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Many wildlife species are managed to conserve   
 them, to sustainably harvest them, or to control them, 

such as reducing their undesirable impacts (Caughley 1980). 
Ideally, management should be both effective in achieving its 
aims and efficient in its use of scarce resources and should 
also be responsive to evidence of its impacts through moni-
toring. Therefore, management can be a learning process 
termed adaptive management (Walters and Holling 1990, 
Westgate et al. 2013).

In conservation, the aim is to halt and then reverse 
declines in the abundance and distribution of threatened 
species (Caughley 1994, Green 2002, Akcakaya et al. 2018). 
Conservation programs need a clear, quantifiable, aim 
(Tear et  al. 2005) so their effectiveness can be assessed. 
Vague aims such as “to improve the trajectories of priority 
threatened species by 2031” (Australian government 2021) 
or “the risk of extinction is reduced for all priority spe-
cies” (Australian government 2022) could be interpreted as 
implying an increase in abundance or a slower rate of decline 
of abundance and therefore provide only weak guidance for 
managers trying to achieve positive conservation outcomes. 
Assessment usually requires monitoring (Lindenmayer and 
Gibbons 2012, Legge et al. 2018) to provide information on 
the status of the population being managed and whether 
the management aim is achieved. The costs of management 
options should also be monitored and evaluated (Reddiex 

and Forsyth 2006) and should be used to estimate effort–
outcome relationships (Hone et  al. 2017, 2018) and the 
return on investment (Murdoch et al. 2007).

Monitoring a species may be sufficient to determine 
its status according to the conventional categories of the 
International Union for the Conservation of Nature (IUCN 
2012)—such as whether it is Threatened, Endangered, or 
Critically Endangered. Monitoring is needed to assess trends 
(figure  1) which should be inferred from formal analyses. 
For example, woodland birds in Australia have often been 
reported to be declining in abundance, but a detailed review 
of studies showed only 14 out of 44 of these studies incor-
porated formal statistical analysis of trends (Rayner et  al. 
2014). Similarly, there have been limited evaluations of the 
effects of vertebrate pest control on the pests or their impacts 
(Reddiex and Forsyth 2006, Reddiex et al. 2006) and of many 
conservation efforts (Williams et  al. 2020). On a positive 
note, there are many reported examples of positive trends 
following conservation efforts (Garnett et  al. 2018), and 
these are being recognized in the Green Status of Species 
(Akcakaya et al. 2018, Grace et al. 2021). Trends use statisti-
cal inference to provide evidence of change in abundance 
(figure 1) but do not identify the causes (time is not a cause; 
Harre 1972).

We recognize two broad classes of graphical represen-
tation of management outcomes, conceptual graphs and 
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empirical graphs (figure 1). Conceptual graphs have no data 
and detail hypothetical trends or relationships of what has 
happened, what is happening now, and what is expected to 
happen in the future (figure 1). Conceptual graphs have an 
obvious role at the planning stage of management and can 
also be thought of as models of alternative hypotheses to be 
evaluated as the program proceeds. They may reflect inten-
tions, established knowledge, or expert opinion. Expert 
opinions or judgements can be useful (Joseph et al. 2009), 
especially if procedures to reduce bias are incorporated 
(Speirs-Bridge et  al. 2010). In contrast, empirical graphs 
are based on data obtained through monitoring (figure 1). 
In all these graphs, the outcome measure—for example, 
abundance or density—is presented on the vertical axis 

(as a dependent variable), and time or 
the level of management effort is on 
the horizontal axis (independent vari-
able). Causal theory is clear that time 
is not a cause (Harre 1972), and, there-
fore, graphs of outcomes as a function 
of time show trends and not causes. 
Empirical graphs with analyzed data 
and graphs incorporating validated pre-
dictions provide progressively stronger 
statistical and causal inference that the 
outcomes did occur and why; in fig-
ure 1, this progression increases from a 
minimum at top left to a maximum at 
bottom right.

