Assignment #5

Chapter 8: 16, 19
Chapter 9: 19

Due this Friday Oct. 30th by 2pm in your TA’s homework box
Assignment #6

Chapter 10: 14, 15
Chapter 11: 14, 18

Due Next Friday Nov. 6th by 2pm in your TA’s homework box
Reading

For Today: Chapter 11 & 12

For Thursday: Chapter 12
First Part of Chapter 11 Review
$\mu = 67.4$

$\sigma = 3.9$

\bar{Y} is normally distributed whenever:

1. Y is normally distributed
2. n is large

$\mu_{\bar{Y}} = \mu = 67.4$

$\sigma_{\bar{Y}} = \frac{\sigma}{\sqrt{n}} = \frac{3.9}{\sqrt{5}} = 1.7$
Inference about means

Because \overline{Y} is normally distributed, we can convert its distribution to a standard normal distribution:

$$Z = \frac{\overline{Y} - \mu}{\sigma_{\overline{Y}}} = \frac{\overline{Y} - \mu}{\sigma/\sqrt{n}}$$

This would give a probability distribution of the difference between a sample mean and the population mean.
But... We don’t know σ...

However, we do know s, the standard deviation of our sample. We can use that as an estimate of σ.
In most cases, we don’t know the real population distribution.

We only have a sample.

\[\mu = 67.4 \]
\[\sigma = 3.9 \]

\[\bar{Y} = 67.1 \]
\[s = 3.1 \]

\[SE_{\bar{Y}} = \frac{s}{\sqrt{n}} = \frac{3.1}{\sqrt{5}} = 1.4 \]

We use this as an estimate of \(\sigma_{\bar{Y}} \)
A good approximation to the standard normal is then:

\[t = \frac{\bar{Y} - \mu}{SE_{\bar{Y}}} = \frac{\bar{Y} - \mu}{s/\sqrt{n}} \]
t has a Student’s t distribution

$Z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}}$

$t = \frac{\bar{Y} - \mu}{SE_{\bar{Y}}}$

Discovered by William Gossett, of the Guinness Brewing Company
Degrees of freedom

\[df = n - 1 \]
We use the t-distribution to calculate an exact confidence interval of the mean

$$-t_{\alpha(2), df} < \frac{\bar{Y} - \mu}{SE_{\bar{Y}}} < t_{\alpha(2), df}$$

We rearrange the above to generate:

$$\bar{Y} - t_{\alpha(2), df} SE_{\bar{Y}} < \mu < \bar{Y} + t_{\alpha(2), df} SE_{\bar{Y}}$$

Another way to express this is: $$\bar{Y} \pm SE_{\bar{Y}} t_{\alpha(2), df}$$
Example

Are species ranges shifting towards higher elevations as the world warms? Highest elevation shift (m) over late 1900s and early 2000s was measured for 31 species.

\[\bar{Y} = 39.329 \]
\[s = 30.663 \]
\[n = 31 \]
Find the standard error

\[
\bar{Y} \pm SE_{\bar{Y}} t_{\alpha(2), df}
\]

\[
SE_{\bar{Y}} = \frac{s}{\sqrt{n}} = \frac{30.663}{\sqrt{31}} = 5.507
\]
Find the critical value of t

