibrium generated

by stabilising selection alone is Dij|sel =
−r+

√
r2ij+4(1−rij)αiαj/Vs piqipjqj

2(1−rij) ∼ −αiαj/(rijVs) piqipjqj
for Dij small.

In this first order approximation, the terms cancel for each pair of loci when the cline shape is the

same as that under linkage equilibrium (11, two-allele model) – independently of the cline spacing across

10

. CC-BY-NC-ND 4.0 International licenseholder for this preprint is the author/funder. It is made available under a 
The copyright; http://dx.doi.org/10.1101/012690doi: bioRxiv preprint first posted online December 13, 2014; 

http://dx.doi.org/10.1101/012690
http://creativecommons.org/licenses/by-nc-nd/4.0/


space: Dij ≡ Dij|disp + Dij|sel = 0. This is because dpi
dx = piqi 4/wi, and the cline width at linkage

equilibrium is wi = 4σαi√
Vs

.

It may be that the cline width w or the linkage disequilibrium is distorted by additional forces, and/or

by strong selection. However, unless selection is strong, the first order approximation gives a simple

prediction for the pairwise disequilibrium: Dij = σ2

rij
piqipjqj16/(wiwj)− αiαj/(rijVs) piqipjqj .
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Figure 1: Illustration of the individual based model at the limit of weak genetic drift, when the species’

range keeps expanding as predicted by the deterministic model (11). (A) Trait mean z matches the

optimum θ = b x, shown for the starting population (light blue) and after 5000 generations (dark blue).

The spread of the trait values z for all individuals is shown with dots. (B) Local population size is close to

the deterministic prediction N̂ = Kr∗/rm = K(1− σb
2
√
Vsrm

). (C) Clines for allele frequencies are shown

by thin black lines, the predicted clines (dashed) have widths ws = 4σ/
√

2s and are spaced α/b apart.

(D) Total genetic variance is shown in blue, the linkage-equilibrium component in black; the dashed line

gives the prediction VG = VLE = bσ
√
Vs: each cline contributes genetic variance VG,i = αi σ

√
Vs

and per unit distance, there must be b/α clines if the trait mean matches into the optimum (11, p. 378).

Parameters, defined in Table 1: b = 0.1, σ2 = 1/2, Vs = 2, rm = 1.025, K = 300, α = 1/
√

20,

µ = 10−6, 5000 generations.
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Figure 2: Species’ range starts to contract when the effective environmental gradient is steep relative to

the efficacy of selection relative to genetic drift: B & 0.15Nσ
√
s, where B = bσ

r∗
√
2Vs

. This threshold

is shown by a dashed line. The rate of expansion increases from light to dark blue and rate of range

contraction increases from orange to red. Grey dots denote populations for which neither expansion nor

collapse is significant at α = 2%. Open dots indicate fragmented species’ ranges (illustrated at Fig. S3).

The ranges of the underlying (unscaled) parameters are in the following intervals: b = [0.01, 1.99], σ =

[0.5, 4.8], Vs = [0.006, 8.4], K = [4, 185] , rm = [0.27, 2] and α = [0.01, 0.39], µ = [10−8, 8 · 10−5];

the number of genes is between 7 and 3971. The selection coefficient per locus is hence in the interval

of s = [3 · 10−4, 0.66], with median of 0.007. Parameters are defined in Table 1; parameter distributions

are shown in Fig. S1.
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Figure 3: With a steepening environmental gradient, a stable range margin forms when B & 0.15Nσ
√
s

(red dots). (A) The gradient in trait mean follows the environmental optimum (dashed line) until the

gradients steepens so that B & 0.15Nσ
√
s, where expansion stops. (B) Population density drops off

sharply when the predicted threshold (red dots) is reached. Dashed line gives the predicted population

size assuming variation is not eroded by genetic drift. (C) Three representative clines are shown in black,

other clines form the gray background. (D) Adaptation fails when genetic variance fails to increase fast

enough to match the steepening environmental gradient. For all subfigures, dashed lines give determin-

istic predictions ( (11) and Fig. 1). Parameters: central gradient b0 = 0.12; σ2 = 1/2, Vs = 1/2,

rm = 1.06, K = 53, µ = 2 · 10−7. Population is depicted after 100 000 generations, whilst it stops

expanding after 40 000 generations (subfigure A also shows the initial stage, in light blue).
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Figure 4: Phenotypic model predicts a second sharp transition in the dynamics. As the effective en-