The aim of this article is to describe 
a unifying framework that incorporates 
three options—the option of evaluat-
ing wildlife management on the basis 
of assessment of trends but not causes, 
an alternative option on the basis of 
evidence that management causes 
observed outcomes but without assess-
ing trends, and a third option that 
combines evidence of both trends and 
causes. We distinguish between statisti-
cal inference, with its focus on param-
eter estimation and inferences from a 
sample, and causal inference, with its 
use of logic and evidence. For example, 
statistical inference using linear regres-
sion focuses on estimates of the slope 
and intercept and the precision of each. 
In contrast, causal inference focuses on 
the extent and direction of change in 
an outcome when management effort 
changes (increases or decreases) and 
therefore links cause and effect. We 
show how strength of inference—that 
is, the confidence we have in both 
parameter estimates and causality—
varies within each management option, 

and how scientists and managers can benefit from explicit 
consideration of cause and effect.

Demonstrating that an outcome is caused by 
management—causal inference
The problem of demonstrating that a wildlife manage-
ment outcome, whether beneficial or detrimental, is a 
consequence of management efforts, also called actions or 
investments, is an instance of the general scientific problem 
of demonstrating causality or cause and effect. Causality is 
based on logic and its principles of reasoning (Harre 1972, 
Williams 1997, Williams et  al. 2002) and is a fundamental 
issue in science and other research (Pearl 2009, Imbens 
2020). Many studies have explicitly described features that 

Figure 1. A framework of schematic graphs showing three options, as columns, 
for evaluating wildlife management. From the top down within the column of 
outcomes (O) versus time (t), there is increasingly stronger statistical inference 
of a trend. From the top down within the middle column of outcomes versus 
efforts (E), there is increasingly stronger statistical inference of parameter 
values and stronger causal inference that management efforts caused the 
outcomes. From the top down within the right column of outcomes versus both 
time and efforts, there is increasingly stronger statistical inference of trends 
and parameter values, and stronger causal inference that management efforts 
caused the trends. In the bottom row, open circles are predictions that are 
validated independently (dashed lines). Examples of options in each column 
are illustrated in figures 2, 3, and 4 and in tables 1, 2, and 3 respectively. Costs 
of options increase down each column and across each row. For simplicity, aims 
and measures of precision are not explicit but should be recognized.
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are required or desirable to demonstrate cause and effect. 
Those criteria include temporality (a cause occurring before 
its effect), experiment, a plausible mechanism, consistency 
(repeatability), coherence, a dose–response relationship, 
specificity, strength, and analogy (Hill 1965). Other evi-
dence includes an increase in prediction bias when a pos-
sible cause is removed (Granger 1969) and convergence 
to a higher correlation between observed and predicted 
parameter values with an increased data set (Sugihara et al. 
2012). Repeatability, consistency, and coherence have been 
examined using triangulation (Munafo and Smith 2018) 
to encourage greater evidence of causality from multiple 
sources. More basic evidence is that both a stressor (a man-
agement effort in our context) and a response (an outcome) 
occurred (Nichols et al. 2017).

