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Summary. Populations are regulated intrinsically (self-regu- 
lated) when the animals lower their rate of increase beha- 
viorally or physiologically as a reaction to rising density. 
They are regulated extrinsically if the equilibrium is a me- 
chanical consequence of interaction between the population 
and the organisms providing its food. We suggest that, at 
least for mammalian herbivores, self-regulation is unlikely 
to evolve unless the population's intrinsic rate of increase 
exceeds about 0.45 on a yearly basis. That value corre- 
sponds to a body weight of about 30 kg, the intrinsic rate 
being related inversely to body weight by rm= 1.5 W -~ 
with W in kg. 

The two dynamic strategies, self-regulation and extrinsic 
regulation, should enforce a bimodality of the frequency 
distribution of observed intrinsic rates of increase. This in 
turn might be reflected in a bimodality of body sizes, the 
smaller herbivores constituting the lower mode generally 
showing intrinsic regulation and the larger herbivores of 
the upper mode generally being regulated by extrinsic mech- 
anisms. There is some empirical support for these predic- 
tions but it is by no means clearcut. 

Mechanisms of self-regulation can evolve either by indi- 
vidual or group selection. Individual selection may act in 
two ways. By inhibiting their neighbours with some form 
of interference, individuals may increase their relative fit- 
ness without increasing their reproductive rate. Alternative- 
ly, individual selection may raise the absolute fitness of  
individuals and thereby raise the populations's intrinsic rate 
of increase. The population is destabilized if that process 
continues beyond a certain threshold and the population 
is then at significant risk of extinction at the troughs of 
the consequent oscillations. Selection between such popula- 
tions will favour those carrying the beginnings of a self- 
regulating mechanism, and with that mechanism strength- 
ened and fixed by continuing group selection, individual 
selection is again freed of the dynamic restraints on raising 
further the intrinsic rate of increase. 

Introduction 

Populations do not increase without limit. Mechanisms pro- 
posed to explain this truism can be arranged under two 
broad heads: extrinsic regulation on one hand and intrinsic 
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regulation (or self-regulation) on the other. The equilibrium 
of the first is a consequence of interaction between a popu- 
lation and its resources, predators or diseases. The second 
kind of equilibrium is the consequence of a mechanism built 
into the population and transmitted by its genes. 

Most advocates of one or other of these modes have, 
in their stretch for generality, assumed that the kind of 
population regulation that seems appropriate to the animals 
they study is likely also to characterise those species with 
which they are unfamiliar. We will argue, in contrast, that 
there are two kinds of populations, one for which self-regu- 
lation is a necessity, the other for which self-regulation 
would provide no selective advantage and therefore would 
not evolve. 

Extrinsic regulation. I f  a population has no intrinsic regulat- 
ing mechanism it may be expected to increase until a re- 
source is utilised fully or weather, predators and diseases 
intervene to reduce density. That resource may be inert 
(e.g. the nesting sites of penguins) or growing (e.g. grass 
eaten by buffalo). Either way there comes a point at which 
the resource is saturated as in the first case, or utilised 
at its rate of renewal as in the second. Both lead towards 
an equilibrium, the dynamic adjustment being simple in 
the first case because only the animal population adjusts, 
or complex in the second because both the population and 
the resource hunts for a mutual accommodation. Since the 
level of resources is influenced by factors other than util- 
isation by the animals, and since the density of the animals 
is itself influenced by year-to-year variation in weather, the 
equilibrium has little reality beyond that of a mathematical 
concept. The biological reality lies not in a unique equilibri- 
um point but in the dynamics of  the system comprising 
the animals and their resources being centripetal. 

Nicholson (1933), Lack (1954) and Andrewartha and 
Birch (1954) were the main proponents of extrinsic regula- 
tion, the last pair favouring an additional control enforced 
by the shortage of time over which the environment allows 
rate of increase to remain positive. 

Intrinsic regulation (=self-regulation). This category em- 
braces a plethora of postulated mechanisms with a common 
denominator: regulation is achieved more by things the ani- 
mals do than by direct interaction of the animals with one 
or more resources or predators. Rate of  increase is held 
to a mean of zero before extrinsic regulating mechanisms 
can come fully into play because the animals' physiology 



is upset by crowding, with (Chitty 1967) or without (Chri- 
stian 1971) concomitant genetic changes, or the animals 
limit their rate of increase by dispersal (Krebs et al. 1973, 
Lidicker 1975, Gaines and McClenaghan 1980) or by a 
complex of behavioral conventions (Wynne-Edwards 1962). 

Intrinsic regulation is not an alternative to extrinsic reg- 
ulation but an addition to it that comes into play at popula- 
tion levels below which extrinsic mechanisms would other- 
wise wind rate of increase down to zero. The system thus 
has two modes of regulation which may interact. Environ- 
mental conditions may determine the density at which in- 
trinsic regulation operates or hold the population below 
the level at which intrinsic mechanisms manifest. 

Regulation in mammals 

Ecologists that work on mammals may be classified infor- 
mally into those that work on little mammals and those 
that work on big mammals. Alternatively they can be cate- 
gorised according to whether they consider the populations 
on which they work are regulated intrinsically or extrinsi- 
cally. Combining those classifications gives four categories: 
little-extrinsic, little-intrinsic, big-extrinsic and big-intrinsic. 
These categories are occupied unevenly: the middle two, 
little-intrinsic and big-extrinsic, delimit the positions of the 
overwhelming majority of ecologists who work on mam- 
mals. The other two positions are occupied so sparsely that 
we had to think hard to identify even a few occupants. 
The phenomenon is clear-cut notwithstanding the rare ex- 
ceptions. Ecologists that work on mammals form two 
groups. At one pole are those working on mammals weigh- 
ing less than about 30 kg and who are excited about selfreg- 
ulation. At the other are those working on heavier mam- 
mals and who see little necessity to look beyond extrinsic 
regulation as a model explaining the dynamics of the popu- 
lations they choose to study. 