$$df = n - 1 = 31 - 1 = 30$$

$$t_{\alpha(2),df} = t_{0.05(2),30} = 2.04$$
Table C: Student's t distribution

<table>
<thead>
<tr>
<th>df</th>
<th>$\alpha(1)$: 0.1</th>
<th>$\alpha(2)$: 0.2</th>
<th>$\alpha(2)$: 0.10</th>
<th>$\alpha(2)$: 0.05</th>
<th>$\alpha(2)$: 0.02</th>
<th>$\alpha(2)$: 0.01</th>
<th>$\alpha(2)$: 0.005</th>
<th>$\alpha(2)$: 0.001</th>
<th>$\alpha(2)$: 0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.08</td>
<td>6.31</td>
<td>12.71</td>
<td>31.82</td>
<td>63.66</td>
<td>636.62</td>
<td>6366.20</td>
<td>9.99</td>
<td>12.92</td>
</tr>
<tr>
<td>2</td>
<td>1.89</td>
<td>2.92</td>
<td>4.30</td>
<td>6.96</td>
<td>9.92</td>
<td>31.60</td>
<td>636.62</td>
<td>9.99</td>
<td>12.92</td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>2.35</td>
<td>3.18</td>
<td>4.54</td>
<td>5.84</td>
<td>12.92</td>
<td>28.00</td>
<td>15.54</td>
<td>28.00</td>
</tr>
<tr>
<td>4</td>
<td>1.53</td>
<td>2.13</td>
<td>2.78</td>
<td>3.75</td>
<td>4.60</td>
<td>8.51</td>
<td>15.54</td>
<td>28.00</td>
<td>15.54</td>
</tr>
<tr>
<td>5</td>
<td>1.48</td>
<td>2.02</td>
<td>2.57</td>
<td>3.36</td>
<td>4.03</td>
<td>6.87</td>
<td>11.18</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>6</td>
<td>1.44</td>
<td>1.94</td>
<td>2.45</td>
<td>3.14</td>
<td>3.71</td>
<td>5.96</td>
<td>9.08</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>7</td>
<td>1.41</td>
<td>1.89</td>
<td>2.36</td>
<td>3.00</td>
<td>3.50</td>
<td>5.41</td>
<td>7.88</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>8</td>
<td>1.40</td>
<td>1.86</td>
<td>2.31</td>
<td>2.90</td>
<td>3.36</td>
<td>5.04</td>
<td>7.12</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>9</td>
<td>1.38</td>
<td>1.83</td>
<td>2.26</td>
<td>2.82</td>
<td>3.25</td>
<td>4.78</td>
<td>6.59</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>10</td>
<td>1.37</td>
<td>1.81</td>
<td>2.23</td>
<td>2.76</td>
<td>3.17</td>
<td>4.59</td>
<td>6.21</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>11</td>
<td>1.36</td>
<td>1.80</td>
<td>2.20</td>
<td>2.72</td>
<td>3.11</td>
<td>4.44</td>
<td>5.92</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>12</td>
<td>1.36</td>
<td>1.78</td>
<td>2.18</td>
<td>2.68</td>
<td>3.05</td>
<td>4.32</td>
<td>5.69</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>13</td>
<td>1.35</td>
<td>1.77</td>
<td>2.16</td>
<td>2.65</td>
<td>3.01</td>
<td>4.22</td>
<td>5.51</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>14</td>
<td>1.35</td>
<td>1.76</td>
<td>2.14</td>
<td>2.62</td>
<td>2.98</td>
<td>4.14</td>
<td>5.36</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>15</td>
<td>1.34</td>
<td>1.75</td>
<td>2.13</td>
<td>2.60</td>
<td>2.95</td>
<td>4.07</td>
<td>5.24</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>16</td>
<td>1.34</td>
<td>1.75</td>
<td>2.12</td>
<td>2.58</td>
<td>2.92</td>
<td>4.01</td>
<td>5.13</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>17</td>
<td>1.33</td>
<td>1.74</td>
<td>2.11</td>
<td>2.57</td>
<td>2.90</td>
<td>3.97</td>
<td>5.04</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>18</td>
<td>1.33</td>
<td>1.73</td>
<td>2.10</td>
<td>2.55</td>
<td>2.88</td>
<td>3.92</td>
<td>4.97</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>19</td>
<td>1.33</td>
<td>1.73</td>
<td>2.09</td>
<td>2.54</td>
<td>2.86</td>
<td>3.88</td>
<td>4.90</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>20</td>
<td>1.33</td>
<td>1.73</td>
<td>2.09</td>
<td>2.53</td>
<td>2.85</td>
<td>3.85</td>
<td>4.84</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>21</td>
<td>1.32</td>
<td>1.72</td>
<td>2.08</td>
<td>2.52</td>
<td>2.83</td>
<td>3.82</td>
<td>4.78</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>22</td>
<td>1.32</td>
<td>1.72</td>
<td>2.07</td>
<td>2.51</td>
<td>2.82</td>
<td>3.79</td>
<td>4.74</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>23</td>
<td>1.32</td>
<td>1.71</td>
<td>2.07</td>
<td>2.50</td>
<td>2.81</td>
<td>3.77</td>
<td>4.69</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>24</td>
<td>1.32</td>
<td>1.71</td>
<td>2.06</td>
<td>2.49</td>
<td>2.80</td>
<td>3.75</td>
<td>4.65</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>25</td>
<td>1.32</td>
<td>1.71</td>
<td>2.06</td>
<td>2.49</td>
<td>2.79</td>
<td>3.73</td>
<td>4.62</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>26</td>
<td>1.31</td>
<td>1.71</td>
<td>2.06</td>
<td>2.48</td>
<td>2.78</td>
<td>3.71</td>
<td>4.59</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>27</td>
<td>1.31</td>
<td>1.70</td>
<td>2.05</td>
<td>2.47</td>
<td>2.77</td>
<td>3.69</td>
<td>4.56</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>28</td>
<td>1.31</td>
<td>1.70</td>
<td>2.05</td>
<td>2.47</td>
<td>2.76</td>
<td>3.67</td>
<td>4.53</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>29</td>
<td>1.31</td>
<td>1.70</td>
<td>2.05</td>
<td>2.46</td>
<td>2.76</td>
<td>3.66</td>
<td>4.51</td>
<td>15.54</td>
<td>15.54</td>
</tr>
<tr>
<td>30</td>
<td>1.31</td>
<td>1.70</td>
<td>2.04</td>
<td>2.46</td>
<td>2.75</td>
<td>3.65</td>
<td>4.48</td>
<td>15.54</td>
<td>15.54</td>
</tr>
</tbody>
</table>
Putting it all together...

