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Introduction
This notebook derives the approximations that are presented in Kirkpatrick and Peischl (2012).

Deriving the basic PDE for survival of the mutant (Eq. (7) 
in the main text)
We begin with a model that is discrete in time and continuous in space.  Write px,t  for the probability that a single copy of the
mutant at  location x  and time t  leaves descendants that survive into the indefinite future.   Using a standard argument from
branching processes, we can write the probability that a mutant leaves no descendants as

1 - px,t = ⁄i fiHx, tLA1 - px,t* E
i

where fiHx, tL is the probability that an individual at point x at time t leaves i offspring, and px,t*  is the probability that one of those
offspring (randomly chosen) leaves surviving descendants.  Let the expected number of offspring produced by an individual at
point x at time t be 1 + sx,t.  Assuming a Poisson distribution of offspring number then gives

1 - px,t = ⁄i
1
i!

exp@-H1 + sx,tLD H1 + sx,tLiA1 - px,t* E
i

1 - px,t = expA-H1 + sx,tL px,t* E ⁄i
1
i!

expA-H1 + sx,tL I1 - px,t* MEAH1 + sx,tL I1 - px,t* ME
i

= expA-H1 + sx,tL px,t* E

Expanding the right-hand side (r.h.s.) gives

1 - px,t º 1 - H1 + sx,tL px,t* + 1
2
H1 + sx,tL2 px,t* 2

º 1 - H1 + sx,tL px,t* + 1
2

px,t* 2

where we assumed that px,t*  and sx,t  are OHeL and we have dropped terms that are OIe3M.  The value of px,t*  can be calculated in
terms of the migration kernel mH.L: 

px,t* = Ÿ mHyL px+y,t+1 „ x

º px,t+1 + s2

2
¶∂x
2 px,t+1



The second step assumes that the third and higher moments of the dispersal kernal are negligible, as with gaussian dispersal.  We
now have

1 - px,t º 1 - H1 + sx,tL Jpx,t+1 + s2

2
¶∂x
2 px,t+1N +

1
2
H1 + sx,tL2 px,t+12

º 1 - H1 + sx,tL Jpx,t+1 + s2

2
¶∂x
2 px,t+1N +

1
2

px,t+12

where we have assumed that  s2  is  OHeL  and so px,t+1* 2 º px,t+12  to the order of this  approximation.   Rearranging and again

dropping terms that are OIe2M then gives

px,t+1 - px,t º -sx,t px,t+1 - s2

2
¶∂x
2 px,t+1 +

1
2

px,t+12

Since all terms on the r.h.s. are OIe2M, the change in px,t  with t is small.  We are therefore justified in approximating the discrete
time process by one in continuous time, giving the PDE

¶∂t px,t = -sx,t px,t +
1
2

px,t2 - s2

2
¶∂x
2 px,t

We interpret sx,t as the intrinsic rate of increase of the mutant at point x at time t.

Fitnesses constant in time and space
When fitnesses are constant in time and space, we have

0 = -s p + 1
2

p2

and so

p = 2 s

This is Haldane's classic result.

Fitnesses changing in space but constant in time 
(Derviation of eq. (9))

ü Assumptions

With fitnesses constant in time, we have the ODE

0 = -sx px +
1
2

px2 - s2

2
¶∂x
2 px

A general solution for that equation seems impossible to derive. To proceed further we assume that selection intensities are given
by:

sx = H1 + s0L ExpJ- s0
x2

2
N - 1.

In the calcualtions below we approximate fitness by a quadratic function:

sx = s0J1 - x2

2
N.
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In the calcualtions below we approximate fitness by a quadratic function:

sx = s0J1 - x2

2
N.

Space has been scaled such that the mutant has a positive growth rate in the region J- 2 , 2 N.  