The two authors of this paper exemplify that dichotomy. 
One of us, working principally on small herbivorous mam- 
mals, has published a good deal of evidence that the dynam- 
ics of these are inexplicable without self-regulation (Krebs 
1964, 1978, 1979). This judgment is reinforced by that of 
other small mammal workers such as Christian (1971, 
1978), Chitty (1960, 1967), Bujalska (1973), Armitage 
(1975), Madison (1980), Tamarin (1980), and Terman 
(1980). 

The other author also works mainly on herbivorous 
mammals but seldom has much to do with animals weighing 
less than 40 kg. He has never found it necessary to invoke 
the hypothesis of selfregulation to explain the dynamics 
of the animals he has worked on, but instead has been 
impressed by the evidence favouring extrinsic regulation 
(Caughley J970, 1976a, 1976b, 1979). The most recent de- 
tailed studies on large mammals (Sinclair 1977, on African 
buffalo; McCullough 1979, on white-tailed deer)tread the 
same path. Fowler et al. (1980) reviewed most of the ecolog- 
ical studies of large mammals and concluded that "re- 
sources, either directly or indirectly, seem to be at the base 
of most or all density dependent relationships observed . . . "  
Peek (1980) suggested that "general agreement prevails that 
ungulate populations are externally controlled by changing 
environmental conditions rather than through intrinsic re- 
gulating mechanisms". 

Three possible explanations suggest themselves for the 
dichotomy in perceived modes of regulation. It may reflect 

simply a difference of ethos between the two groups of 
ecologists. Small-mammal ecologists and large-mammal 
ecologists do not talk to each other very often, and a glance 
at the literature cited in a dozen papers from each of the 
two fields demonstrates clearly that they seldom read each 
other's papers or that they consider them irrelevant to their 
own work. Perhaps one group has found the truth, the 
other is in error, and the truth has not yet permeated 
through the barrier of mutual indifference. 

Secondly, the dichotomy might reflect a difference in 
methodology. Small mammals are more amenable to exper- 
imental manipulation and the experiments on them are of- 
ten designed with care. Most work on large mammals is 
descriptive, and even when experimental manipulation is 
attempted the controls are frequently inappropriate (Ro- 
mesburg 1981). Most workers on large mammals still be- 
lieve that 'before '  is a control on 'af ter ' .  Hence one might 
argue that large mammal research exhibits approximately 
the same level of rigor today as did small mammal work 
in the 1930 s when all small mammal workers thought that 
extrinsic factors controlled numbers. 

The third possibility is that large mammals and small 
mammals really do have different ecologies and that both 
groups of ecologists are right about their animals. We are 
attracted to this explanation. We think there may be a 
break-point in the interval 25-35 kg body weight below 
which regulation tends to be intrinsic and above which it 
tends to be extrinsic. More important, we think we know 
why. 

Theory 

The theory of interaction between populations in two adja- 
cent trophic levels has made numerous advances over the 
last few years, thanks particularly to the efforts of Rosen- 
zweig and MacArthur (1963), May (1975, 1977), Tanner 
(1975), Gilpin (1972, 1975) and Noy-Meir (1975, 1978). 
Some authors envisage the interaction as between prey and 
predator, others as between host and parasite, and still 
others as between plant and herbivore. We will consider 
the last specifically but recognise that our arguments may 
generalise loosely to the higher levels. 

The growth of a population of ungrazed plants may 
be modelled by the logistic equation 

dV/dt=rV(1 - V/K) (1) 

implying that the population grows initially at an exponen- 
tial rate r (the intrinsic rate of increase) but that the rate 
is slowed progressively by root competition and by a con- 
tinuing reduction in photosynthetic rate as some leaves 
shade other leaves. When the population reaches a density 
of  K units of biomass its rate of  increase reaches zero. This 
model of plant growth has moderate empirical backing 
(Noy-Meir 1975; Harper 1977). 

With the introduction of a herbivore Eq. (1) must be 
extended to account for the plant material removed by graz- 
ing. One possibility is the functional response term intro- 
duced by Holling (1965): 

y=cl [v/(v+DO] (2) 
where y is the rate of intake of a single herbivore at a 
density V of vegetation. Here c 1 is the maximum rate of 
intake when the herbivore has more food available to it 
than it can eat. D 1 is inversely proportional to a herbivore's 
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Fig. 2. The critical line of  plants  c o m m o n  to all models  and the 
form of  the critical line of  animals in Models  A, A', B and B' 

grazing efficiency, being the biomass of edible vegetation 
at which the herbivore's rate of intake is half its satiating 
diet. The lower is D a the higher is the herbivore's rate of 
intake when plants are sparse. In a prey-predator model 
D 1 is proportional to the time a predator takes to find 
a prey at a given level of prey density. In a plant-herbivore 
system, where eating time and digesting time are important 
constraints, and where the food items vary greatly in nutri- 
tional value, the interpretation of D a is necessarily less pre- 
cise. Figure 1 indicates the kind of functional response gen- 
erated by Eq. (2). 

Rate of increase of grazed plants can be modelled by 
combining Eq. (1) and (2): 

d V/dt = r V(1 - V/K) -  c a H [V/(V+Da) ] (3) 

where H is the number of herbivores eating the plants. 
Setting d V/dt = 0 and solving for H yields 

H :  (r/cl) ( 1 -  V/K) (V+ Da) (4) 

which gives the equilibrium level of plant biomass, if an 
equilibrium is possible, for any level at which H is held 
constant. It is called the zero-isocline of plants or alterna- 
tively the vegetation's critical line. Figure 2 shows such a 
curve. By Eq. (4) it is necessarily a parabola truncated at 
V= 0 and peaking at V= ( K -  DO~2. 

