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Appendix A from P.-O. Cheptou and F. Massol, “Pollination
Fluctuations Drive Evolutionary Syndromes Linking Dispersal and
Mating System”
(Am. Nat., vol. 174, no. 1, p. 46)

A Boundary Singular Strategy Is either Continuously Stable or neither
Convergence nor Evolutionarily Stable
Equation (5) implies that, near a singular strategy (SS), the fitness of a rare mutant is a polynomial function of s ′

and d ′ of degree 2 or less, so that the second-order Taylor expansion formula is exact:

T
′ ′ ′1s ! s s ! s s ! s′ ′ TW (s , d ) p W (s, d) " D 7 " 7 H 7 , (A1)s, d s, d ′ ′ ′( ) ( ) ( )d ! d d ! d d ! d2

where vector is the selection gradient and H is the Hessian matrix given byD p (D , D )s d

2 ′2 2 ′ ′! W/!s ! W/!s !d ( )H p s, d . (A2)2 ′ ′ 2 ′2( )! W/!s !d ! W/!d

However, the following relationships hold (by construction, see eq. [5]):

2 2! W ! Ws, d s, dp 0 p , (A3)′2 ′2!s !d
2! W q(1/2 ! d)(1 ! e) ! (1 ! d)(1 ! qe)s, d p e (A4)′ ′!s !d (1 ! d)(1 ! d)s " dq[(1 ! d)es " (1 ! e)(1 ! sd)]

deq ! (1/2 ! d)[1 ! q(1 " e)]
" (1 ! e) .

(1 ! sd)(1 ! d) " dq[(1 ! d)es " (1 ! e)(1 ! sd)]

In the particular cases where either or , it can be shown that (the proof necessitates2 ′ ′d p 0 s p 0 ! W /!s !d ! 0s, d

the separation of the cases and and that we use eqq. [7] and [9]). Thus, the Hessian matrixe ! 2d ! 1 e 1 2d ! 1
always has the following structure:

0 !aH p , (A5)( )!a 0

where a is a positive function of the SS and of q, e, and d.
We now remark that and that, at a boundary solution, the D vector consists of a negativeW (s, d) p 1s, d

component and a null component. We rename the two traits x and y, where x stands for the trait that is equal to
0 at the boundary SS (so if the boundary SS is convergence stable [CS]) and y stands for the otherD (x, y) ! 0x

trait (so ). Let dx and dy be the differences between the mutant traits and the SS traits. BecauseD (x, y) p 0 x py

, necessarily . Equation (A1) can be rewritten0 dx 1 0
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W (x " dx, y " dy) p 1 " (D ! a 7 dy) 7 dx. (A6)x, y x

When dy is small, the fitness of the rare mutant is !1 when the boundary SS is CS, or it is 11 when the
boundary SS is a repeller. This proves that any boundary SS is either a continuously stable strategy (CSS) or is
neither CS nor an evolutionarily stable strategy.
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Appendix B from P.-O. Cheptou and F. Massol, “Pollination
Fluctuations Drive Evolutionary Syndromes Linking Dispersal and
Mating System”
(Am. Nat., vol. 174, no. 1, p. 46)

Instability of the Interior Singular Strategy
Near an interior singular strategy (SS) (s, d ), selection gradient components are equal to 0, so that the fitness of
a rare mutant deviating by Ds and Dd is in the form of equation (A1):

W (s ! Ds, d ! Dd) p 1 ! bDsDd, (B1)s, d

where b is a real negative number. Such a fitness function is the signature of a saddle point, and thus an interior
SS is not an evolutionarily stable strategy (a mutant that has can invade the interior SS), nor is itDsDd ! 0
convergence stable (projecting the selection gradient on the line passing through the interior SSDs p "Dd
shows that there exists a direction on which the selection gradient points outward; see fig. 1B).
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Appendix C from P.-O. Cheptou and F. Massol, “Pollination
Fluctuations Drive Evolutionary Syndromes Linking Dispersal and
Mating System”
(Am. Nat., vol. 174, no. 1, p. 46)

General Pollination Distribution
We explore the case of a continuous distribution of pollination proportions, that is, the proportion of outcrossing
seeds fertilized is a stochastic variable, X, with mean . We show in the following paragraphs that,E(X) p X
whatever the assumed distribution of X, (1) interior singular strategies (SSs), if they exist, must be evolutionary
repellers; and (2) boundary SSs can exist only on the d- and s-axes (i.e., for or ).s p 0 d p 0

The fitness of the rare mutant can be computed as

′ ′ ′ ′ ’ ′(1 ! d ) (1 ! d)s " [1 ! (s " s )/2]X " qd {(1 ! d) s " [1 ! (s " s )/2]X}{ }
′ ′w (s , d ) p Es, d ′(1 ! d )[(1 ! d)s " (1 ! s)X] " qd[(1 ! d)s " (1 ! s)X ]

′ ′ ′ ′ ′ ′(1 ! d ){(1 ! d)s " [1 ! (s " s )/2]X} " qd {(1 ! d) s " [1 ! (s " s )/2]X}
p E( (1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X ]

k
# !(1 ! s)(1 ! d)X

# ! { } )(1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X ]kp0

k
#′ ′(1 ! d )[1 ! (s " s )/2] !(1 ! s)(1 ! d) kp " E X (C1)( )! { }(1 ! s)(1 ! d) (1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X ]kp0

′ ′ ′ ′ ′ ′ ′(1 ! d )(1 ! d)s " qd {(1 ! d)s " [1 ! (s " s )/2]X} (1 ! d )[1 ! (s " s )/2]
# !( )(1 ! s)(1 ! d)(1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X ]