\[
\bar{Y} \pm SE_{\bar{Y}} t_{\alpha(2), df} = 39.329 \pm 5.507 \left(2.04\right)
\]
\[
= 39.329 \pm 11.234
\]

\[
28.09 < \mu < 50.56
\]

(95% confidence interval)
99% confidence interval

\[t_{\alpha(2), df} = t_{0.01(2), 30} = 2.75 \]

\[\bar{Y} \pm SE_{\bar{Y}} t_{\alpha(2), df} = 39.329 \pm 5.507 (2.75) \]

\[= 39.329 \pm 15.144 \]

\[24.185 < \mu < 54.473 \]
One-sample t-test

The *one-sample* t-test compares the mean of a random sample from a normal population with the population mean proposed in a null hypothesis.
One-sample t-test:
Assumptions

- The variable is normally distributed.
- The sample is a random sample.
Test statistic for one-sample t-test

$$t = \frac{\bar{Y} - \mu_0}{s / \sqrt{n}}$$

μ_0 is the mean value proposed by H_0
Hypotheses for one-sample \(t \)-tests

\[H_0 : \text{The mean of the population is } \mu_0. \]

\[H_A : \text{The mean of the population is not } \mu_0. \]
Example

Are species ranges shifting towards higher elevations as the world warms? Highest elevation shift (m) over late 1900 and early 2000s was measured for 31 species.

\[\bar{Y} = 39.329 \]
\[s = 30.663 \]
\[n = 31 \]
Example

H_0: The mean elevation change is 0.

H_A: The mean elevation change is not 0.
Example

\[n = 31 \]
\[\bar{Y} = 39.329 \]
\[s / \sqrt{n} = 5.507 \]

\[t = \frac{\bar{Y} - \mu_0}{s / \sqrt{n}} = \frac{39.329 - 0}{5.507} = 7.141 \]
Table C: Student's t distribution