Management that demonstrates more of these criteria 
can make stronger causal inferences (Cox and Wermuth 
2004) about the link between efforts and outcomes; that is, 
managers have more confidence of a causal relationship and 
therefore have more reliable knowledge (Romesburg 1981). 
Levels of causal inference were described starting at level 0 
when they were based only on association (e.g., correlation 
between observed quantities), level 1 when they were based 
on experimental results, and level 2 when they were based on 
a unique mechanism (Cox and Wermuth 2004). We propose 
a third level when inferences are also supported by validated 
quantitative predictions. We interpret the levels as cumula-
tive; level 2 incorporates level 1 and so on. We recognize that 
wildlife managers and scientists cannot always do random-
ized, replicated, manipulative experiments, especially with 
threatened species. However, validating predictions has been 
encouraged in wildlife research as part of obtaining reliable 
knowledge (Sells et al. 2018). In other scientific disciplines—
notably, astronomy and meteorology—randomized manipu-
lative experiments are typically not possible. However, 
predictions can be made from hypotheses and then validated 
in separate observational studies (Lipton 2005, Sells et  al. 
2018), and these disciplines evidently produce reliable sci-
entific knowledge. A famous example in science is the vali-
dated prediction in Einstein's theory of general relativity of 
light bending, by observations of stars close to the sun dur-
ing a solar eclipse (Dyson et al. 1920, Nature Physics 2019). 
Levels 0 to 3 match particular rows in the righthand column 
in figure 1; row 2 is level 0, showing association in empirical 
graphs, row 3 combines the first and second levels, showing 
empirical graphs with analysis and incorporating temporal-
ity, experiment, and a mechanism; and the bottom row is our 
level 3, showing an empirical graph, analysis, and validated 
predictions. An analogous hierarchy of experimental designs 
used in medicine ranked them on their ability to lead from 
weaker to stronger causal inferences (Harris et al. 2006) and 
was similar to that described earlier by Manly (1992) in a 
general scientific context.

Adaptive management is used in wildlife management 
to integrate monitoring and learning into a process of 
improving the effectiveness and efficiency of on-ground 

efforts and actions (Walters and Holling 1990, Williams 
et  al. 1996, 2002). Criteria for demonstrating adaptive 
management have been listed as identification of manage-
ment goals and options, rigorous statistics such as includ-
ing experiments, monitoring, and adjusting management 
in response to results (Westgate et  al. 2013). These com-
ponents and criteria are similar to but not identical to the 
causal criteria identified earlier; adaptive management 
is more explicit about goals and options and changes to 
management as information accumulates. Wildlife man-
agers need to have confidence in the reliability of results 
they use to adjust management. The framework of figure 1 
can help managers assess their level of confidence for 
decision-making and how it can be increased by changing 
management toward having features matching those in the 
figure's bottom righthand corner. In the context of wildlife 
management, a focus on inferring cause and effect from 
manipulative experimentation seems appropriate, because 
management implies the use of interventions rather than 
making passive observations alone. However, there will 
be situations in which observations are appropriate, most 
obviously prior to more active management. We now 
briefly describe the options.

Option 1: Evaluation by using trends
Species and community management can assess temporal 
trends in abundance or related parameters by using statisti-
cal inference—namely, parameter estimation and inferences 
from a sample to a wider population (figure 1’s left column). 
Trends, such as marked declines in abundance, can be used 
to decide whether management actions or efforts should be 
initiated or, if they are already underway, modified. Trends 
are used to assess conservation status categories, such as 
Endangered (IUCN 2012).

A conceptual graph of outcomes.  A conceptual graph can 
describe expected trends over time (figure 2a, table 1). An 
interesting example is used in the Saving Our Species pro-
gram of the New South Wales government (Brazill-Boast 
2018, Office of Environment and Heritage 2018). The out-
come metrics are described as on track if they are between 
the two curved lines in the figure, an approach borrowed 
from quality control charts in industry (Burgman et  al. 
2012). The target outcome, also called the aim, objective, 
or goal, is explicit. The figure is not explicit about how to 
interpret outcomes above the on-track lines, although pre-
sumably managers should be pleased outcomes are ahead of 
the time schedule. The strength is that the concept is simple 
and being explicit is available for all to see and use. Such 
a graph is called a response to management curve (Office 
of Environment and Heritage 2018, Mayfield et  al. 2020); 
to show the response explicitly, an annotation is needed 
to show the point at which management commenced and 
preferably separate curves showing the expected outcomes 
with and without management should be included from 
that point.
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Outcomes over time with no analysis.  This is a simple graph or 
table of outcomes over time, such as of abundance or distri-
bution, obtained from monitoring. It is empirical, although 
with no measures of precision or formal estimation of trend 
(figure 1); it is found in the literature with surprising fre-
quency (Reddiex et al. 2006, Rayner et al. 2014). The latter 
study used a scoring system to reflect the inferential status 
of trends in woodland birds from casual (no analysis) to 
rigorous (formal analysis) and included assessing whether 
formal data analysis had occurred (Rayner et  al. 2014). 
This management option highlights a gap in the threatened 
species conservation categories of the IUCN. The data 
deficient category (IUCN 2012) is appropriate when there 
is insufficient data to assess trend. When data are avail-
able but are not analyzed and any trends are ambiguous in 
the absence of analysis, then the category would be better 
labelled as data or analysis deficient. A strength is that the 

graph or table is simple and is explicit about the outcome 
measure, which can be related to a management aim or 
target if one has been set.