Tanner's models. Tanner (1975) constructed two basic mod- 
els of a prey-predator system by combining Eq. (3), repre- 
senting the growth of the prey population, with two alterna- 
tive equations for growth of the predator population. His 
Model A bestows self-regulation on the predators in that 
the population's growth rate per head is a function of both 
prey density and predator density. Growth rate per head 
of predator in his Model B was a function only of prey 
density, any tendency towards regulation being thereby ex- 
trinsic. By replacing prey with plants and predators with 
herbivores, and translating his notation to ours, we obtain 
the growth rate of herbivores by Model A as 

dH/dt=sH(1 - H  J/V) (5) 

where s is the herbivore's intrinsic rate of increase and J 
is the biomass density of plants sufficient to support one 
herbivore when the system is at equilibrium. The herbi- 
vore's critical line, defining the equilibrium to which herbi- 
vore numbers would converge if plant biomass were held 
constant, is solved as H =  V/J, a line sloping out from the 
origin as in Fig. 2. 

The stability properties of the model here presented as 
Eq. (3) and (5) have been explored by May (1975) and Tan- 
ner (1975). I f  the herbivore's critical line cuts that of the 
plants to the right of the hump in their critical line, the 
equilibrium between plants and herbivores is stable. If  the 
critical lines intersect to the left of the hump (as in Model A, 
Fig. 2) the equilibrium is stable only when r (the intrinsic 
rate of increase of the plants) is less than s (the intrinsic 
rate of increase of the herbivores). Otherwise a limit cycle 
is generated around the intersection of the two critical lines. 

Tanner's (1975) Model B links Eq. (3) for plant growth 
with one for the growth of a herbivore lacking a self-regu- 
lating mechanism. The details of its construction do not 
concern us because its outcome is consistent with that of 
a whole family of models in which the lack of self-regulation 
of the herbivore is proclaimed by the verticality of its critical 
line (Model B, Fig. 2). We note however that the architec- 
ture of Tanner's Model B differs in style from that of 
Model A. 

The stability properties of Models A and B have fea- 
tures in common and also important differences. For both, 
an equilibrium is stable if the critical lines intercept to the 
right of the hump, and that outcome is independent of 
the r/s ratio. No point equilibrium is possible when the 
critical lines of the Model B cross to the left of the hump, 
that outcome again being independent of the r/s ratio. 

Tanner (1975) argued from these findings that a system 
comprising eaters and eaten will be stable only when the 
eaten are strongly self-regulated (i.e. K is small and there- 
fore the hump in the zero-isocline of the eaten is positioned 
well to the left), or when the intrinsic rate of increase of 
the eaters is greater than that of the eaten (i.e. r/s< 1). He 
provided an analysis of the demography of several prey 



10 

_=o 

- a  

Y= - a + c2 ~-D- 2 

s= c2--a 

g e t a t l o n  (V) 

Fig. 3. Numerical response of Model A': rate of increase of the 
animals against biomass of edible plants 

predator pairs to show that these predictions were generally 
confirmed by nature. 

An alternative model. We were uneasy about comparing 
the effects of intrinsic and extrinsic regulation simply by 
contrasting the behaviors of Tanner's two models. They 
differ too much in other respects to provide a clean compar- 
ison. Consequently we devised an alternative pair that dif- 
fered only in that one contained a term for self-regulation, 
the other being capable only of extrinsic regulation. We 
adopted Tanner's equation for the growth of the eaten, 
given here as Eq. (3), and substituted for the growth of 
the eaters the equation 

dH/dt= g [ - a +  c2V/(V + D z ) - b  H] (6) 

in which b is an explicit constant for the strength of the 
eaters' self-regulation. Setting b = 0 dismisses self-regulation 
and converts the model into one where any tendency to- 
wards an equilibrium must necessarily be blamed on ex- 
trinsic mechanisms. Of the other constants, a is the rate 
at which the eaters decline when they run out of food, 
c 2 is the maximum rate at which this decline is alleviated 
when food is abundant (hence eg-a=s=intrinsic rate of 
increase of the eaters), and the term V/(V+D2) erodes this 
maximum rate as V (the food) declines. Figure 3 diagrams 
that numerical response. 

Our models are cross-referenced with Tanner's by label- 
ling as Model A' our version in which the eaters are self- 
regulated (Eq. 3 and 6, the second with b > 0) and the ver- 
sion in which they are not as Model B' (Eq. 3 and 6, the 
second with b = 0). The critical line of the eaten common 
to all models (A and A', B and B') is that given in Eq. (4). 
The critical line of the eaters in Model A' is 

v= D2 (a + b ~ / ( s -  b 14) (7) 
and in Model B' simply 

V= D z a/s (8) 
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Fig. 4. Critical line of plants and of herbivores in Model A' (top) 
in which the herbivore is self-regulated, and for Model B' (bottom) 
in which it is not. Each intersection is labelled according to whether 
the outcome is an equilibrium (E) or cycles (C). In all examples 
the intrinsic rate of increase of the herbivore is greater than that 
of the plants 

Both critical lines leave the x-axis at V=Dza/s, that of  
Eq. (7) curving up to the right (Fig. 4A) and that for Eq. (8) 
being upright (Fig. 4 B). 

Lacking the mathematical expertise to deduce the stabil- 
ity properties of these two models by analysis, we investi- 
gated them by electronic brute force guided by a Runge- 
Kutta algorithm. After enough runs to convince us that 
our conclusions were independent of the values of our fake 
data we deduced that the stability properties of our model 
lacking self-regulation (Model B') were the same as Tan- 
ner's analogous Model B. An intersection of critical lines 
to the right of the hump led to a stable point equilibrium. 
An intersection to the left produced limit cycles (Figs. 4B 
and 5 B). The r/s ratio had no bearing on that result. 