′ ′ ′ ′s ! s A(s, d) 1 d ! d A(s, d) (s ! s)(d ! d) 1 A(s, d)
p 1 " ! " ! 1 " ! ,( )( ) ( )( ) ( )1 ! s 2C(s, d) 2 1 ! d B(s, d) (1 ! s)(1 ! d) 2 2 F(s, d)

where

k
# !(1 ! s)(1 ! d)XkA(s, d) p E X , (C2)( )! { }(1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X]kp0

1
B(s, d) p , (C3)

1 " (1 ! d)({q[(1 ! d)s " (1 ! s)X] ! (1 ! d)s}/{(1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X]})

1
C(s, d) p , (C4)

1 " 2 (1 ! s)({(1 ! d)(1 ! d) " qd[1 ! d ! (X/2)]}/{(1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X]})

1
F(s, d) p . (C5)

1 " 2({(1 ! s)(1 ! d)[(1 ! d)(1 ! q) " q(X/2)]}/{(1 ! d)(1 ! d)s " qd[(1 ! d)s " (1 ! s)X]})

The expression directly implies that no SS that is not situated on one of the four boundaries ( ,′ ′w (s , d ) d p 0s, d
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, , ) can be locally evolutionarily stable because its Hessian matrix has null diagonal elements;d p 1 s p 0 s p 1
that is, near an interior SS,

w (s ! Ds, d ! Dd) p 1 ! aDsDd, (C6)s, d

where is a real number. Such a fitness function is thea p {1/[(1 " s)(1 " d)]}[(1/2) " (A(s, d))/(2F(s, d))]
signature of a saddle point, and thus an interior SS cannot be evolutionarily stable. If an interior SS is
convergence stable (CS), it is a branching point; otherwise, it is an evolutionary repeller. The selection gradient
components are

1 A(s, d)
D (s, d) p " 1 , (C7)d ( )1 " d B(s, d)

or, when ,d p 1

(1 " d)s
D (s, 1) p 1 " , (C8)d q[(1 " d)s ! (1 " s)X ]

1 A(s, d) 1
D (s, d) p " , (C9)s ( )1 " s 2C(s, d) 2

or, when ,s p 1

qdX
D (1, d) p 1 " . (C10)s 2(1 " d)[1 " d(1 " q)]

An interior SS has a null selection gradient; that is,

A(s, d) p B(s, d) p C(s, d). (C11)

After some simplifications, the conditions and are equivalent toB(s, d) ≤ C(s, d) B(s, d) ≥ C(s, d)

q[(1 " d)s ! (1 " s)X ]
g(d) p 1 " d(1 " q) ≤ p f (s),

(1 " d)(2 " s)

q[(1 " d)s ! (1 " s)X ]
g(d) p 1 " d(1 " q) ≥ p f (s), (C12)

(1 " d)(2 " s)

respectively. The study of function f allows the following statement: there is an interior SS if and only if X 1

. In particular, since , an interior SS does not exist when . When an interior SS (d∗, s∗)2 (1 " d) X ! 1 d ! 0.5
exists, it is situated on the curve defined by ; that is,∗ ∗g(d ) p f (s )

∗ ∗q[(1 " d) s ! (1 " s )X ]1∗d p 1 " . (C13)∗{ }1 " q (1 " d)(2 " s )

When and , (since both functions are decreasing), and thus, , so that the∗ ∗d 1 d s ! s g(d) ! f (s) B(s, d) ! C(s, d)
conditions and are impossible (these conditions would require ).D (s, d) ! 0 D (s, d) 1 0 A(s, d) ! B(s, d)d s

Likewise, when and , the conditions and are impossible. We have thus∗ ∗d ! d s 1 s D (s, d) 1 0 D (s, d) ! 0d s

proved that any interior SS, if it exists, cannot be CS (since it does not attract points in its vicinity).
We now rapidly study the feasibility of boundary equilibriums. There can be four different boundary

equilibriums:
1. , with and , that is, , thus implying ;d p 0 D ! 0 D p 0 B(s, 0) 1 A(s, 0) p C(s, 0) 1 p g(0) 1 f (s)d s
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2. , with and , that is, and , thusd p 1 D 1 0 D p 0 s ! qX/[(1 ! d)(1 ! q) " qX ] 1 p A(s, 1) p C(s, 1)d s

implying ;(1 ! s)[1 ! d ! (X/2)] p 0
3. , with and , that is, , thus implyings p 0 D ! 0 D p 0 c(0, d) 1 A(0, d) p B(0, d) g(d) ! f (0) p qX/[2(1 !s d

;d)]
4. , with and , that is, and ,s p 1 D 1 0 D p 0 d ! [2(1 ! d)]/[qX " 2(1 ! d)(1 ! q)] 1 p A(1, d) p B(1, d)s d

thus implying or .(1 ! q)/[1 ! d(1 ! q)] p 0 d p 0
These four conditions imply, respectively:
1. Either or (exclusive) (which is !1);X ! [2(1 ! d)]/q s 1 [2(1 ! d) ! qX ]/[(1 ! d)(1 ! q) ! qX ]
2. and , which renders this boundary equilibrium unfeasible in all but one case;X p 2(1 ! d) s ! 2q/(1 " q)
3. Either or (exclusive) and (this equilibriumX 1 [2(1 ! d)]/q d 1 [1/(1 ! q)](1 ! {qX/[2(1 ! d)]}) X 1 2(1 ! d)

is unfeasible for );X ! 2(1 ! d)
4. , which renders this boundary equilibrium unfeasible in all but one case.q p 1
From these, we conclude that only two ( or ) of the four boundary equilibriums are robustlyd p 0 s p 0

feasible.