Outcomes over time analyzed.  Some studies report trends 
in abundance with analysis (figure  1) and measures 
of precision. A single species example demonstrating 
a high level of precision is the positive annual instan-
taneous population growth (r  = 0.11, 95% confidence 
interval = 0.10–0.12) of pups (figure  2b) of long-nosed 
fur seals (Arctocephalus forsteri), a previously threat-
ened population, at Cape du Couedic in South Australia 
(Shaughnessy and Goldsworthy 2015). Additional exam-
ples are shown in table 1.

The observed annual rate of population growth, r, and 
its precision can be estimated to determine whether the 
instantaneous rate, r, is negative, suggesting population 
decline, or less than or equal to the maximum growth rate 
(rm); 0 < r ≤ rm (table 1). The latter approach is analogous 
to quality control charts defining boundaries of change 
(Manly 2001, Burgman et al. 2012). The parameter, rm, can 
be obtained from the literature, or estimated using pub-
lished methods (Duncan et al. 2007, Hone et al. 2010). The 
strength of the approach suggests it should be incorporated 
into the standard procedures and Recovery Plans for manag-
ing threatened species. Introducing an arbitrary cap on rm, is 
undesirable, such as in the Threatened Species Index, which 
caps annual finite population growth (λ) at 10 (Bayraktarov 
et al. 2020 and their supplemental material, p. 34) indepen-
dent of a species’ maximum rate of growth. Threatened spe-
cies can have a maximum annual finite growth rate greater 
than 10 and, therefore, an rm greater than 2.30 (as λ = er, that 
is 10 = e2.30; Hone et al. 2010).

Predicted trends validated.  Quantitative predictions can be 
made using data collected previously, and those predictions 
compared with independent data (Lipton 2005, Possingham 
et  al. 2012), including data to be obtained in the future 
(figure  1). Ideally, the predictions are validated—that is, 
shown to be unbiased (no significant difference between 
observed and predicted estimates)—and precise (low vari-
ability). Examples from wildlife management are shown 
in table  1. A strength of the option is that it provides 
evidence of reliable information on which to base deci-
sions. Limitations are that the option requires high quality 
(unbiased and precise) monitoring data and analysis, which 
requires more funds, and an extended duration.

The conceptual and empirical graphs of trends in the 
left column of figure 1 provide no evidence that trends are 
caused by management efforts. The next two options gen-
erate causal inference about the effects of management.

Option 2: Evaluation of outcomes and management 
efforts
A second set of options (figure 1, middle column) focuses 
on relationships between management outcomes and 

Figure 2. Examples of graphs illustrating evaluation 
of trends in wildlife species. (a). Conceptual graph of 
outcomes over time. Outcomes are on track between the 
dashed line and dotted line, and the long-term target 
is shown by the dashed and dotted line. After Office of 
Environment and Heritage (2018) and Brazill-Boast 
(2018). (b). Annual estimates of abundance of pups of 
long-nosed fur seals (solid circles) in part of southern 
Australia and the fitted exponential population growth 
curve (solid line). Measures of precision are not shown in 
the figure but were reported in the original paper. After 
Shaughnessy and Goldsworthy (2015).

a

b
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efforts and therefore involves both statistical and causal 
inference. The core issue in the present article was high-
lighted in a question asked of wildlife conservation manag-
ers by the then New Zealand prime minister in 2019 (Kiri 
Reihana, University of Waikato, Hamilton, New Zealand, 
personal communication, 3 December 2019): “How much 
would it cost to get a 2% increase in kiwi populations?” As 
for trends, the progression from conceptual graphs to data 
to analyzed data and to validated predictions corresponds 
to increasing strength of inference that the observed out-
comes occurred (statistical inference) and were caused by 
management efforts (causal inference). The temporality 
causal criterion requires that management efforts must 
precede outcomes.