In contrast, the two models ascribing self-regulation to 
the eaters (Tanner's Model A, our Model A') produced in- 
congruent outcomes. Remember that when the critical lines 
intersected left of the hump, Model A was stable only when 
r < s. An intersection to the right provided stability irrespec- 
tive of the r/s ratio. Our analogous Model A' conformed 
with Model A for intersections right of the hump, but not 
for those to the left. By Model A', an intersection left may 
presage stability if self-regulation is strong enough (b is 
high) or limit cycles if self-regulation is weak (b is low); 
but those outcomes were not dependent on the r/s ratio 
(see Figs. 4A and 5A). 

Conclusions from the models. By our Model B" a population 
of herbivores without intrinsic regulation will reach a stable 
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point equilibrium only when 

D 2 a/s > (K--DI)/2. (9) 

Hence the stability of the plant-herbivore system of Mod- 
el B' is maximised when the plants compete vigorously 
amongst themselves for resources (K is low), and when the 
herbivore is an inefficient grazer (D 1 is high) and an acci- 
dent-prone (a is high), indifferent parent (D 2 is high, s is 
low). The most stable plant-herbivore system is thus one 
in which the plants give each other a bad time but are 
troubled little by a bumbling herbivore that has somehow 
escaped the discipline of natural selection. Such a prototype 
system is described by Milne (1928). Of those numerous 
parameters we select s (the intrinsic rate of increase of the 
herbivore) as perhaps the most representative, and suggest 
that selection to increase s will lead to instability unless 
the herbivores regulate themselves. 

Tanner (1975) used the outcome of his Model A to 
argue that a population with an intrinsic regulating mecha- 
nism must, to be stable, have an intrinsic rate of increase 
higher than that of the organisms it eats if the two critical 
lines intercept to the left of the hump. The contrary out- 
come of our Model A' indicates that his conclusion reflects 
not generality but the details of his model. Nonetheless, 
there is a, generalisation that embraces Models A, A', B 
and B' : if s is high the system is unlikely to be stable unless 
the eaters have evolved a self-regulatory mechanism. That 
prediction is made also by every other model that we know 
of in this general area. For example, the most contracted 
of them, the logistic, is adamant that the higher is the intrin- 
sic rate of increase the greater must be the force of competi- 
tion or self-regulation (i.e. the lower must be K) to enforce 
stability (May 1974). We suspect that the generalisation 
is robust. 
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F i g .  6. Regression of intrinsic rate of increase against body weight 

Although we have questioned Tanner's conclusion that 
the r/s ratio is an important determinant of point stability, 
on the grounds that it is special to his model, we cannot 
reject it solely on these grounds because his model may 
turn out ultimately to be right. Tanner himself thought 
it was probably a reasonable approximation because its 
prediction that stability results from r/s < 1, or from K being 
small, was confirmed by the observed dynamics of eight 
prey-predator pairs. We have reinvestigated these and con- 
clude that his data are not adequate to determine the r/s 
ratios with sufficient precision and that independent data 
suggest that some of his r/s ratios reported as less than 
1 are either greater than 1 or very close to 1 (see Appen- 
dix I). Thus there is little empirical support for his r/s hy- 
pothesis. 

Big versus little 

Initially we categorised alternative regulatory strategies in 
terms of the size of the animal, but theory suggests that 
the intrinsic rate of increase is the determining variable, 
or more specifically the a/s ratio with modifying inputs 
from D1, D2, b and K. Size as such is obviously only an 
index of those parameters and we choose s to examine the 
nature of that correlation. The literature provides a trend 
for generation length against body length (Bonnet 1965), 
for intrinsic rate of  increase against generation length 
(Smith 1954, Heron 1972) and for intrinsic rate of increase 
against body weight (Fenchel 1974). We have constructed 
a relationship between intrinsic rate of increase and body 
weight for herbivorous mammals only (Fig. 6), using the 
rates from Table 9.2 of Caughley (1977), references to the 
sources of the data being in that table. Weights were calcu- 
lated as the average of mean adult weight of males and 
mean adult weight of females as given by Southern (1964) 
or Banfield (1974). Two additional rates are included. The 
intrinsic rate of increase of African elephants (Loxodonta 
africana) was taken as 0.06 on a yearly basis (Hall-Martin 
1980), and their average weight calculated from Laws et al. 
(1975). Intrinsic rate and body weight of the multimammate 
rat (Rattus natalensis) is from Oliff (1953). Figure 6 gives 
data from nine mammalian species ranging in weight from 
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30 g (short-tailed vole) to 3,700 kg (elephant). Man was 
judged an outlier and excluded from the analysis which 
yielded 

s=  1.5 W -~ (weight in kg), or 

S = 18 W -0"36 (weight in g) (10) 

Intrinsic rate of increase s (=  rm) has been measured on 
a yearly basis. The regression accounts for 92% of variation 
in s. Thus the smaller the mammal the greater its intrinsic 
rate of increase and, we postulate, the less stable its popula- 
tion dynamics unless it is self-regulated. 

Equation (9) suggests that maximum rate of decrease 
a of the eaters may also have an important bearing on 
stability if the eaters are not self-regulated. Since a is a 
rate of decline when food runs out it is largely a function 
of the rate of mobilisation of stored reserves, mainly fat 
and protein. Hence a is likely to be indexed closely by meta- 
bolic rate per unit of body weight. Kleiber (1961) gives 
the standard metabolic rate of eutherians as 

SMR (cal/hr)-- 16.4 W ~ (g); 

Dawson and Hulbert (1970) give 

SMR = 12.3 W ~ 

for marsupials. The exponents are similar so we will argue 
only from the 0.75 of eutherians. Dividing Kleiber's equa- 
tion by W gives 

cal/hr/g = 16.4 W -  o.2s. (11) 

Hence the larger the animal the lower is its metabolic rate 
per unit of mass, and we would argue that the same rela- 
tionship holds between maximum rate of decrease and body 
weight. Taken at face value, large a promotes stability, and 
since little animals appear to have a larger a than big ani- 
mals their populations should be more stable, other things 
being equal. 