<table>
<thead>
<tr>
<th>df</th>
<th>$\alpha(1):$</th>
<th>0.2</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
<th>0.0005</th>
<th>0.00005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.08</td>
<td>6.31</td>
<td>12.71</td>
<td>31.82</td>
<td>63.66</td>
<td>636.62</td>
<td>6366.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.89</td>
<td>2.92</td>
<td>4.30</td>
<td>6.96</td>
<td>9.92</td>
<td>31.60</td>
<td>99.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>2.35</td>
<td>3.18</td>
<td>4.54</td>
<td>5.84</td>
<td>12.92</td>
<td>28.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.53</td>
<td>2.13</td>
<td>2.78</td>
<td>3.75</td>
<td>4.60</td>
<td>8.61</td>
<td>15.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.48</td>
<td>2.02</td>
<td>2.57</td>
<td>3.36</td>
<td>4.03</td>
<td>6.87</td>
<td>11.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.44</td>
<td>1.94</td>
<td>2.45</td>
<td>3.14</td>
<td>3.71</td>
<td>5.96</td>
<td>9.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.41</td>
<td>1.89</td>
<td>2.36</td>
<td>3.00</td>
<td>3.50</td>
<td>5.41</td>
<td>7.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.40</td>
<td>1.86</td>
<td>2.31</td>
<td>2.90</td>
<td>3.36</td>
<td>5.04</td>
<td>7.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.38</td>
<td>1.83</td>
<td>2.26</td>
<td>2.82</td>
<td>3.25</td>
<td>4.78</td>
<td>6.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.37</td>
<td>1.81</td>
<td>2.23</td>
<td>2.76</td>
<td>3.17</td>
<td>4.59</td>
<td>6.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.36</td>
<td>1.80</td>
<td>2.20</td>
<td>2.72</td>
<td>3.11</td>
<td>4.44</td>
<td>5.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.36</td>
<td>1.78</td>
<td>2.18</td>
<td>2.68</td>
<td>3.05</td>
<td>4.32</td>
<td>5.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.35</td>
<td>1.77</td>
<td>2.16</td>
<td>2.65</td>
<td>3.01</td>
<td>4.22</td>
<td>5.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.35</td>
<td>1.76</td>
<td>2.14</td>
<td>2.62</td>
<td>2.98</td>
<td>4.14</td>
<td>5.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.34</td>
<td>1.75</td>
<td>2.12</td>
<td>2.60</td>
<td>2.95</td>
<td>4.07</td>
<td>5.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.34</td>
<td>1.75</td>
<td>2.11</td>
<td>2.58</td>
<td>2.92</td>
<td>4.01</td>
<td>5.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.33</td>
<td>1.74</td>
<td>2.10</td>
<td>2.57</td>
<td>2.90</td>
<td>3.97</td>
<td>5.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.33</td>
<td>1.73</td>
<td>2.09</td>
<td>2.55</td>
<td>2.88</td>
<td>3.92</td>
<td>4.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.33</td>
<td>1.73</td>
<td>2.09</td>
<td>2.54</td>
<td>2.86</td>
<td>3.88</td>
<td>4.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.33</td>
<td>1.72</td>
<td>2.09</td>
<td>2.53</td>
<td>2.85</td>
<td>3.85</td>
<td>4.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.32</td>
<td>1.72</td>
<td>2.08</td>
<td>2.52</td>
<td>2.83</td>
<td>3.82</td>
<td>4.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.32</td>
<td>1.72</td>
<td>2.07</td>
<td>2.51</td>
<td>2.82</td>
<td>3.79</td>
<td>4.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.32</td>
<td>1.71</td>
<td>2.07</td>
<td>2.50</td>
<td>2.81</td>
<td>3.77</td>
<td>4.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.32</td>
<td>1.71</td>
<td>2.06</td>
<td>2.49</td>
<td>2.80</td>
<td>3.75</td>
<td>4.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.32</td>
<td>1.71</td>
<td>2.06</td>
<td>2.49</td>
<td>2.79</td>
<td>3.73</td>
<td>4.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.31</td>
<td>1.71</td>
<td>2.06</td>
<td>2.48</td>
<td>2.78</td>
<td>3.71</td>
<td>4.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.31</td>
<td>1.70</td>
<td>2.05</td>
<td>2.47</td>
<td>2.77</td>
<td>3.69</td>
<td>4.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.31</td>
<td>1.70</td>
<td>2.05</td>
<td>2.47</td>
<td>2.76</td>
<td>3.67</td>
<td>4.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1.31</td>
<td>1.70</td>
<td>2.05</td>
<td>2.46</td>
<td>2.76</td>
<td>3.66</td>
<td>4.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.31</td>
<td>1.70</td>
<td>2.04</td>
<td>2.46</td>
<td>2.75</td>
<td>3.65</td>
<td>4.48</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

\[t = 7.141 \]

\[t_{0.05(2),30} = \pm 2.04 \]

\[t_{0.0001(2),30} = \pm 4.48 \]