A conceptual graph of outcomes versus management efforts.  A 
conceptual graph (figure 3a) relates management outcomes 
(y-axis, dependent variable) to efforts (x-axis, independent 
variable; Hone et  al. 2017). Alternative management aims 
should also be shown. Examples are listed in table  2. A 
strength of the conceptual graph is its use as a planning 
tool, which can be revised as a program proceeds. It shows 
management levels including no management explicitly 

(figure 3a). Time is not shown explicitly, although this can 
be indicated by labelling.

Outcomes and management effort reported with no 
analysis.  Measurements of outcomes at different levels of 
effort are graphed (figure 1). A simplified version includes a 
comparison of efforts and no efforts. A strength is that the 
graph has empirical data over a range of differing manage-
ment efforts, which includes no management (an experi-
mental control). A limitation is the lack of statistical analysis.

Outcomes and management efforts reported and analyzed.  Desired 
outcomes, such as abundance, or its change (r) over a defined 
period, are related to management efforts through both 
graphing and analysis (figure 1). Examples are listed in table 2, 
demonstrating such an approach is feasible. Data to estimate 
an effort–outcome relationship can be observational, using 
natural experiments, such as in the rhinoceros (figure  3b) 
and elephant examples (Leader-Williams and Albon 1988). 
However, to provide stronger causal inference manipulative 
experiments can be used, such as in the five field experiments 
of wildlife management reported by Hone and colleagues 
(2017, their table 2). A strength of the option is that the extent 

Table 1. Examples of wildlife studies using statistical inference and reporting outcomes as a function of time (trends) 
as is shown in figure 1’s left column.
Type of data or information Species Sources

Conceptual graph Generic not species specific Brazill-Boast (2018),  
Office of Environment and Heritage (2018), 
Mayfield and colleagues (2020)

Data with analysis, single species Helmeted honeyeater  
(Lichenostomus melanops cassidix)

Smales and colleagues (2009),  
Hone (2014)

Long-nosed fur seal  
(Arctocephalus forsteri)

Shaughnessy and Goldsmith (2015)

Imperial cormorant  
(Leucocarbo atriceps)

Yorio and colleagues (2020)

Northern spotted owl  
(Strix occidentalis caurina)

Anthony and colleagues (2006),  
Forsman and colleagues (2011),  
Dugger and colleagues (2016)

Data with analysis, multiple species Woodland birds 

Amphibians, reptiles, birds, mammals

Rayner and colleagues (2014) 

Leung and colleagues (2017)

Birds

Birds

Department of Environment,  
Food and Rural Affairs (2018),  

Rosenberg and colleagues (2019)

Data with analysis, including checking whether 
r ≤ rm

African elephant  
(Loxodonta africana)

Caughley (1974),  
Foley and Faust (2010),  
Morrison and colleagues (2018),   
Louw and colleagues (2021)

Yellow-footed rock wallaby  
(Petrogale xanthopus)

Sharp and colleagues (2014)

Humpback whale  
(Megaptera novaeangliae)

Harrison and Woinarski (2018)

Boodie (Bettongia lesueur) Treloar and colleagues (2021)

Validated predictions Reindeer (Rangier tarandus) McCallum (2000)

House mouse (Mus domesticus) Krebs and colleagues (2004)

Lynx (Lynx canadensis) Hone and colleagues (2007)

Soay sheep (Ovis aries) Coulson and colleagues (2008)
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to which desired management outcomes or targets are related 
to management efforts is explicit. Once an empirical relation-
ship is estimated, the threshold level of effort required for 
population growth can be estimated from the intercept on the 
x-axis corresponding to no change in abundance.