However, by Eq. (9) it is the a/s ratio that promotes 
stability, not so much a or s in isolation. That ratio's trend 
on weight can be examined roughly by combining Eq. (10) 
and (11) to give 

a A W 0.25 

s--B W-0.36 

where A and B are proportionality constants of no interest 
in this context. By cancelling, 

a/s = (A/B) W ~ 11 (12) 

the positive exponent of 0.11 suggesting that the a/s ratio 
rises with increasing body weight. If  maximum rate of de- 
crease is proportional to metabolic rate per unit of body 
weight as we assume, and if our estimate of the exponent 
of intrinsic rate of increase regressed on weight is a reason- 
able approximation, the implied trend of a/s suggests that 
the larger the animal the greater its potential for stability 
without self-regulation. 

We are not entirely comfortable with those calculated 
exponents and therefore do not wish to push this argument 
too far. Our exponent of -0 .36  relating intrinsic rate to 
body weight of mammals is at variance with Fenchel's 
(1974) exponent of --0.275 calculated from numerous uni- 
cellular organisms and heterotherms. He showed that in- 
trinsic rates and body weights of five mammals had a simi- 
lar trend, and if he is right the a/s ratio for mammals will 

have little or no trend on body weight. However, Fenchel's 
trend for mammals is determined largely by one point. His 
other four points, representing the intrinsic rates and 
weights of small mammals, cluster at one end of the regres- 
sion, the remaining point representing the cow being at 
the other. The four small mammals are the same species 
as those in Fig. 6, but the estimate of r m we use for the 
Norway rat (Leslie et al. 1952) is more dependable than 
Fenchel's value which is Leslie's (1945) first approximation 
from scant data provided by King (1939). Fenchel's rm= 
0.365 annually for the cow, critical to the slope of his regres- 
sion, is taken from a diagram presented by Smith (1954). 
It was not measured but rather was 'based on general infor- 
mation' (Smith 1954: 282). Consequently we put marginally 
more faith in our exponent than in Fenchel's. 

D i s c u s s i o n  

The speculative generalisation that we introduced pre- 
viously - that little animals have intrinsic regulating mecha- 
nisms usually not possessed by big animals is here elevated 
temporarily to the level of an axiom, thereby allowing us 
to explore its ramifications as if its truth were not in doubt. 
We ask how such a dichotomy might have arisen and how 
it might be enforced, assuming for purposes of argument 
that extrinsic regulation is the evolutionarily primitive con- 
dition and that selective pressure is required for self-regula- 
tion to evolve. 

To start with, we consider the simple case of plants 
eaten by a herbivore lacking predators, and focus on the 
intrinsic rate of increase of the herbivore. Ungrazed plants 
are almost invariably limited in potential density, we think 
by extrinsic mechanisms, and there are obvious mechanical 
constraints limiting how fast a herbivore can eat even when 
food is super-abundant. Given those two conditions, a limit 
on the potential density of plants and a saturating func- 
tional response for the herbivore, the plants' critical line 
must necessarily have a hump. Its position is a function 
of the biomass of the vegetation when ungrazed and the 
ability of the herbivore to obtain food when food is scarce. 
Models A, A', B and B' are representatives of a suite of 
models with the attribute that an intersection of plant and 
herbivore critical lines to the right of the hump promotes 
stability and an intersection to its left promotes cydicity 
unless the herbivore is strongly self-regulated. Physiological 
and demographic rates are scaled to body size in mammals 
(Western 1979, Damuth 1981, Lindstedt and Calder 1981) 
in a way likely to separate progressively with increasing 
body size the hump in the critical line of vegetation from 
the critical line of the herbivores. There are few circum- 
stances in which the critical line of a large herbivore might 
be expected to lie left of the hump. Providing that the envi- 
ronment did not fluctuate too wildly the animals and their 
food supply would tend towards an equilibrium determined 
only by extrinsic forces. There would be no pressure of 
selection favouring the evolution of self-regulation. 

A smaller mammal with a higher intrinsic rate of in- 
crease would, other things being equal, have a critical line 
intersecting that of the vegetation closer to the hump. Indi- 
vidual selection would favour a rise in intrinsic rate s, a 
rise in grazing efficiency (i.e. a lowering of D1) and a rise 
in demographic efficiency (i.e. a lowering of D2) because 
each of these modifications improves an individual's fitness. 
Equation (9) indicates that each of these trends expected 
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as a necessary consequence of individual selection will force 
the herbivore's critical line farther to the left towards the 
region where limit cycles are precipitated. The further left 
the intersection the larger will be the limit cycles and the 
greater will be the probability of extinction. 

A critical assumption of this model is that cyclic popula- 
tions under extrinsic controls are at high risk of extinction, 
and that the only cyclic populations which have persisted 
in evolutionary time are those which are self-regulated. 
There is some evidence for this assumption in small mam- 
mals (c.f. Krebs 1978) but some exceptions exist as well. 
The snowshoe hare cycle, for example, is believed to be 
driven by food shortage and predation (Keith and Wind- 
berg 1978). The larch budmoth cycle may be driven by 
epidemic disease (Anderson and May 1980). 