ü Calculations

The assumption for fitness is

sX = s0 1 -
x2

2
;

Take the Ansatz for the solution of the ODE to be a gaussian:

pX = k ExpB-
x2

2 v
F;

This gives the right hand side of the ODE as

rhs = -sX * pX +
1

2
pX2 -

s2

2
¶∂x,xpX;

Now expand the expression for px as a quadratic around x = 0:

rhs2 = Collect@Series@rhs, 8x, 0, 2<D êê Normal, xD

k2

2
+
k s2

2 v
- k s0 +

x2 I-2 k2 v - 3 k s2 + 2 k v s0 + 2 k v2 s0M

4 v2

Both terms must vanish, which gives us two equations in our two unknowns:

$Assumptions = 8s0 > 0<;

kvSolns =
Solve@

8Coefficient@rhs2, x, 0D ã 0,
Coefficient@rhs2, x, 2D ã 0<,

8k, v<D êê Simplify

:8k Ø 0<, :k Ø 3 s0 + s0 I2 s2 + s0M , v Ø
1

2
1 - 1 +

2 s2

s0
>,

:k Ø 3 s0 - s0 I2 s2 + s0M , v Ø
1

2
1 + 1 +

2 s2

s0
>>

Since v > 0, the third solution is the one we want.  Simplify by assuming s2 << 1:
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kvSoln = Series@8k, v< ê. kvSolns@@3DD, 8s, 0, 2<D êê Normal êê Simplify

:-s2 + 2 s0, 1 +
s2

2 s0
>

Our approximation is therefore

pXSoln = pX ê. 8k Ø kvSoln@@1DD, v Ø kvSoln@@2DD< êê Simplify

‰
-

x2 s0

s2+2 s0 I-s2 + 2 s0M

In the limit of no dispersal, this result is consistent with Haldane's result, which says that the establishment probability is 2 sx:

2 sX - Series@HpXSoln ê. s Ø 0L, 8x, 0, 2<D êê Normal êê Simplify

0

ü Summary of results

Our approximation for the establishment probability is:

px = I2 s0 - s2M expB- x2

2 v
F

where

v = 1 + s2

2 s0

Thus the maximum probability of establishment is decreased by an amount s2.  Swamping results, and the mutant goes extinct, if
migration is too strong relative to the mutant's maximum fitness.

The width of px is greater than the width of the fitness function (which is scaled to 1).

Fitnesses changing in time and space (Derivation of Eqs. 
(11) and (12))

ü Assumptions

Now consider a patch whose width ("variance") is 1 and whose optimum moves in time at velocity c:

sx,t = H1 + s0L expBs0
-Hx- c tL2

2
F - 1

Space has been scaled such that the width ("variance") of the patch is 1.  For concreteness (and without loss of generality) we
take c > 0.

Again, we approximate fitness by a quadratic function:

sx,t = s0 J1 - Hx- c tL2

2
N
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ü Calculations

The fitness function is

sXT = s0 H1 - Hx - c tL^2 ê 2L;

The establishment probability is given by the PDE derived above:

¶∂t px,t = -sx,t px,t +
1
2

px,t2 - s2

2
¶∂x
2 px,t

Our Ansatz for the solution is a gaussian whose maximum also moves at rate c

pXT = k * ExpB-
Hx - c * t - dL2

2 v
F;

where k, d, and v are constants that we need to solve for.

The right and left sides of the PDE are:

rhs = -sXT * pXT +
1

2
pXT2 -

s2

2
¶∂x,xpXT êê Simplify

1

2
‰-

Hd+c t-xL2

v k k -
1

v2

‰
Hd+c t-xL2

2 v Id2 + 2 c d t + c2 t2 - v - 2 d x - 2 c t x + x2M s2 + ‰
Hd+c t-xL2

2 v I-2 + c2 t2 - 2 c t x + x2M s0

lhs = ¶∂tpXT

c ‰-
H-d-c t+xL2

2 v k H-d - c t + xL

v

A quick check that the units are correct:

unitSubs = 9d Ø x, c Ø x, v Ø x2, k Ø 1, s0 Ø 1, s Ø x, t Ø 1=;