Predicted outcomes are validated.  Observed outcomes, such as 
abundance, are graphed and analyzed to predict effects of 
future management and these quantitative predictions are 
compared with independent data (figure  1). A strength is 
that the validation of predictions gives strong evidence of 
cause and effect (Cox and Donnelly 2011) and increases the 
confidence of managers in their choice of a level of manage-
ment to achieve their aims.

Option 3: Evaluation of outcomes related to both 
trends and management efforts
A third set of options for evaluating species management 
measures trends in outcomes relative to differing manage-
ment efforts (figure 1 right column). Like option 2, it incor-
porates both statistical and causal inference. What makes 
option 3 different from option 2 is that it incorporates varia-
tion in both the time and the effort dimensions.

Conceptual graph of outcomes over time with differing manage-
ment.  A simple component of an adaptive management 
program, with management efforts at one site and no 
management efforts at another site, after which efforts are 
switched, is illustrated in figure  4a. Later, the more suc-
cessful management approach is adopted at both sites, 
an example of learning in active adaptive management 
(figure 4a). The alternative lines in figure 4a are models of 
different hypotheses and are therefore testable predictions of 
the effects of different management efforts or actions. If only 
one population can be managed then different levels of effort 
can be applied sequentially. Over any time period, the rate of 
population growth can be compared to the maximum possi-
ble growth rate (rm; figure 4a, dotted line). The management 
aim is explicit (figure 4a, the horizontal dashed and double-
dotted line) and can be shown in the conceptual graph as a 
line, implying a fixed-point aim such as a population size of 
3500, or as an interval, such as between 3000 and 4000, as 
was described in general terms by Mayfield and colleagues 
(2020). Examples are listed in table 3.

Outcomes over time for sites with differing management and no 
analysis.  Empirical data of trends in outcomes with differ-
ing efforts are graphed (figure 1) or tabulated. A strength is 
that the observed outcomes can be compared visually to the 
desired outcome or target. A limitation is that there is no 
recognition of precision and no statistical analysis to estimate 
the trends and significance of association. This option corre-
sponds to level 0 of causality of Cox and Wermuth (2004) and 
the casual inference of Rayner and colleagues (2014).

Outcomes over time for sites with differing management and ana-
lyzed.  This can range from a simple experimental design (fig-
ure 1), such as before–after–control–impact (BACI) through 
to a randomized, replicated, and controlled experiment, 
depending on the resources available. Examples are listed 
in table  3, including the responses of yellow-footed rock 
wallabies (Petrogale xanthopus) to control of red fox (Vulpes 
vulpes; figure  4b; Sharp et  al. 2014). If only one popula-
tion occurs the sequential management outcomes could be 
evaluated by a regression discontinuity design (Manly 1992, 
Butsic et al. 2017). If the costs of achieving the increases are 
recorded, then the return on investment (Murdoch et  al. 
2007) and diminishing returns on investment (Grantham 
et al. 2008, Hone 2013) could be estimated. This option cor-
responds to levels 1 and 2 of causality of Cox and Wermuth 
(2004).

Figure 3. Examples of graphs illustrating evaluation of 
effort–outcome relationships in wildlife management. 
(a) Conceptual graph of possible cause and effect 
relationships (A, B, and C represent alternative 
hypotheses) between management outcomes and efforts. 
Alternative C has a threshold level of effort (ET) before 
outcomes change. The intercept on the y axis corresponds 
to the outcome when there is no management, and no 
response to management efforts (the null hypothesis) 
is shown as the horizontal dashed line (D). Three 
alternative management aims are shown. Modified from 
Hone and colleagues (2017). (b). The percentage change 
in abundance of black rhinoceros over 5 years in nine 
African countries with different mean annual levels of 
effort against poachers (R2 = 0.68). Source: Adapted from 
Leader-Williams and Albon (1988).

a

b
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Table 2. Examples of wildlife studies using statistical and causal inference and reporting outcomes as a function of 
management efforts as is shown in figure 1’s middle column.
Type of data or information Species and topics Sources