Selection on species which stray into this region can 
act in two different ways. First, individual selection may 
operate to select for mechanisms that produce self-regula- 
tion. Individuals will be favoured if they can reduce the 
fitness of their neighbours relative to themselves (Rothstein 
1979). A variety of behavioural and physiological mecha- 
nisms are available for accomplishing this interference, and 
the collective impact could be that the population is re- 
stricted somewhat in size so that extrinsic limitation 
through the food supply no longer obtains (Healey 1967, 
Krebs 1978). 

Alternatively, group selection may operate to produce 
self-regulation. Group selection will favour those popula- 
tions whose average individual fitness (as measured by abili- 
ty to increase and ability to utilise resources) lags behind 
that of the majority, and it will favour those populations 
that carry latent the beginnings of a self-regulatory mecha- 
nism. Individual selection raising the intrinsic rate of in- 
crease of the animals, and group selection acting against 
the development of instability, are pushing in opposite di- 
rections, the condition identified by Gilpin (1975) as that 
in which group selection is most likely to overwhelm the 
effects of selection acting on individuals. In these circum- 
stances group selection would be helped by the force of 
individual selection because the further individual fitness 
is raised the higher the proportion of populations culled 
by group selection. However, when group selection has 
fixed a self-regulating mechanism into a population, the 
restraints against a further increase of  individual fitness 
are relaxed and the base of the herbivore's critical line may 
then move farther to the left as intrinsic rate of increase 
is again raised by individual selection. 

Although we have postulated two mechanisms whereby 
self-regulation might evolve from simple extrinsic regula- 
tion we do not argue that the trend of evolution was neces- 
sarily always in that direction. The opposite process re- 
quires no additional element beyond reversal of selection 
pressures. I f  for any reason selection acted to increase body 
size, intrinsic rate of increase would have been reduced in 
parallel as would have been the necessity for self-regulation. 
The energetic cost of that mechanism would at first over- 
haul and then exceed its selective benefit. Self-regulation 
would then be selected against. That is what might have 
happened with mammalian lines that started small, as did 
most, and evolved into larger forms during the Tertiary. 
The early mammals might well have inherited self-regulato- 
ry mechanisms from reptilian ancestors. 

Our verbal model predicts that a population should ei- 
ther have its critical line a safe distance to the right of 
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Fig. 7. Distribution of body weights for herbivorous and omnivo- 
rous mammals, excluding primates. Data are pooled from Europe, 
Canada, East Africa and Thailand, the sources given in the text. 
The dashed line represents diagramatically the frequencies of large 
mammals before the late Quaternary die-offs occurred 

the hump, the verticality of that line indicating a lack of 
self-regulation, or it should be anchored well to the left 
of the hump but curved to the right by self-regulation. 

That postulated polarity might be reflected in a weak 
bimodality in the intrinsic rates of  increase of mammalian 
herbivores, weak because the position of the hump in the 
vegetation's zero-isocline differs between grazing systems. 
Since the two are negatively correlated, a bimodality in 
the intrinsic rates should show up also as a somewhat 
weaker bimodality in body size. 

Bourliere (1975) suggested that the body weights of ex- 
tant mammals are bimodal. He commented that most clus- 
ter between a few grams and a few kg and between a few 
tens and a few hundreds of  kg. Frequency distributions 
of mammalian body weights presented and discussed in Ap- 
pendix II indicate that the postulated bimodality is not par- 
ticularly convincing. The distribution of weights of herbi- 
vores and omnivores (primates excluded) exhibit at least 
three troughs. The one that interests us shows up in Fig. 7 
(Appendix II) as between 5.5 and 10 kg but its position 
is largely an artefact of logging the weights. Dissection of 
the 5-50 kg body weight into 5 kg intervals indicates that 
the trough lies at about 25-35 kg. Owen-Smith (1977) pro- 
vided a list of ungulates'  reportedly exhibiting territoriality' 
and a second of 'ungulate  species reportedly nonterritorial'. 
Only the first includes species below 30 kg. While we find 
that interesting we are reluctant to push it further because 
the data on ungulate territoriality are simply not yet com- 
prehensive enough to determine in which species territoria- 
lity regulates density and in which it serves only to facilitate 
mating. 

Nonetheless, we select the body weight of 30 kg (corre- 
sponding to an intrinsic rate of increase of about 0.45) to 
provide a testable hypothesis : that the vast majority of her- 
bivorous mammals lighter than 30 kg are self-regulated 
whereas the vast majority of heavier herbivores are regu- 
lated only by extrinsic mechanisms. One quick way of falsi- 
fying it is by way of fencing experiments. A fence thrown 
around a population regulated intrinsically by spacing 
behaviour will disrupt that population's dynamics by hold- 
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Fig. 8. Distribution of body weights of carnivorous and insectivor- 
ous mammals, excluding bats. Regions and sources are as for Fig. 7 

ing within it those individuals that would otherwise dis- 
perse. The 'fence effect'  can be spectacular for small herbi- 
vores (Krebs 1971). I f  our hypothesis is true a fence should 
not  perturb the dynamics of  populations o f  large herbivores 
unless it cuts a migration route. We know of  only one study 
in which a fenced population of  large herbivores was com- 
pared with appropriate unfenced controls. Rate of  increase 
of  two species of  kangaroo within a fenced area of  440 km 2 
did not  differ significantly from that o f  kangaroos outside 
the fence (Bayliss 1980, and summarised by Caughley in 
press). Similar experiments on other species of  large herbi- 
vores are needed to test the generality of  that negative re- 
sult. 