\(t \) is further out in the tail than the critical value, so we reject the null hypothesis. Species have shifted to higher elevations. \(P < 0.0001 \)
Inference from a normal population

Chapter 11 Continued
Confidence interval for the variance

\[
\frac{df}{\chi^2_{\frac{\alpha}{2}, df}} s^2 \leq \sigma^2 \leq \frac{df}{\chi^2_{1-\frac{\alpha}{2}, df}} s^2
\]
95% confidence interval for a variance

Example:
Paradise flying snakes

Undulation rates (in Hz)

0.9, 1.4, 1.2, 1.2, 1.3, 2.0, 1.4, 1.6
\[\bar{Y} = 1.375 \]
\[s = 0.324 \]
\[n = 8 \]
95% confidence interval for the variance of flying snake undulation rate

\[
\frac{df \cdot s^2}{\chi^2_{\frac{\alpha}{2}, df}} \leq \sigma^2 \leq \frac{df \cdot s^2}{\chi^2_{1-\frac{\alpha}{2}, df}}
\]

df = n - 1 = 7

s^2 = (0.324)^2 = 0.105
\[x_{\alpha, \frac{2}{2}, df}^2 = x_{0.025, 7}^2 = 16.01 \]

\[x_{1-\alpha, \frac{2}{2}, df}^2 = x_{0.975, 7}^2 = 1.69 \]

Table A

<table>
<thead>
<tr>
<th>df</th>
<th>(x)</th>
<th>0.999</th>
<th>0.995</th>
<th>0.99</th>
<th>0.975</th>
<th>0.95</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6 E-6</td>
<td>3.9E-5</td>
<td>0.00016</td>
<td>0.00098</td>
<td>0.00393</td>
<td>3.84</td>
<td>5.02</td>
<td>6.63</td>
<td>7.88</td>
<td>10.83</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.1</td>
<td>5.99</td>
<td>7.38</td>
<td>9.21</td>
<td>10.6</td>
<td>13.82</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.07</td>
<td>0.11</td>
<td>0.22</td>
<td>0.35</td>
<td>7.81</td>
<td>9.35</td>
<td>11.34</td>
<td>12.84</td>
<td>16.27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.09</td>
<td>0.21</td>
<td>0.3</td>
<td>0.48</td>
<td>0.71</td>
<td>9.49</td>
<td>11.14</td>
<td>13.28</td>
<td>14.86</td>
<td>18.47</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.21</td>
<td>0.41</td>
<td>0.55</td>
<td>0.83</td>
<td>1.15</td>
<td>11.07</td>
<td>12.83</td>
<td>15.09</td>
<td>16.75</td>
<td>20.52</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.38</td>
<td>0.68</td>
<td>0.87</td>
<td>1.24</td>
<td>1.64</td>
<td>12.59</td>
<td>14.45</td>
<td>16.81</td>
<td>18.55</td>
<td>22.46</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.6</td>
<td>0.99</td>
<td>1.24</td>
<td>1.69</td>
<td>2.17</td>
<td>14.07</td>
<td>16.01</td>
<td>18.48</td>
<td>20.28</td>
<td>24.32</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.86</td>
<td>1.34</td>
<td>1.65</td>
<td>2.18</td>
<td>2.73</td>
<td>15.51</td>
<td>17.53</td>
<td>20.09</td>
<td>21.95</td>
<td>26.12</td>
<td></td>
</tr>
</tbody>
</table>
95% confidence interval for the variance of flying snake undulation rate

$$\frac{df}{\chi^2_{\alpha/2, df}} \leq \sigma^2 \leq \frac{df}{\chi^2_{1-\alpha/2, df}}$$

$$\frac{7 \times (0.324)^2}{16.01} \leq \sigma^2 \leq \frac{7 \times (0.324)^2}{1.69}$$

$$0.0459 \leq \sigma^2 \leq 0.435$$
95% confidence interval for the standard deviation of flying snake undulation rate

\[
\sqrt{\frac{df}{\chi_{\alpha/2, df}^2}} \leq \sigma \leq \sqrt{\frac{df}{\chi_{1-\alpha/2, df}^2}}
\]

\[
\sqrt{0.0459} \leq \sigma \leq \sqrt{0.435}
\]

\[
0.21 \leq \sigma \leq 0.66
\]
Comparing means

• Tests with one categorical and one numerical variable

• Goal: to compare the mean of a numerical variable for different groups.
Paired vs. 2 sample comparisons
Paired comparisons allow us to account for a lot of extraneous variation