vironmental gradient B ≡ bσ/(r∗
√

2Vs) increases, the scaled variance A ≡ VG/(r
∗Vs) increasingly

deviates from the deterministic prediction with evolvable variance ( (11), gray dotted line). The variance

decreases due to the combined forces of genetic drift (see Fig. S2 A) and selection on small transient de-

viations of the trait mean from the optimum (see Fig. S9). Once A becomes smaller than B2/2 (dashed

curve, which gives the “critical gradient” Bc ∼
√

2A), the population collapses abruptly. Furthermore,

no adaptation is maintained beyond the solid line Be = (2 + A)/
√

2, where the phenotypic model (9)

predicts extinction. Open dots denote fragmented species’ range (Fig S3). The colours are as in Fig. 2,

the threshold when range starts to contract, B ∼ 0.15Nσ
√
s, is illustrated by the vertical dashed line.

Parameters: b increases from 0.025 to 1.25, σ2 = 1/2, Vs = 1/2, K = 50, α = 1/10, rm = 1.06, 5000

generations. Ten replicates are shown for each B.
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parameter dimension

b Z/D gradient in the environmental optimum

Vs Z2T variance of stabilising selection

σ D/
√
T dispersal per generation

K T/D carrying capacity per deme

rm 1/T maximum exponential growth rate

α Z allelic effect

µ 1/T mutation rate

s 1/T selection per locus: s ≡ α2/(2Vs)

r∗ 1/T rate of return to equilibrium pop. size:

r∗ = rm − VG
2Vs

B – effective environmental gradient,

B = bσ/(r∗
√

2Vs)

Nσ
√
s – efficacy of selection relative to

strength of genetic drift

Nσ
√
r∗ – efficacy of population regulation relative to

demographic stochasticity

Table 1: Three scale-free parameters: B, Nσ
√
s and Nσ

√
r∗ describe the system; top section

gives seven parameters of the model before rescaling. Dimensions: T stands for time, D for distance

and Z for trait. Note that with a Poisson number of offspring, the effective population size Ne (which

measures rate of genetic drift / coalescence) is identical to the N that regulates population growth due to

crowding: hence both carrying capacity K and population size N have units of T/D. Mutation rate µ is

set to be small, with minimal contribution to the dynamics, and hence µ/r∗ is neglected in the rescaled

parameterization.
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SI: INDIVIDUAL-BASED MODEL

We test the predictive power of the derived key parameters using individual based simulations. Individuals are

distributed among demes that form a one-dimensional habitat, with the phenotypic optimum varying along the

habitat, and experience a life cycle consisting of selection, mutation, recombination, and then dispersal. Distance

is measured in demes, time in generations. Every generation, each individual mates with a partner drawn from the5

same deme, with probability proportional to its fitness, to produce a number of offspring drawn from a Poisson

distribution with mean of Exp[r], where r is the individual’s Malthusian fitness in continuous time. Individual

fitness declines due to deviation of the phenotypic trait (z) from the optimum and due to crowding (fitness is

density-dependent). The trait is determined by a number of additive di-allelic loci, which permits genetic variation

to evolve. All parameters are described in Table 1. The model is derived as a limit to continuous time, and so10

applies to a wide range of models that reduce to this limit. In this limit, the rate of spatial dispersal depends only

on the variance of distance moved, and the effective population density (for both allele frequency and demographic

fluctuations) depends only on the variance of offspring number.

Life cycle: Discrete-time individual based simulations are set to correspond to the model with continuous time15

and space. The life-cycle is selection→ mutation→ recombination→ migration.

Dispersal: The habitat is formed by a one-dimensional array of demes. With deme spacing δx = 1, the population

size per deme corresponds to the population density. We assume diffusive migration with a Gaussian dispersal

kernel. The tails of the dispersal kernel need to be truncated: we choose truncation at two standard deviations of20

the dispersal kernel throughout, and adjust the dispersal probabilities following [48, p. 1209] so that the discre-

tised dispersal kernel sums to 1, and the variance of dispersal is adjusted correctly. For dispersal per generation

at σ =
√

1/2, dispersal reduces to a nearest neighbour migration with a probability of migration left and right of

m = 1/4.

25

Selection: Every generation, each individual produces a Poisson number of offspring with mean of the individual’s

fitness Exp[(r)]; where r = rm(1−N/K)− (z−θ)2
2Vs

, as defined earlier.