Figure 8 of  Appendix II is a frequency distribution of  
weights of  terrestrial insectivores and carnivores. It differs 
markedly from that of  herbivores and omnivores (Fig. 7). 
That  may or may not  be pointing to something important  
but it provides a caution against assuming that plant-herbi- 
vore systems and prey-predator systems are dynamically 
interchangeable. The first is a two-layered system in the 
absence of  predation. The second is always a three-layered 
system, and its behavior need not  conform to that of  the 
plant-herbivore system with its two isoclines (May 1976). 
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Appendix I 

On r/s ratios 

Tanner 's  (1975) prediction that stability results from r/s < 1 
or from K being small was confirmed by the observed de- 
mography of  eight prey-predator pairs which he reported 
in detail. May 's  (1976) Table 4.2 summarises the data and 
we have used this as the basis of  our expanded Table 1. 

Tanner 's reasoning goes like this: if the prey is strongly 
self-regulated (i.e. K is small) the hump in the prey's critical 
line will lie well to the left. Therefore, other things being 
equal, the chances are good that the predator 's  critical line 
will fall to the right of  it. By Models A and B, and irrespec- 
tive of  the r/s ratio, an intersection to the right o f  the hump 
imposes equilibrium whether or not  the predator is self- 
regulated. Hence the predicted outcome of  the first two 
prey-predator pairs of  Table 1. The prey of  the remaining 
six pairs are not considered strongly self-regulated and so 
the chances are that the predator 's  critical line cuts to the 
left of  the hump which itself will be well to the right. 
Model A predicts that in these circumstances stability is 
possibly only when r / s<l ,  and so it is for the five pairs 
that observation confirms are stable. The snowshoe hare- 
lynx pair has an r/s ratio o f  about unity. That  system should 
therefore be cylic, and it is. 

Because the first two prey-predator systems are pre- 
dicted as stable irrespective of  the r/s ratio the critical test 
of  the r/s hypothesis rests only with the last six cases. We 
are' not  convinced that Tanner 's  empirical estimates of  r/s 
for these six pairs are accurate enough to differentiate an 
r/s< 1 from an r/s> 1, but before we give our reasons we 
must contrast Tanner 's  method of  estimating r and s with 
ours. Tanner extracted from the literature the highest ob- 
served rates of  fertility and survival he could find for each 
species, and married them by the basic demographic equa- 
tion (Z Ixmxe-rX= 1) to estimate r. This gave an observed 
fertility - observed survival rate of  increase. He then com- 
bined observed survival with maximum fertility to give a 
second estimate, " ' m a x i m u m '  meaning that which I judge 
to be the highest likely in an optimal environment"  (Tanner 
1975 : 861). Then observed fertility was combined with max- 
imum survival to give a third estimate for rate of  increase, 
and maximum survival combined with maximum fertility 
gave a fourth. Note  that, as Tanner was at pains to point 
out, the maximum values are guesses, their only empirical 

Table 1. Summary of Tanner's (1975) analysis of eight prey-predator systems 

Prey-predator Intrinsic rates ~ r/s 

Prey r Predator s 

Is prey strongly 
self-regulated? 
(K is small?) 

Outcomes 

predicted observed 

sparrow-sparrow hawk t .3 0.8 1.6 yes 
muskrat-mink 1.4 0.5 2.8 yes 
snowshoe hare-lynx 1.0 t .0 1.0 no 
mule deer-mountain lion 0.2 0.5 0.4 no 
white-tailed deer-wolf 0.3 0.5 0.6 no 
moose-wolf 0.2 0.5 0.4 no 
caribou-wolf 0.2 0.5 0.4 no 
dall sheep-wolf 0.1 0.5 0.2 no 

equilibrium 
equilibrium 
cycles 
equilibrium~ 
equilibrium 
equilibrium 
equilibrium 
equilibrium 

equilibrium 
equilibrium 
cycles 
equilibrium 
equilibrium 
equilibrium 
equilibrium 
equilibrium 

" Taken from Tanner's "maximum survival and maximum fertility" column 
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component being supplied by the observed value setting 
a lower limit. Hence the r/s values in May's (1976) Table 4.2 
and in our Table 1 are each two guesses divided by two 
guesses. Tanner himself was more restrained when compar- 
ing r with s. He used all four estimates for the intrinsic 
rate of increase of a species. "The estimated rates for the 
wolf exceed those of all its prey species studied here with 
the single exception that the lowest value for the wolf is 
less than the highest value for the white-tailed deer" (Tan- 
ner 1975: 861). On that basis he reached the reasonable 
conclusion that r < s for those prey-predator pairs. 

Our approach was to search for rates of increase in 
the literature rather than attempting to estimate them indi- 
rectly from reported age-specific fertility and survival rates. 
The highest rate of increase we could find for wolves was 
s=  0.28, calculated from the increase on Isle Royale from 
31 in 1974 to 41 in 1975 (Peterson and Stephens 1980). 
It is higher than Tanner's observed survival - observed fer- 
tility rate, about the same as his observed survival - maxi- 
mum fertility rate, and considerably lower than those from 
the other two combinations. We think his maximum-maxi- 
mum rate may be a severe overestimate and, by analogy, 
so also might be that for mountain lion. 

In contrast, his maximum-maximum rates of r for the 
five prey species paired with these predators look rather 
too low. That for white-tailed deer certainly is. Six deer 
were introduced to the George Reserve in 1928, and a drive 
count six breeding seasons later logged 160 (O'Roke and 
Hammerstrom 1948): r = 0.55. McCullough (1979) derived 
a correction factor for drive counts which suggests that 
the 160 is too low by at least 20: r=0.57. Tanner's maxi- 
mum-maximum estimate for this species was r=0.30. 
McCullough's (1982) estimates of rate of increase of this 
herd are in error. They must be multiplied by 2.303, the 
factor converting base-ten logarithms to natural logarithms. 

We can find no useful rates of increase for mule deer 
but agree with Tanner that r for this species is probably 
lower than that of white-tailed deer. We would guess at 
around r = 0.40, against Tanner's maximum-maximum esti- 
mate of 0.24. 