8lhs, rhs< ê. unitSubs êê Simplify

:-
1

‰
,
1 - 2 ‰

2 ‰
>

Expand Hr.h.s. - l.h.s.L as a quadratic in x around x = d + c t :

diff = Series@rhs - lhs, 8x, d + c * t, 2<D êê Normal êê Simplify

H-d - c t + xL -
c k

v
+ d k s0 +

k Ik v + s2 + I-2 + d2M v s0M

2 v
-

k Hd + c t - xL2 I2 k v + 3 s2 + v Id2 - 2 H1 + vLM s0M

4 v2

We now have three equations in three unknowns:

$Assumptions =
8s0 > 0, s > 0, c > 0<;
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kvSolns =
Solve@
8Coefficient@diff, x, 0D ã 0,
Coefficient@diff, x, 1D ã 0, Coefficient@diff, x, 2D ã 0<,

8k,
v,
d<D;

We can identify the correct solution by finding which one gives the right result for c = s2 = 0.  It turns out to be the last one:

Limit@Hk ê. kvSolns@@1DD ê. d Ø 0L, c Ø 0D êê Simplify

0

Limit@Hk ê. kvSolns@@2DD ê. d Ø 0L, c Ø 0D êê Simplify

-¶

Limit@Hk ê. kvSolns@@3DD ê. d Ø 0L, c Ø 0D êê Simplify

3 s0 + s0 I2 s2 + s0M

Limit@Hk ê. kvSolns@@4DD ê. d Ø 0L, c Ø 0D êê Simplify

3 s0 - s0 I2 s2 + s0M

kvSoln = kvSolns@@4DD;

A first approximation can be obtained by linearizing in s2and c:

Series@8k, v, d< ê. kvSoln, 8s, 0, 2<, 8c, 0, 1<D êê Normal êê PowerExpand êê Simplify

:-s2 + 2 s0, 1 +
s2

2 s0
, -

c Is2 - 2 s0M

2 s0
2

>

To get the leading order effect of c on k and v, we need to expand to second order in c:

tmp =
Series@8k, v, d< ê. kvSoln, 8c, 0, 2<, 8s, 0, 2<, 8s0, 0, 1<D êê Normal êê Simplify

:
Is2 - 2 s0M Ic2 - 2 s0

2M

2 s0
2

,
1

4
4 +

3 c2 s2

s0
3

-
2 c2

s0
2

+
2 s2

s0
, -

c Is2 - 2 s0M

2 s0
2

>

That is more easy to read if written as:

k = J1 - c2

2 s2
N I2 s - s2M, v = 1 + s2

2 s
-

c2 I2 s-3s2M

4 s3
, d =

c I-2 s+s2M

2 s2

If space is measured on a scale that moves with the patch so that fitness is always maximized at x = 0, our approximation can be
written as:

p@x_, s_, s2_, c_D := k@s, s2, cD ExpB
-Hx - d@s, s2, cDL2

2 v@s, s2, cD
F

k@s_, s2_, c_D := 1 -
c2

2 s2
H2 s - s2L
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v@s_, s2_, c_D := 1 +
s2

2 s
-

c2 H2 s - 3 s2L

4 s3

d@s_, s2_, c_D :=
c H2 s - s2L

2 s2

p@x_D := p@x, s, s^2, cD

Here are some examples:

Plot@8p@x, 0.1, 0.05, 0D, p@x, 0.1, 0.05, 0.05D,
p@x, 0.1, 0.05, 0.1D, p@x, 0.1, 0.05, 0.135D,
s@x, 0.1D<,

8x, -3, 3<,
AxesLabel Ø 8x, p<, AxesOrigin Ø 8-3, 0<,
PlotRange Ø 8-0.05, 0.15<, PlotStyle Ø 88Black<<D

-2 -1 0 1 2 3
x

-0.05

0.05

0.10

0.15
p

ü Summary of results

Our approximation for the establishment probability is:

px,t = J1 - c2

2 s2
N I2 s - s2M expB- Hx-dx - c tL2

2 v
F,

where

dx =
c I2 s-s2M

2 s2

and

v = 1 + s2

2 s
-

c2 I2 s-3s2M

4 s3
.
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