Mutation: Mutation rate is set to be small so that its contribution to genetic variance is negligible, but large

enough to in principle enable expansion of a species’ range over the total time of 5000 generations. Specifically,30

it is set to one substitution per the whole population and generation. Genetic variance maintained in a population

due to dispersal across environments can be substantially larger than genetic variance maintained by mutation-

selection balance in uniform environments. In uniform environments, mutational variance Vm =
∑nl

i µα2
i (where

αi are the allelic effects, and nl is the number of loci) is robustly estimated to be between about 5 · 10−5VE and

5 · 10−3VE [49]. Taking a heritability h2 ≡ VG/(VG + VE) = 1/3 we get Vm between 10−4VG and 10−2VG. In35

our model, genetic variance is inflated due to dispersal across environments, and so Vm/VG must be yet smaller.

Taking the higher limit of Vm = 10−2VG, follows that µ should be smaller than about 4 · 10−3. It turns out that in

general, the increase of genetic variance due to mutation cannot be fully included in the predictions, as the contri-

bution of mutation–selection balance cannot be robustly separated from the clinal variation. A considerably higher

1
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genetic variance than VG,mut = 2µnl Vs (up to the limit of 1/4α2nl) can arise due inflation of the variance by40

mutation along existing clines. Therefore, we concentrate on a parameter range where the contribution of mutation

to genetic variance is low, which is a biologically plausible range. In our model, genetic variance is maintained by

gene flow across the environment.

Reproduction, recombination: The mating partner is drawn from the same deme, with the probability propor-45

tional to its fitness. Selfing is allowed at no cost. The genome is haploid with unlinked loci (the probability of

recombination between any two loci is 1/2); the allelic effects αi of the loci combine in an additive fashion.

Simulation runs: Evolution starts with a well adapted population at the centre of the habitat. The habitat is about

10 cline widths wide; the number of genes is chosen so that with all genes adapted, the population spans the whole50

habitat, and that there are enough genes to maintain the “optimal” variance VG = bσ
√
VS at the central part of

the habitat. At the start of the simulation, half of the genes are adapted: their clines take the form and spacing as

assumed for the deterministic model under linkage equilibrium.

The population evolves for 5000 generations; in total, we recorded over a thousand runs where without ge-55

netic drift the local population density would be greater than 4 assuming uniform adaptation (such that trait mean

matches the optimum). We a-priori eliminated very small local population sizes (N < 4) so that the population

size within a generational dispersal is not excessively small. The parameters were first varied one at a time, and

then we tested the threshold drawing the parameters from distributions consistent with our knowledge of the range

expected in nature (see [26, Discussion]). The latter will be referred to as the “random” set, with 1000 runs. The60

Mathematica code for the simulations, including the distributions used to draw the unscaled parameters for the

“random” set is provided in FileS1. Fig. S1 shows the realised distributions for both the unscaled parameters and

compound parameters.
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Figure S1: Distribution of parameters used in the “random set”, as described in Table 1. Grey: all

unscaled parameters. Light blue: Composite parameters. Dark green: Scale-free parameters (both s/r∗

and 1/(N̂σ
√
r∗) are given for a reference though one of them is always redundant; see Materials and

Methods: Rescaling).
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Figure S2: Cline width decreases as genetic drift gets stronger relative to selection. (A): Cline

width, defined as a measure of total heterozygosity across space (w ≡ 4
∫
p q), is approximated by

w = ws(1 − 0.392/(Nσ
√
s)) (thick dotted line; method from [24, supplementary text]). Dots give

the median cline width across loci with their positive and negative standard deviations. The dashed

horizontal line gives the deterministic cline width, ws = 4σ/
√

2s [50, 51]. As the genetic drift gets

very strong relative to selection, the predictions diverges (bottom right): for very weak selection, the

neutral limit 〈w0〉 → 4σ2N is approached (solid diagonal line; from [52]). Note that genetic variance

decreases with the same factor as cline width. (B): The decrease in cline width can be understood from

the rise in fluctuations of each cline – as fluctuations increase, allele frequencies fix locally and the cline

steepens. Fluctuations in clines 〈F 〉 rise approximately with 〈F 〉 = 0.392/(Nσ
√
s), shown by a dashed

line. 〈F 〉 is the variance in allele frequencies scaled by the expected allele frequency, averaged across

space, therefore ranging between 0 and 1: 〈F 〉 ≡
∫∞
−∞ var(p(x,t))dx∫∞
−∞〈p(x,t)〉〈q(x,t)〉dx