2-sample methods are sometimes easier to collect data for
Paired designs

- Data from the two groups are paired
- Each member of the pair shares much in common with the other, except for the tested categorical variable
- There is a one-to-one correspondence between the individuals in the two groups
Paired design: Examples

• Before and after treatment

• Upstream and downstream of a power plant

• Identical twins: one with a treatment and one without
Paired comparisons

• We have many pairs

• In each pair, there is one member that has one treatment and another who has another treatment

(“Treatment” can mean “group”)
Paired comparisons

• To compare two groups, we use the mean of the *difference* between the two members of each pair.
Estimating difference in means from paired data

\[\bar{d} = \text{Mean of differences between pairs} \]

\[SE_{\bar{d}} = \frac{s_d}{\sqrt{n}} \]

\[\bar{d} - t_{\alpha(2), df} SE_{\bar{d}} < \mu_d < \bar{d} + t_{\alpha(2), df} SE_{\bar{d}} \]
Example: National No Smoking Day

- Data compares injuries at work on National No Smoking Day (in Britain) to the same day the week before

- Each data point is a year

<table>
<thead>
<tr>
<th>Year</th>
<th>Injuries before No Smoking Day</th>
<th>Injuries on No Smoking Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>516</td>
<td>540</td>
</tr>
<tr>
<td>1988</td>
<td>610</td>
<td>620</td>
</tr>
<tr>
<td>1989</td>
<td>581</td>
<td>599</td>
</tr>
<tr>
<td>1990</td>
<td>586</td>
<td>639</td>
</tr>
<tr>
<td>1991</td>
<td>554</td>
<td>607</td>
</tr>
<tr>
<td>1992</td>
<td>632</td>
<td>603</td>
</tr>
<tr>
<td>1993</td>
<td>479</td>
<td>519</td>
</tr>
<tr>
<td>1994</td>
<td>583</td>
<td>560</td>
</tr>
<tr>
<td>1995</td>
<td>445</td>
<td>515</td>
</tr>
<tr>
<td>1996</td>
<td>522</td>
<td>556</td>
</tr>
</tbody>
</table>
Calculate differences

<table>
<thead>
<tr>
<th>Injuries before No Smoking Day</th>
<th>Injuries on No Smoking Day</th>
<th>Difference (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>516</td>
<td>540</td>
<td>24</td>
</tr>
<tr>
<td>610</td>
<td>620</td>
<td>10</td>
</tr>
<tr>
<td>581</td>
<td>599</td>
<td>18</td>
</tr>
<tr>
<td>586</td>
<td>639</td>
<td>53</td>
</tr>
<tr>
<td>554</td>
<td>607</td>
<td>53</td>
</tr>
<tr>
<td>632</td>
<td>603</td>
<td>-29</td>
</tr>
<tr>
<td>479</td>
<td>519</td>
<td>40</td>
</tr>
<tr>
<td>583</td>
<td>560</td>
<td>-23</td>
</tr>
<tr>
<td>445</td>
<td>515</td>
<td>70</td>
</tr>
<tr>
<td>522</td>
<td>556</td>
<td>34</td>
</tr>
</tbody>
</table>
Estimating difference in means from paired data

\[
\begin{align*}
\bar{d} &= 25 \\
S_d &= 32.3 \\
n &= 10 \\
SE_{\bar{d}} &= \frac{32.3}{\sqrt{10}} = 10.2 \\
t_{\alpha(2),9} &= 2.26 \\
25 - 2.26(10.2) < \mu_d < 25 + 2.26(10.2) \\
1.948 < \mu_d < 48.052
\end{align*}
\]
Paired t test

- Compares the mean of the differences to a value given in the null hypothesis

- For each pair, calculate the difference. The paired t-test is simply a one-sample t-test on the differences.
Hypotheses

H_0: Work related injuries do not change during No Smoking Days. ($\mu_d = 0$)

H_A: Work related injuries change during No Smoking Days. ($\mu_d \neq 0$)
Calculate t using d' s

\[
\bar{d} = 25
\]
\[
s_d^2 = 1043.78
\]
\[
n = 10
\]
\[
t = \frac{25 - 0}{\sqrt{1043.78/10}} = 2.45
\]
CAUTION!