Conceptual graph Species-investment curve Wilson and colleagues (2007) 

Benefits and costs of duck hunting  
and geographic scale

Johnson and colleagues (2015)

Effort–outcomes relationship Hone and colleagues (2017)

Data with analysis, single species Black rhinoceros (Diceros bicornis) and 
African elephant (Loxodonta africana) and 
antipoaching efforts

Leader-Williams and Albon (1988)

Yellow-eyed penguin (Megadyptes antipodes) 
and management efforts

Busch and Cullen (2009)

Data with analysis, multiple species Bird species richness and feral pig  
(Sus scrofa) control

Hone (2012)

Validated predictions Additive and compensatory hunting mortality 
models for mallard (Anas platyrhynchos)

Nichols (1991)

Figure 4. Examples of graphs illustrating evaluation of trends in effort–outcome relationships in wildlife management. 
(a). A conceptual graph of adaptive management outcomes over time, showing a scenario in which initially management 
efforts or actions are applied (solid lines) or not applied (dashed lines) simultaneously, then management is crossed over, 
and then later both sites are managed. Management can be applied sequentially, as in mallard management in North 
America, and that is shown by following one line from left to right. For illustrative purposes, exponential population 
growth and decline, and no diminishing returns are assumed. Maximum population growth (rm) is shown as the dotted 
line, and the management aim as the horizontal dashed and double dotted line. (b) Trends in abundance indices (on a 
ln = loge scale) of yellow-footed rock wallabies at two sites (Gap Range, the solid circles, and Coturaundee Range, the 
open triangles) before fox control (1992 to 1995). These trends were not significantly different. Trends were significantly 
different during 1995 to 1998 at the one site without fox control (Gap Range, the solid circles) compared with the one site 
with fox control (Coturaundee Range, the open triangles). The fitted regression lines show trends without (the solid lines) 
and with (the dotted line) fox control. Source: Adapted from Sharp and colleagues (2014).

a

b

048-058-biac105.indd   54 05/01/23   7:23 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article/73/1/48/6984667 by Serials Processing Library U

niversity of C
anberra user on 11 January 2023



Forum

https://academic.oup.com/bioscience 	 January 2023 / Vol. 73 No. 1 • BioScience   55   

Predicted outcomes in trends of differing management are vali-
dated.  The trends of outcomes with differing management 
are compared with the management aim, and quantitative 
predictions made from the analysis are validated (figure 1). 
Repeated demonstrations that predictions are unbiased 
strengthens causal inferences. An example is of North 
American midcontinental mallards (Anas platyrhynchos), 
whose abundance varies over years as inferred from annual 
population estimates and their 95% confidence intervals 
(table 3; Nichols et  al. 2015, 2019). Predictions were gen-
erated by alternative hypotheses including of the effects 
of hunting on survival rates in an adaptive management 
framework with hunting varying sequentially across years. 
Therefore, the mallard management is similar to the sequen-
tial variation of management illustrated in figure  4a, but 
without the simultaneous management. The sequential 
implementation of alternative management actions, pre-
dictions, evaluations and therefore learning, is a Bayesian 
approach that could be applied to management of other spe-
cies. An extra evaluation of mallard management could esti-
mate observed annual growth rates, such as λ, because these 
can be used as metrics of population health and to assess the 
effects of management actions (Nichols and Hines 2002). A 
limitation is that this approach may be too demanding of 
resources for small or inadequately funded programs.

Discussion
We have described how wildlife management, including 
conservation, can be evaluated using three options—namely, 

outcomes over time (figure 1, lefthand column), outcomes 
relative to effort (figure  1, middle column), and a combi-
nation of these (figure  1, righthand column). Across and 
within each option, we recognize different strengths of sta-
tistical and causal inference and these lead to identification 
of the favored approach described in the bottom righthand 
corner of figure  1—data analyzed to estimate trends and 
experimental estimation of effects of management efforts 
with validation of predictions. We encourage adaptive wild-
life management; however, criteria for demonstrating such 
management are not identical to those proposed for dem-
onstrating strong causal inference, so we recommend that 
wildlife managers link their efforts and outcomes to explicit 
causal criteria.