[24, p. 228]. Note that these

formulae apply only to one-dimensional habitats: as the width of the second (selectively neutral) spatial

dimension of the habitat increases, the predictions will start to differ because the effect of genetic drift

on a cline depends only weakly on selection in two-dimensional habitats; see [53]). Parameters: b = 0.1,

σ2 = 1/2, Vs = 2, rm = 1.025, α = 1/
√

20, µ = 10−4, carrying capacity K increases from 4 to 260.
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Figure S3: Species range can fragment when B > 0.15Nσ
√
s (Fig. 2), and additionally,

B >
√
2A (Fig. 4). Exact conditions that always lead to range fragmentation were not determined.

Fragmented populations are shown in open circles in Figs. 2 and 4. (A) Typically, there is no adapta-

tion in trait mean left within each sub-range. (B) Populations are disjunct, and across the habitat, the

population size is considerably smaller than predicted for “perfect” adaptation. (C) Typically, there is no

clinal variation although transiently, a few clines are maintained. (D) Correspondingly, genetic variance

is mostly near zero. Parameters: b .
= 1.18; σ2 .

= 1, Vs
.
= 0.44, rm = 1.97, K = 29.2, µ = 6 · 10−8,

α = 0.0093, time = 5000 generations (shown at generation 4800). Note, that this fragmentation is not

driven by edge effects that arise when population at the carrying capacity reaches the edge of the avail-

able habitat, where there is less maladaptive gene flow, which leads to local increase of density, followed

by suppression of nearby populations towards the centre – and the effect propagates [54]. This effect is

explained in [48]. Here, the simulations are set up such that the population never reaches the margins of

the available habitat.
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Figure S4: Non-uniform carrying capacity generates a stable range margin. (A) The optimum

changes across the environment with a constant gradient b = 0.3 – the population starts well adapted at

the more central part of the habitat (lighter blue). (B) The population density declines away from the cen-

tre - red dots give the predicted failure of the adaptation, based on B = 0.15Nσ
√
s. (C) Three represen-

tative clines are shown in black, other clines form the gray background (every tenth cline displayed). (D)

Genetic variance is substantially lower than the deterministic prediction (black dashed line). The wiggly

green line gives the predicted V ∗LE including the effect of genetic drift: V ∗LE = VLE(1−0.392/(Nσ
√
s))

(see Fig. S2). Parameters: b = 0.3, σ2 = 1/2, Vs = 1, rm = 1.1, µ = 10−7. Population is shown

after a stable range margin is reached at time = 100 000 generations (with the exception of the initial

distribution of trait values, shown in light blue).
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Figure S5: Sharp margin to a species’ range forms even when allelic effects αi are non-uniform.

With exponentially distributed allelic effects αi, the expansion slows down after 40 000 generations (see

Fig. S6), at the threshold predicted by mean selection per locus B∗ = 0.15Nσ
√
s = 0.34 (red dots). As

in this example the allelic effects are not bounded, over very long times, as rare alleles with large effect

are recruited (see Fig. S7), the species’ range slowly stretches behind the threshold B∗. Parameters and

subplot descriptions are the same as in Fig. 3 – with the exception that the allelic effects are exponentially

distributed, with mean α =
√

1/100. (C) Note that when allelic effects vary across loci, rarely a cline

may establish in a reverse direction, correcting a substitution with a large effect on the trait mean. (D) As

genetic variance VG increases towards the margins, it evolves to match the ever steeper environmental

gradient: VG = bσ
√
Vs, prediction shown in dashed line. Gradient in the central habitat is b = 0.12;

σ2 = 1/2, Vs = 1/2, rm = 1.06, K = 50, µ = 2 · 10−7, time = 100 000 generations (with the exception

of the initial distribution of trait values, shown in light blue).
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Figure S6: Range expansion slows down near the threshold based on mean selection coefficient even
when the allelic effects αi are non-uniform (black). Yet, over very long times, further alleles with large

effects can be recruited as they are under stronger selection, and species’ range expands a little further.

(Example from Fig. S5.) The extent of range expansion is only fully bounded by the substitution with the

largest selection coefficient that can arise over a given time. For comparison, the rate of range expansion

with equal allelic coefficients with αi = α is given in gray (keeping all other parameters same, example

from Fig. 3).
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Figure S7: Over time, genetic drift degrades clines with small allelic effects α. As more alleles with

larger effect α contribute to adaptation, clines become narrower and under stronger selection. Parameters

as in Fig. S5. Note that s ≡ α2

2Vs
and in this example, s = α.
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Figure S8: Alternatively, the threshold for range collapse can be expressed as b/α & 0.15Nr∗.