We have been unable to locate a rate of increase of 
caribou from low density but note that the closely-related 
reindeer increased at about r=0.3 on St. Matthew Island 
between 1944 and 1957 (Klein 1968; Caughley 1976 a). The 
Barff reindeer herd on South Georgia increased from low 
density at about r : 0 . 3 8  between 1912 and 1916, and at 
about 0.32 between 1916 and 1922 (Leader-Williams 1978). 
Tanner's maximum-maximum estimate for caribou was r = 
0.20. 

Nor do we know of any useful direct estimate for dall 
sheep but we are certain, by analogy with rates of increase 
of species of that size, that Tanner's maximum-maximum 
rate of r = 0.11 is impossibly low. Domestic sheep increase 
at about double that rate from an economic carrying-capac- 
ity level (Caughley 1967). Their intrinsic rate of increase 
should therefore be something like 0.35-0.40. That for daU 
sheep is probably lower, but we would be surprised if it 
were much below 0.3 

Data on the rate at which moose erupt are of dubious 
accuracy. Mech (1966) quotes P.F. Hickie's unpublished 
report of a population of around 300 on Isle Royale in 
1920. Hickie (1936) reckoned the population in 1928 as 
between 1,000 and 5,000. The lower estimate returns r=  
0.17 over the seven years, the higher r=0.40. We do not 

challenge Tanner's maximum-maximum estimate of r = 0.20 
on the basis of these data. 

In summary, Tanner's conclusion that r/s ratios of five 
prey-predator pairs were less than 1 is not confirmed by 
this reappraisal. We suspect r/s > 1 for white-tailed deer and 
wolf, and probably also for mule deer and mountain lion. 
The ratio is probably close to 1 for caribou and wolf and 
for dall sheep and wolf; and Tanner is probably correct 
that r < s for moose and wolf. If, as Tanner suspected, the 
predator's critical was left of the hump in these systems, 
his model predicts from our r/s estimates more cyclicity 
within this suite of species than has been observed. Alterna- 
tively the intersection of critical lines may yet be to the 
fight of the hump, in which case the r/s ratios are without 
relevance. But either way we do not accept Tanner's esti- 
mates as evidence of the importance of the r/s ratio to 
the stability of prey-predator pairs. 

It is unfortunate that much of our commentary on Tan- 
ner's (1975) paper has been restricted to those areas where 
his conclusions clashed with ours. We wish to remedy this 
by affirming that his paper is one of the most stimulating 
we have read in the last ten years. 

Appendix II 

The distribution of mammalian body weights 

Figure 7 is a distribution of body weights of herbivorous 
and omnivorous mammals other than primates. It combines 
species from Britain and Europe (data from Van den Brink 
1967 and Burton 1976), Canada (Banfield 1974), East 
Africa (Kingdon 1971, 1974, 1978, 1979, 1982; Dorst and 
Dandelot 1970) and Thailand (Lekagul and McNeely 1977 
with some weights from Harrison 1966 and Medway 1969). 
The body weight of a species is taken as the average of 
male and female adult weight. 

The dashed line on the right side of the histogram is 
a conservative reconstruction of what the frequencies of 
the heavier species would have been before selective extinc- 
tions in the late Quaternary. Martin (1966) suggests that 
70% of genera heavier than 50 kg died out in North Amer- 
ica over that period, as did 40% in Africa. The European 
fauna was similarly affected. 

Distinct troughs in body-weight frequencies occur at 
0.055-0.1, 0.55-1 and 5.5-10 kg. Table 2 gives a breakdown 
of the frequencies by Order and region. The first trough 
is entirely within the Rodentia. It shows up well in the 
Holarctic and Thailand rodents but does not appear in the 
African data. We have no explanation for it. 

The second trough, at 0.55-i kg, is marked in the Cana- 
dian rodents but unconvincing for the other regions. It is 
generated in the pooled data of Fig. 7 mainly by a suite 
of lagomorphs peaking in frequency in the following weight 
class. 

The third trough, 5.5-10 kg, although visually no more 
striking than the others, may be of more significance in 
the context of regulatory strategies. Its position in Fig. 7 
is largely an artefact of the log scale of body weights. When 
the range 5-50 kg is dissected into constant 5 kg intervals 
the trough lies at 25-35 kg. Essentially it divides rodents 
and small ungulates from large ungulates. 

Figure 8 gives for comparison a frequency distribution 
of the weights of carnivorous and insectivorous mammals, 
bats excluded, from the same four regions. The histogram 
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Table 2. Frequencies of body weights for herbivorous and omnivorous mammals (primates excluded) in (A) Britain and Europe, (B) Can- 
ada, (C) East Africa and (D) Thailand. See text for sources 

Weight Lagomorpha Rodentia Perissodactyla Artiodactyla Hyracoidea Proboscidia Total a 
(kg) 

A B C D A B C D A B C D A B C D A B C D A B C D 

0.001-0.0055 0 0 1 0 1 
0.0055-0.01 2 1 3 0 6 
0.01-0.055 22 24 27 14 87 
0.055-0.1 3 5 23 9 40 
0.1~.55 0 1 0 0 15 12 12 25 65 
0.55-1 0 1 0 0 0 3 6 5 15 
1-5.5 2 5 5 0 0 7 5 5 0 0 4 2 0 0 3 0 38 
5.5-10 2 2 1 2 0 0 4 0 11 
10-55 1 1 2 0 4 1 21 3 33 
55-100 2 4 11 1 18 
100-550 0 0 2 1 5 5 16 4 33 
550-1,000 0 0 0 1 2 0 4 4 11 
1,000-5,500 0 0 2 1 0 0 1 0 0 0 1 1 6 

a A few species common to two or more regions contribute more than once to these totals 

is very different from that of herbivores and omnivores 
depicted in Fig. 7. 
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