- The number of data points in a paired t test is the number of *pairs*. -- *Not* the number of individuals

- Degrees of freedom = Number of pairs - 1
So we can reject the null hypothesis. Stopping smoking increases job-related accidents in the short term.
Assumptions of paired \(t \) test

- Pairs are chosen at random
- The differences have a normal distribution

It does \textit{not} assume that the individual values are normally distributed, only the differences.
Estimating difference in means from two sample data

\[
\bar{Y}_1 - \bar{Y}_2
\]

Confidence interval: \(\left(\bar{Y}_1 - \bar{Y}_2 \right) \pm SE_{\bar{Y}_1 - \bar{Y}_2} t_{\alpha(2), df} \)
Standard error of difference in means

\[SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \]

Pooled variance:

\[s_p^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2} \]

\[df_1 = n_1 - 1; \quad df_2 = n_2 - 1 \]
Costs of resistance to aphids

2 genotypes of lettuce: *Susceptible* and *Resistant*

Do these genotypes differ in fitness in the absence of aphids?
Both distributions are approximately normal.

<table>
<thead>
<tr>
<th></th>
<th>Susceptible</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean number of buds</td>
<td>720</td>
<td>582</td>
</tr>
<tr>
<td>SD of number of buds</td>
<td>223.6</td>
<td>277.3</td>
</tr>
<tr>
<td>Sample size</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>
Calculating the standard error

\[df_1 = 15 - 1 = 14; \quad df_2 = 16 - 1 = 15 \]

\[s_p^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2} = \frac{14(223.6)^2 + 15(277.3)^2}{14 + 15} = 63909.9 \]

\[SE_{\bar{x}_1 - \bar{x}_2} = \sqrt{s_p^2} = \sqrt{\frac{63909.9}{15} + \frac{63909.9}{16}} = 90.86 \]
Finding t

$$df = df_1 + df_2 = n_1 + n_2 - 2$$

$$= 15 + 16 - 2$$

$$= 29$$

$$t_{0.05(2), 29} = 2.05$$
The 95% confidence interval of the difference in the means

\[
\left(\bar{Y}_1 - \bar{Y}_2 \right) \pm SE_{\bar{Y}_1 - \bar{Y}_2} t_{\alpha(2),df} = (720 - 582) \pm 90.86(2.05)
\]

\[= 138 \pm 186\]
Testing hypotheses about the difference in two means

2-sample t-test

The *two sample* t-test compares the means of a numerical variable between two populations.
Hypotheses

H_0: There is no difference between the number of buds in the susceptible and resistant plants. ($\mu_1 = \mu_2$)

H_A: The resistant and the susceptible plants differ in their mean number of buds. ($\mu_1 \neq \mu_2$)
2-sample t-test

t = \frac{\bar{Y}_1 - \bar{Y}_2}{SE \frac{\bar{y}_1 - \bar{y}_2}{\bar{y}_1 - \bar{y}_2}}
2-sample t-test
More Generally:

\[
t = \frac{(\overline{Y}_1 - \overline{Y}_2) - (\mu_1 - \mu_2)_0}{SE_{\overline{Y}_1 - \overline{Y}_2}}
\]

\[(\mu_1 - \mu_2)_0 = 0\]
Calculating t

\[t = \frac{(\bar{Y}_1 - \bar{Y}_2)}{SE_{\bar{Y}_1 - \bar{Y}_2}} = \frac{(720 - 582)}{90.86} = 1.52 \]
Drawing conclusions...

$t_{0.05(2),29} = 2.05$

t < 2.05, so we cannot reject the null hypothesis.

These data are not sufficient to say that there is a cost of resistance.
Assumptions of two-sample t-tests

- Both samples are random samples.
- Both populations have normal distributions
- The variance of both populations is equal.