The threshold holds well unless spacing between the clines, α/b, is smaller than about 1/10 - this reflects

the limits of our simulation system rather than a biological boundary – the deme-spacing is fixed to

∆x ≡ 1. Data and their depiction are the same as in Fig. 2.
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Figure S9: Selection on minute deviations from trait mean steepens the clines. Even for negligible

genetic drift, clines get steeper than predicted for “perfect” adaptation as the effective environmental

gradient B increases. Predicted clines are given by dashed curves in (B, D). The blue and purple curves

in (A, C) show the components of selection for a single central cline: s p q (p− q) (blue) vs. −2 s p q∆

(purple), where ∆ = (z − bx)/α gives a scaled deviation from the optimum. The “perfect” adaptation

assumes the trait mean matches the optimum everywhere (∆ = 0) - when the predicted and realised

clines ought to match (for weak drift). As the effective environmental gradient B steepens, the effects

of small deviations of the trait mean from the optimum increasingly affect the clines. (A, B) Exam-

ple with weak environmental gradient B = 0.035, where the cline widths are only 4% narrower than

predicted because selection acts mainly (77%) via the diversifying term s p q (p − q). (C, D) Example

with very steep effective environmental gradient B = 1.2, where the cline width is nearly twice as steep

as predicted - correspondingly, the two components of selection are nearly the same: mean integrated

selection components across all clines are 0.007 and 0.006, respectively. Both examples are chosen with

very weak drift: Nσ
√
s = 23.7 and Nσ

√
s = 22 and very similar selection per locus s = 1/80 and

s = 1/60.
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Figure S10: Adaptation may suddenly fail if dispersal is too large. The threshold for collapse of

adaptation (dashed line, B ∼ 0.15Nσ
√
s) is weakly dependent on dispersal: to the first order, the

effect cancels. Yet, for our model, the strength of density dependence r∗ decreases with genetic variance

(r∗ = VG/(2Vs)), which in turn increases with σ; (r∗ → bσ/(2
√
Vs)). When r∗2/rm becomes smaller

than 1, further increase in dispersal is detrimental as it brings the population closer to the predicted

threshold. This is because both B = bσ√
2Vsr∗

and Nσ
√
s = Kr∗/rm σ

√
s are both dependent on r∗

– and the effects multiply. The scale for the colouring is adjusted (different to Fig. 2) so that the

differences in the rate of range expansion (light to dark blue) and contraction (orange to red) are visible;

gray dots again denote population that expanded less than one deme over 5000 generations. Parameters:

σ = [0.1, 4.24], b = 0.45, Vs = 1, r∗ ≡ 1 hence rm = [1.02, 1.95]; K = 28, µ = 4 · 10−7, α =
√

1/35,

time = 5000 generations.
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Figure S11: Effect of mutation rate on the rate of range expansion and local genetic variance.

(A) Rate of range expansion increases about linearly with mutation rate µ per locus and generation

(5 · 10−8 < µ < 10−3). When mutation becomes too high, then the rate of expansion first decelerates,

and for yet higher mutation rates (µ & 10−2), the population starts to collapse. Note that in general,

mutation rate per locus and generation is expected to be lower than about 10−4 (see Supplementary Text

3). (B) Local genetic variance VG increases with mutation rate. For low to moderate mutation rates,

genetic variance is maintained by mixing across the phenotypic gradient, VG = bσ
√
Vs. The dashed

curve gives the prediction bσ
√
Vs + 2µnlVs, which assumes the components of genetic variance due

to gene flow (first term) and mutation-selection balance (second term) combine additively, whilst all nl
loci are at linkage equilibrium: the mismatch between the dashed curve and the realised genetic variance

implies that with clinal variation, µ � s is not a sufficient condition for the contribution of mutation

to be negligible. The top dashed line gives the maximum variance possible, 1/4nl α
2 (where α is a

phenotypic effect of a single substitution). With increasing variance, population density drops steadily

(not shown): eventually, species’ range starts to contract and population collapses. Parameters: b = 0.4,

σ2 = 1/2, Vs = 1/2, rm = 1.06, K = 50, α = s = 0.01, 800 genes. Initial population spans over 100

demes, population evolves over 5000 generations. For both plots, error bars give the standard deviations.
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