Our classification of evaluation options according to time 
and effort and the consideration of both statistical and causal 
inference help to reveal the strengths and limitations of each. 
Like Lipton (2005) and Possingham and colleagues (2012), we 
recommend greater generation and validation of predictions 
as occurs in other scientific disciplines, such as astronomy and 
meteorology, where scope for adaptive manipulative experi-
ments is limited. Validating predictions can occur across 
times at one site, across sites at one time, or a combination. 
Implementation of options incorporating time and effort 
dimensions (bottom righthand corner of figure  1) in future 
wildlife management will increase the reliability of knowledge 
(Romesburg 1981, Sells et  al. 2018) and support a transi-
tion from “no clear evidence” to “clear evidence” (Garnett 
et  al. 2019) of management effectiveness. Implementing the 

Table 3. Examples of wildlife studies using statistical and causal inference and reporting management outcomes  
as a function of both time and management efforts as is shown in figure 1’s right column.
Type of data or information Species and topics Source

Conceptual graph Wildlife with/without harvest 

Duck dynamics and harvest versus no harvest

Walters and Hilborn (1978) 

Frith (1979

Conservation of forest birds Green (2002)

Conservation legacy, gain, and recovery 
potential

Akcakaya and colleagues (2018)

Data with analysis, single species Black-flanked rock wallaby (Petrogale lateralis) 
and red fox (Vulpes vulpes) control

Hone (1994),  
Kinnear and colleagues (1998)

Kokako (Callaeas cinerea wilsoni) and pest 
control

Innes and colleagues (1999)

Bovine TB in cattle and badger (Meles meles) 
control

Donnelly and colleagues (2006),  
Jenkins and colleagues (2010)

Grand skink (Oligosoma grande) and vertebrate 
pest control

Norbury and colleagues (2014)

Northern spotted owl and barred owl (Strix 
varia) removal

Diller and colleagues (2016),  
Dugger and colleagues (2016)

Hihi (Notiomystis cincta) and parasite control Mather and colleagues (2021)

African elephant during and after culling Louw and colleagues (2021)

Data with analysis, multiple species Trends in native forest birds and vertebrate 
pest control

Innes and colleagues (2010)

Validated predictions Mallard and harvesting Nichols and colleagues (2015, 2019) 
Zhao and colleagues (2016)

Rhinoceros (Ceratotherium simum simum) and 
poaching

Haas and Ferreira (2016)
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stronger options also supports the learning needed for more 
effective adaptive management, and can require greater coop-
eration between scientists and managers, which we encour-
age. The empirical examples presented of mammals, birds, 
reptiles and amphibians in a wide range of locations around 
the world show the options are feasible and have broad appli-
cability. We suggest the framework has application to other 
related disciplines, such as fisheries management.

Our classification of evaluation options can be drawn 
on by wildlife managers and scientists to support their 
decision-making in several ways. They can identify which 
approach they have been using and choose which option 
to use in future for stronger statistical and causal infer-
ence. They can determine whether full use has been made 
of the monitoring data collected over time, in particular 
through the estimation of confidence levels and intervals 
that form the basis of sound decision-making. They can 
assess whether the program has a clear, quantifiable aim 
(Tear et al. 2005) and evaluate whether it is achieved. They 
can predict the outcomes of management and use a dif-
ferent data set to assess predictive bias. They can assess 
the feasibility of the options described in the present 
article and, if needed, seek additional resources, in order 
to strengthen inferences about trends and management 
effectiveness. They can identify the consequences of not 
adopting an option in terms of reduced strength of infer-
ence and less well-informed adaptive management. In 
conclusion, we recommend incorporating the framework 
of figure 1 and its formal process of choosing an evaluation 
option into the procedures of wildlife management includ-
ing conservation.
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